首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Bothrops jararaca venom induces programmed cell death in epimastigotes of Trypanosoma cruzi. Here we fractionated the venom and observed that the anti-T. cruzi activity was associated with fractions that present l-amino acid oxidase (l-AAO) activity. l-AAO produces H2O2, which is highly toxic. The addition of catalase to the medium, a H2O2 scavenger, reverted the killing capacity of venom fractions. The anti-T. cruzi activity was also abolished when parasites were cultured in a medium without hydrophobic amino acids that are essential for l-AAO activity. These results were confirmed with a commercial purified l-AAO. Treatment for 24 h with fractions that present l-AAO activity induced parasites cytoplasmic retraction, mitochondrial swelling and DNA fragmentation, all morphological characteristics of programmed cell death. Similar changes were also observed when parasites were treated with H2O2. These results indicate that H2O2, the product of l-AAO reaction, induces programmed cell death explaining the anti-T. cruzi activity of B. jararaca venom.  相似文献   

2.
Aqueous extract from Casearia sylvestris leaves, a typical plant from Brazilian open pastures, was able to neutralize the hemorrhagic activity caused by Bothrops asper, Bothrops jararacussu, Bothrops moojeni, Bothrops neuwiedi and Bothrops pirajai venoms. It also neutralized two hemorrhagic metalloproteinases from Bothrops asper venom. Proteolytic activity on casein induced by bothropic venoms and by isolated proteases, including Bn2 metalloproteinase from B. neuwiedi venom, was also inhibited by the C. sylvestris extract in different levels. The α-fibrinogen chain was partially protected against degradation caused by B. jararacussu venom, when this venom was incubated with C. sylvestris extract. We also observed that this extract partially increased the time of plasma coagulation caused by B. jararacussu, B. moojeni and B. neuwiedi venoms. C. sylvestris extract did not induce proteolysis in any substrate assayed.  相似文献   

3.
The genus Bothrops spp. is responsible for 90% of envenomation by snakes in Brazil, and the standard treatment for snakebites is the antivenom therapy. The anti-bothropic serum produced by Butantan Institute is prepared by the hyperimmunization of horses with a pool of venoms from Bothrops alternatus, Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni and Bothrops neuwiedi. In this study, the biochemical and biological characteristics of the venoms from nineteen snakes of the genus Bothrops, responsible for human accidents in Brazil, were analysed. Venoms, particularly from Crotalidae and Viperidae snakes, are rich sources of serine proteases and metalloproteases and the ability of the Brazilian anti-bothropic serum to neutralize the proteolytic activity of these venoms were also tested. The results obtained here show the existence of a large range of variation in the composition and activities in Bothrops spp. toxins and demonstrate that the anti-bothropic serum is not able to fully neutralize the toxic activities of all analysed venoms. These suggest that for the preparation of a fully effective therapeutic anti-bothropic serum, other venoms should be included in the immunization mixture.  相似文献   

4.
Some proteins present in snake venom possess enzymatic activities, such as phospholipase A2 and l-amino acid oxidase. In this study, we verify the action of the Bothrops marajoensis venom (BmarTV), PLA2 (BmarPLA2) and LAAO (BmarLAAO) on strains of bacteria, yeast, and Leishmania sp. The BmarTV was isolated by Protein Pack 5PW, and several fractions were obtained. Reverse phase HPLC showed that BmarPLA2 was isolated from the venom, and N-terminal amino acid sequencing of sPLA2 showed high amino acid identity with other lysine K49 sPLA2s isolated from Bothrops snakes. The BmarLAAO was purified to high molecular homogeneity and its N-terminal amino acid sequence demonstrated a high degree of amino acid conservation with others LAAOs. BmarLAAO was able to inhibit the growth of P. aeruginosa, C. albicans and S. aureus in a dose-dependent manner. The inhibitory effect was more significant on S. aureus, with a MIC = 50 μg/mL and MLC = 200 μg/mL. However, the BmarTV and BmarPLA2 did not demonstrate inhibitory capacity. BmarLAAO was able to inhibit the growth of promastigote forms of L. chagasi and L. amazonensis, with an IC50 = 2.55 μg/mL and 2.86 μg/mL for L. amazonensis and L. chagasi, respectively. BmarTV also provided significant inhibition of parasitic growth, with an IC50 of 86.56 μg/mL for L. amazonensis and 79.02 μg/mL for L. chagasi. BmarPLA2 did not promote any inhibition of the growth of these parasites. The BmarLAAO and BmarTV presented low toxicity at the concentrations studied. In conclusion, whole venom as well as the l-amino acid oxidase from Bothrops marajoensis was able to inhibit the growth of several microorganisms, including S. aureus, Candida albicans, Pseudomonas aeruginosa, and Leishmania sp.  相似文献   

5.
We evaluated the effects of deflazacort (DFZ) on muscle regeneration following Bothrops jararacussu envenoming. Tibialis anterior muscle from adult mice was injected with 80 μg of venom. Animals received DFZ during 6 days. Seven and 60 days after envenoming, DFZ lead to a decrease in the total number of muscle fibers and an increase in interstitial fibrosis. We conclude that DFZ treatment may aggravate the loss of muscle mass after B. jararacussu envenoming.  相似文献   

6.
Ca2+ ions are essential to myonecrosis, a serious complication of snake envenomation, and heparin seems to counteract this effect. We investigated the effect of local injection of Bothrops jararacussu venom in mouse fast-twitch extensor digitorum longus (EDL) muscle, without or with heparin, on functional/molecular alterations of two central proteins involved in intracellular Ca2+ homeostasis, sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and Na+/K+-ATPase. EDL-specific SERCA1 isoform expression dropped significantly just after venom administration (up to 60% compared to control EDL values at days 1 and 3; p < 0.05) while SERCA2 and Na+/K+-ATPase α1 isoform expression increased at the same time (3-6- and 2-3-fold, respectively; p < 0.05). Although not significant, Na+/K+-ATPase α2 isoform followed the same trend. Except for SERCA2, all proteins reached basal levels at the 7th day. Intravenous heparin treatment did not affect these profiles. Ca2+-ATPase activity was also decreased during the first days after venom injection, but here heparin was effective to reinstate activity to control levels within 3 days. We also showed that B. jararacussu venom directly inhibited Ca2+-ATPase activity in a concentration-dependent manner. Our results indicate that EDL SERCA and Na+/K+-ATPase are importantly affected by B. jararacussu venom and heparin has protective effect on activity but not on protein expression.  相似文献   

7.
8.
Based on degradation of sphingomyelin/cholesterol liposomes containing entrapped horseradish peroxidase, we evaluated the Sphingomyelinase-D (SMase-D) activity of scorpion, spider and snake venoms by monitoring spectrophotometrically the product of oxidation of HRP released. The results indicate that Loxosceles crude venoms (Loxosceles intermedia, Loxosceles laeta, Loxosceles gaucho and Loxosceles similis) displayed SMase-D activity in a concentration-dependent manner. Furthermore, this activity was blocked by the anti-loxoscelic antivenom. However, Tityus serrulatus scorpion venom, Phoneutria nigriventer spider venom and Bothrops jararaca, Crotalus durissus, Lachesis muta and Micrurus frontalis snake venoms did not show measurable SMase-D activity.  相似文献   

9.
A combination of anti-bothropic and anti-crotalic sera has been reported to be more effective in neutralizing the effects of Bothrops jararacussu venom than anti-bothropic serum alone. The role of proteins from B. jararacussu venom in the horse immune response was evaluated via the analysis of cross-reactivity with homologous and heterologous sera. Many of the proteins in B. jararacussu venom were identified via 2D gel electrophoresis. Western blots revealed that anti-jararacussu showed higher reactivity to l-aminoxidase (LAOs) and snake venom metalloproteinase, (SVMPs) and weaker reactivity towards Snake venom serine proteases (SVSPs), PLA2, C-type lectin and cysteine-rich proteins. Anti-jararaca preferentially recognized LAOs, SVMPs and SVSPs. Both of these sera failed to recognize low-molecular weight proteins. Anti-crotalic serum clearly recognized LAOs, C-type lectin, SVSP, cysteine-rich proteins, SVMP and Asp49-PLA2. The cross-reactivity with anti-PLA2 revealed the immunoreactivity of these antibodies to proteins with molecular masses in a range that is poorly recognized by other studied anti-sera. Our results suggest that the contribution of anti-crotalic serum to the neutralization of B. jararacussu by may be due to its cross-reactivity with proteins such as C-type lectins, SVSPs, Asp49-PLA2. These results also reinforce the importance of neutralizing the highly toxic proteins inclusive those with low immunogenicity in commercial antivenom production to obtain a highly protective serum against snake venoms.  相似文献   

10.
Context: Natural compounds have been widely studied with the aim of complementing antiophidic serum therapy.

Objective: The present study evaluated the inhibitory potential of ascorbic acid and a vitamin complex, composed of ascorbic acid, vitamin E, and all the B-complex vitamins, on the biological activities induced by snake venoms.

Material and methods: The effect of vitamins was evaluated on the phospholipase, proteolytic, coagulant, and fibrinogenolytic activities induced by Bothrops moojeni (Viperidae), B. jararacussu, and B. alternatus snake venoms, and the hemagglutinating activity induced by B. jararacussu venom.

Results: The vitamin complex (1:5 and 1:10 ratios) totally inhibited the fibrinogenolytic activity and partially the phospholipase activity and proteolytic activity on azocasein induced by the evaluated venoms. Significant inhibition was observed in the coagulation of human plasma induced by venoms from B. alternatus (1:2.5 and 1:5, to vitamin complex and ascorbic acid) and B. moojeni (1:2.5 and 1:5, to vitamin complex and ascorbic acid). Ascorbic acid inhibited 100% of the proteolytic activities of B. moojeni and B. alternatus on azocasein, at 1:10 ratio, the effects of all the venoms on fibrinogen, the hemagglutinating activity of B. jararacussu venom, and also extended the plasma coagulation time induced by all venoms analyzed.

Discussion and conclusion: The vitamins analyzed showed relevant in vitro inhibitory potential over the activities induced by Bothrops venoms, suggesting their interaction with toxins belonging to the phospholipase A2, protease, and lectin classes. The results can aid further research in clarifying the possible mechanisms of interaction between vitamins and snake enzymes.  相似文献   

11.
We investigated a synthetic coumestan named LQB93 and similar compounds abilities to antagonize activities of Bothrops jararacussu and Bothrops jararaca crude venoms in different protocols. The antimyotoxic activity was evaluated in vitro by the rate of release of creatine kinase (CK) from isolated mouse extensor digitorum longus muscle (EDL) induced by B. jararacussu (25 g/ml). For in vivo studies, B. jararacussu venom (1.0 mg/kg) was preincubated with LQB93 (0.1–30 mg/kg), during 30 min, for later injection in mouse tight and evaluation of the antimyotoxic and anti-edematogenic effects. LQB93 antagonized in vitro, the increase of CK release from the EDL muscle (IC50 = 0.0291 M). It also showed in vivo, antimyotoxic and anti-edematogenic effects that were dose-dependent with ID50 of 0.17 mg/kg and 0.14 mg/kg, respectively. The hemorrhage induced by B. jararaca (1.0 mg/kg) venom in the mouse skin, was abolished by LQB93 (10.0 mg/kg) preincubated with venom. Like wedelolactone, LQB93 protected rat isolated heart on a Langendorff preparation, from the cardiotoxicity of B. jararacussu venom. LQB93 inhibit the effects of Bothrops venoms like wedelolactone, a natural compound isolated from the plant Eclipta prostrata.  相似文献   

12.
Bothrops erythromelas venom (BeV) has been responsible for many snake accidents in Brazil. We investigated the plasmatic pharmacokinetic of BeV labeled with 131I in the absence and the presence of anti-Bothrops serum (BAS). A higher percentage of BeV plasmatic radioactivity and longer elimination were found in the presence of BAS. Our results showed a redistribution of venom from the tissue to vascular compartment associated with the treatment of envenomed mice with anti-venom 15 min after venom injection.  相似文献   

13.
Acute muscle damage, myonecrosis, is one of the main characteristics of envenoming by Bothrops genus. In this in vitro study we investigated the role of a metalloproteinase (baltergin) and an acidic phospholipase A2 (Ba SPII RP4) in the cytotoxicity exhibited by Bothrops alternatus venom. Baltergin metalloproteinase purified from the venom exerted a toxic effect on C2C12 myoblast cells (CC50: 583.34 μg/mL) which involved morphological alterations compatible with apoptosis/anoikis. On the contrary, the most abundant PLA2 isolated from this venom did not exhibit cytotoxicity at times and doses tested. However, when myoblasts were treated with both enzymes together, synergic activity was demonstrated. Neutralization of the venom with specific antibodies (IgG anti-baltergin and IgG anti-PLA2) confirmed this synergism.  相似文献   

14.
An acidic protein with phospholipase A2 activity was purified to homogeneity from the venom of the Northeast Argentinian viperid Bothrops alternatus by two chromatographic steps: a conventional gel filtration on Sephadex G-75 and reversed phase on C18 HPLC column.A molecular mass of 14185.48 Da was determined by mass spectrometry, displaying a homodimer conformation. The kinetic assay demonstrated a catalytically active phospholipase A2 in correspondence with Asp49 PLA2 group. The enzyme designated Ba SpII RP4 contains an amino acid composition of 121 residues and a calculated theoretical pI value of 4.88. Amino acid sequence alignments with other Bothrops PLA2 revealed a high degree of homology sequence (90-56%). Ba SpII RP4 did not show myotoxic activity upon muscular fibers at doses up to 100 μg i.m. route injection or lethal response when it was i.p. injected at the hightest dose of 200 μg. This toxin generates slight biological activities like paw edema inflammation and a delay in the clotting time, although Ba SpII RP4 exhibited catalytic activity. The primary amino acid sequence, determined a quadruple-time of flight (Q-TOF) hybrid mass spectrometer Q-TOF Ultima from Micromass (Manchester, UK) equipped with a nano Zspray source operating in a positive ion mode and tandem mass spectrum, an ESI/MS mass spectrum (TOF MS mode) “de novo amino acid sequencing”, also provides more database about the small group of the non-myotoxic PLA2s isolated up to the present.  相似文献   

15.
Systemic alterations induced by a Bothrops alternatus hemorrhagin, named baltergin, a 55 kDa fibrinogenolytic metalloproteinase isolated from venom of north-eastern Argentina specimens, were studied in mice. It caused macroscopic hemorrhagic spots in lungs which was injected intravenously with a minimum pulmonary hemorrhagic dose of 10 μg. Histological observations of lungs showed mainly hemorrhagic areas, evidenced by the presence of erythrocytes in the alveolar spaces, congestion and increase of thickness of alveolar septum due to polymorphonuclear infiltrate and mononuclear cells. Neither macroscopic hemorrhage in other organs nor histological alterations in heart and cerebrum/cerebellum were observed at doses assayed. However, kidney and liver were mildly affected. Kidney examination revealed congestion, subcapsular hemorrhage with local capsule detachment, inflammatory infiltrate and degeneration of tubular cells. Congestion of blood vessels and hydropic degeneration of hepatocytes were observed in liver. Besides, baltergin was able to further hydrolyze type IV collagen. Although the enzyme showed to be less lethal than whole venom, it induced severe pulmonary bleeding and affected kinder and liver in minor grade. In conclusion, baltergin is able to alter the integrity of capillary vessels and simultaneously, to interfere on the hemostatic system. Thus, this metalloproteinase contribute markedly to systemic alterations characteristic of B. alternatus envenomations.  相似文献   

16.
The structures and functional activities of metalloproteinases from snake venoms have been widely studied because of the importance of these molecules in envenomation. Batroxase, which is a metalloproteinase isolated from Bothrops atrox (Pará) snake venom, was obtained by gel filtration and anion exchange chromatography. The enzyme is a single protein chain composed of 202 amino acid residues with a molecular mass of 22.9 kDa, as determined by mass spectrometry analysis, showing an isoelectric point of 7.5. The primary sequence analysis indicates that the proteinase contains a zinc ligand motif (HELGHNLGISH) and a sequence C164I165M166 motif that is associated with a “Met-turn” structure. The protein lacks N-glycosylation sites and contains seven half cystine residues, six of which are conserved as pairs to form disulfide bridges. The three-dimensional structure of Batroxase was modeled based on the crystal structure of BmooMPα-I from Bothrops moojeni. The model revealed that the zinc binding site has a high structural similarity to the binding site of other metalloproteinases. Batroxase presented weak hemorrhagic activity, with a MHD of 10 μg, and was able to hydrolyze extracellular matrix components, such as type IV collagen and fibronectin. The toxin cleaves both α and β-chains of the fibrinogen molecule, and it can be inhibited by EDTA, EGTA and β-mercaptoethanol. Batroxase was able to dissolve fibrin clots independently of plasminogen activation. These results demonstrate that Batroxase is a zinc-dependent hemorrhagic metalloproteinase with fibrin(ogen)olytic and thrombolytic activity.  相似文献   

17.
In Venezuela, Bothrops snakes are responsible for more than 80% of all recorded snakebites. This study focuses on the biological and hemostatic characteristics of Bothrops isabelae venom along with its comparative characteristics with two other closely related Bothrops venoms, Bothrops atrox and Bothrops colombiensis. Electrophoretic profiles of crude B. isabelae venom showed protein bands between 14 and 100 kDa with the majority in the range of 14-31 kDa. The molecular exclusion chromatographic profile of this venom contains five fractions (F1-F5). Amidolytic activity evaluation evidenced strong thrombin-like followed by kallikrein-like activities in crude venom and in fractions F1 and F2. The fibrinogenolytic activity of B. isabelae venom at a ratio of 100:1 (fibrinogen/venom) induced a degradation of Aα and Bβ chains at 15 min and 2 h, respectively. At a ratio of 100:10, a total degradation of Aα and Bβ chains at 5 min and of γ chains at 24 h was apparent. This current study evidences one of rarely reported for Bothrops venoms, which resembles the physiologic effect of plasmin. B. isabelae venom as well as F2 and F3 fractions, contain fibrinolytic activity on fibrin plate of 36, 23.5 and 9.45 mm2/μg, respectively using 25 μg of protein. Crude venom and F1 fraction showed gelatinolytic activity. Comparative analysis amongst Venezuelan bothropoid venoms, evidenced that the LD50 of B. isabelae (5.9 mg/kg) was similar to B. atrox-Puerto Ayacucho 1 (6.1 mg/kg) and B. colombiensis-Caucagua (5.8 mg/kg). B. isabelae venom showed minor hemorrhagic activity, whereas B. atrox-Parguasa (Bolivar state) was the most hemorrhagic. In this study, a relative high thrombin-like activity was observed in B. colombiensis venoms (502-568 mUA/min/mg), and a relative high factor Xa-like activity was found in B. atrox venoms (126-294 mUA/min/mg). Fibrinolytic activity evaluated with 10 μg protein, showed that B. isabelae venom contained higher specific activity (50 mm2/μg) than B. colombiensis and B. atrox venoms, which should encourage the isolation of these fibrinolytic molecules to improve the quality of immunotherapy.  相似文献   

18.
Oral tolerance is defined as a specific suppression of cellular and humoral immune responses to a particular antigen through prior oral administration of an antigen. It has unique immunological importance since it is a natural and continuous event driven by external antigens. It is characterized by low levels of IgG in the serum of animals after immunization with the antigen. There is no report of induction of oral tolerance to Bothrops jararaca venom. Here, we induced oral tolerance to B. jararaca venom in BALB/c mice and evaluated the specific tolerance and cross-reactivity with the toxins of other Bothrops species after immunization with the snake venoms adsorbed to/encapsulated in nanostructured SBA-15 silica. Animals that received a high dose of B. jararaca venom (1.8 mg) orally responded by showing antibody titers similar to those of immunized animals. On the other hand, mice tolerized orally with three doses of 1 µg of B. jararaca venom showed low antibody titers. In animals that received a low dose of B. jararaca venom and were immunized with B. atrox or B. jararacussu venom, tolerance was null or only partial. Immunoblot analysis against the venom of different Bothrops species provided details about the main tolerogenic epitopes and clearly showed a difference compared to antiserum of immunized animals.  相似文献   

19.
A serine protease from Bothrops alternatus snake venom was isolated using DEAE-Sephacel, Sephadex G-75 and Benzamidine-Sepharose column chromatography. The purified enzyme, named Bhalternin, ran as a single protein band on analytical polyacrylamide gel electrophoresis (SDS-PAGE) and showed molecular weights of 31,500 and 27,000 under reducing and non-reducing conditions, respectively. Its complete cDNA was obtained by RT-PCR and the 708 bp codified for a mature protein of 236 amino acid residues. The multiple alignment of its deduced amino acid sequence showed a structural similarly with other serine proteases from snake venoms. Bhalternin was proteolytically active against bovine fibrinogen and albumin as substrates. When Bhalternin and bovine fibrinogen were incubated at 37 °C, at a ratio of 1:100 (w/w), the enzyme cleaved preferentially the Aα-chain, apparently not degrading the Bβ and γ-chains. Stability tests showed that the intervals of optimum temperature and pH for the fibrinogenolytic activity were 30-40 °C and 7.0-8.0, respectively. Also, the inhibitory effects of benzamidine on the fibrinogenolytic activity of Bhalternin indicate that it is a serine protease. This enzyme caused morphological alterations in heart, liver, lung and muscle of mice and it was found to cause blood clotting in vitro and defibrinogenation when intraperitoneally administered to mice, suggesting it to be a thrombin-like enzyme. Therefore, Bhaltenin may be of interest as a therapeutic agent in the treatment and prevention of thrombotic disorders.  相似文献   

20.
The Casearia sylvestris SW (Flacourtiaceae) is utilized in folk medicine (Brazil and all Latin American) to treat several pathologic processes as inflammation, cancer, microbial infection and snake bites. Studies showed that C. sylvestris aqueous extract can inhibit many toxic effects caused by snake venoms (or caused by phospholipase A2 isolated) from different species, mainly of Bothrops genus. Inhibition of enzymatic and myotoxic activities, decrease of edema formation and increase of the survival rate of rats injected with lethal doses of bothropic venoms are some toxic effects inhibited by C. sylvestris. In this study, four ellagic acid derivatives from aqueous extracts of C. sylvestris were isolated, characterized, and tested against effects from both total venom and PLA2 (Asp 49 BthTX-II) from the venom of Bothrops jararacussu. The isolated compounds were as follows: ellagic acid (A), 3′-O-methyl ellagic acid (B), 3,3′-di-O-methyl ellagic acid (C), 3-O-methyl-3′,4′-methylenedioxy ellagic acid (D). The inhibition constant values (Ki) for enzymatic activity, as well the IC50 values found in the edematogenic and myotoxic activities, indicate that the ellagic acid is the best inhibitor of these activities, while compounds C and D are the substances with lowest capacity on inhibiting these same effects. Our results show that the presence of hydroxyls at position 3 or 3′ (compounds A and B) increases the capacity of these derivatives on inhibiting these toxic effects. However, the presence of methoxyl groups at position 3 or 3′ reduced, but did not completely inhibit the capacity of compounds C and D on inhibiting all the toxic effects studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号