首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2,3,3,3-Tetrafluoropropene (HFO-1234yf) is a non-ozone-depleting fluorocarbon replacement with a low global warming potential and is developed as refrigerant. Due to lethality observed after high concentration inhalation exposures of HFO-1234yf in a developmental toxicity study with rabbits, the biotransformation of HFO-1234yf was investigated in this species. Female New Zealand White rabbits were exposed to air containing 2000; 10,000; or 50,000 ppm (n = 3/concentration) HFO234yf. All inhalation exposures were conducted for 6 h in a dynamic exposure chamber. Animals were individually housed in metabolic cages after the end of the exposures and urines were collected at 12 h intervals for 60 h. For metabolite identification, urine samples were analyzed by 1H-coupled and 1H-decoupled 19F-NMR and by LC/MS-MS or GC/MS. Metabolites were identified by 19F-NMR chemical shifts, signal multiplicity, 1H-19F coupling constants and by comparison with synthetic reference compounds. In urine samples of rabbits exposed to 2000; 10,000; or 50,000 ppm HFO-1234yf, the predominant metabolite was N-acetyl-S-(3,3,3-trifluoro-2-hydroxypropanyl)-l-cysteine and accounted for app. 48% of total 19F-NMR signal intensities. S-(3,3,3-Trifluoro-2-hydroxypropanyl)mercaptolactic acid, 3,3,3-trifluoro-1,2-dihydroxypropane, 3,3,3-trifluoro-2-propanol and inorganic fluoride were also present as urinary metabolites. In incubations of rabbit liver S9 fractions containing glutathione, NADPH and HFO-1234yf, 3,3,3-trifluoro-1,2-dihydroxypropane, S-(3,3,3-trifluoro-2-hydroxypropanyl)glutathione, 3,3,3-trifluoro-2-propanol and inorganic fluoride were identified as metabolites of HFO-1234yf by 19F-NMR. The quantity of recovered metabolites in urine suggest a low extent (< 0.1% of dose received) of biotransformation of HFO-1234yf in rabbits, and 95% of all metabolites were excreted within 12 h after the end of the exposures (t1/2 app. 9.5 h). The obtained results indicate that HFO-1234yf is metabolized in rabbits by a CYP450-mediated epoxidation at low rates and glutathione conjugation of the epoxide. The differences in urinary metabolite patterns between rats and rabbits seen with HFO-1234yf are likely due to species-specific processing of glutathione S-conjugates. Rabbits also show a larger extent of biotransformation of HFO-1234yf.  相似文献   

2.
2,3,3,3-Tetrafluoropropene (HFO-1234yf) is a non-ozone-depleting fluorocarbon replacement with a low global warming potential which has been developed as refrigerant. The biotransformation of HFO-1234yf was investigated after inhalation exposure. Male Sprague-Dawley rats were exposed to air containing 2000, 10,000, or 50,000 ppm HFO-1234yf for 6 h and male B6C3F1 mice were exposed to 50,000 ppm HFO-1234yf for 3.5 h in a dynamic exposure chamber (n=5/concentration). After the end of the exposure, animals were individually housed in metabolic cages and urines were collected at 6 or 12-hour intervals for 48 h. For metabolite identification, urine samples were analyzed by (1)H-coupled and decoupled (19)F-NMR and by LC/MS-MS or GC/MS. Metabolites were identified by (19)F-NMR chemical shifts, signal multiplicity, (1)H-(19)F coupling constants and by comparison with synthetic reference compounds. In all urine samples, the predominant metabolites were two diastereomers of N-acetyl-S-(3,3,3-trifluoro-2-hydroxy-propyl)-l-cysteine. In (19)F-NMR, the signal intensity of these metabolites represented more than 85% (50,000 ppm) of total (19)F related signals in the urine samples. Trifluoroacetic acid, 3,3,3-trifluorolactic acid, 3,3,3-trifluoro-1-hydroxyacetone, 3,3,3-trifluoroacetone and 3,3,3-trifluoro-1,2-dihydroxypropane were present as minor metabolites. Quantification of N-acetyl-S-(3,3,3-trifluoro-2-hydroxy-propyl)-l-cysteine by LC/MS-MS showed that most of this metabolite (90%) was excreted within 18 h after the end of exposure (t(1/2) app. 6 h). In rats, the recovery of N-acetyl-S-(3,3,3-trifluoro-2-hydroxy-propyl)-l-cysteine excreted within 48 h in urine was determined as 0.30+/-0.03, 0.63+/-0.16, and 2.43+/-0.86 micromol at 2000, 10,000 and 50,000 ppm, respectively suggesting only a low extent (<1% of dose received) of biotransformation of HFO-1234yf. In mice, the recovery of this metabolite was 1.774+/-0.4 mumol. Metabolites identified after in vitro incubations of HFO-1234yf in liver microsomes from rat, rabbit, and human support the metabolic pathways of HFO-1234yf revealed in vivo. The obtained results suggest that HFO-1234yf is subjected to a typical biotransformation reaction for haloolefins, likely by a cytochrome P450 2E1-catalyzed formation of 2,3,3,3-tetrafluoroepoxypropane at low rates, followed by glutathione conjugation or hydrolytic ring opening.  相似文献   

3.
2,3,3,3-Tetrafluoropropene (HFO-1234yf) is a novel refrigerant intended for use in mobile air conditioning. It showed a low potential for toxicity in rodents studies with most NOAELs well above 10,000 ppm in guideline compliant toxicity studies. However, a developmental toxicity study in rabbits showed mortality at exposure levels of 5,500 ppm and above. No lethality was observed at exposure levels of 2,500 and 4,000 ppm. Nevertheless, increased subacute inflammatory heart lesions were observed in rabbits at all exposure levels. Since the lethality in pregnant animals may be due to altered biotransformation of HFO-1234yf and to evaluate the potential risk to pregnant women facing a car crash, this study compared the acute toxicity and biotransformation of HFO-1234yf in male, female and pregnant female rabbits. Animals were exposed to 50,000 ppm and 100,000 ppm for 1 h. For metabolite identification by 19F NMR and LC/MS-MS, urine was collected for 48 h after inhalation exposure. In all samples, the predominant metabolites were S-(3,3,3-trifluoro-2-hydroxypropanyl)-mercaptolactic acid and N-acetyl-S-(3,3,3-trifluoro-2-hydroxypropanyl)-L-cysteine. Since no major differences in urinary metabolite pattern were observed between the groups, only N-acetyl-S-(3,3,3-trifluoro-2-hydroxypropanyl)-L-cysteine excretion was quantified. No significant differences in recovery between non-pregnant (43.10 ± 22.35 μmol) and pregnant female (50.47 ± 19.72 μmol) rabbits were observed, male rabbits exposed to 100,000 ppm for one hour excreted 86.40 ± 38.87 μmol. Lethality and clinical signs of toxicity were not observed in any group. The results suggest that the lethality of HFO-1234yf in pregnant rabbits unlikely is due to changes in biotransformation patterns or capacity in pregnant rabbits.  相似文献   

4.
HFO-1234ze is being developed as a refrigerant, propellant, and foam-blowing agent because it has a very low global warming potential (less than 10), as contrasted to the hydrofluorocarbons with values of over 500. Several toxicology studies were conducted to develop a toxicology profile for this material. There was no lethality in mice and rats receiving single 4-hour exposures up to 103,300 or 207,000 ppm, respectively. Exposures up to 120,000 ppm did not induce cardiac sensitization to adrenalin. Rats were exposed to HFO-1234ze at levels of 5,000, 20,000, and 50,000 ppm 6 hours/day 5 days/week for 2 weeks. Predominate findings of increased liver and kidney weights and histopathological changes in the liver and heart suggested that these organs were the targets for HFO-1234ze toxicity. In a 4-week study at 1000, 5000, 10,000, and 15,000 ppm, the only organ showing treatment-related effects was the heart. In a 90-day study with exposures of 1500, 5000, and 15,000 ppm 6 hours/day 5 days/week, again, the heart was the only target organ. The findings consisted of focal and multifocal mononuclear cell infiltrates in the heart. There was no evidence of fibrosis, and, when compared to the 2- and 4-week studies, there did not appear to be an increase in severity with length of exposure. HFO-1234ze was inactive in a mouse and rat micronucleus assay, an Ames assay, and an unscheduled DNA synthesis assay and was not clastogenic in human lymphocytes. It was also not a developmental toxin in either the rat or rabbit, even at exposure levels up to15,000 ppm.  相似文献   

5.
1.?The use of fluorine-19 nuclear magnetic resonance (19F-NMR) and gas chromatography-electron capture detection (GC-ECD) in the analysis of fluorine-containing products in the urine of sevoflurane-exposed patients was explored.

2.?Ten patients were anaesthetized by sevoflurane for 135–660?min at a flow rate of 6 l?min?1. Urine samples were collected before, directly after and 24?h after discontinuation of anaesthesia.

3.?19F-NMR analysis of the urines showed the presence of several fluorine-containing metabolites. The main oxidative metabolite, hexafluoroisopropanol (HFIP)-glucuronide, showed two strong quartet signals in the 19F-NMR spectrum. HFIP concentrations after β-glucuronidase treatment were quantified by 19F-nuclear magnetic resonance. Concentrations directly after and 24?h after discontinuation of anaesthesia were 131 ± 41 (mean ± SEM) and 61 ± 19?mol?mg?1 creatinine, respectively. Urinary HFIP excretions correlated with sevoflurane exposure.

4.?Longer scanning times enabled the measurement of signals from two compound A-derived metabolites, i.e. compound A mercapturic acid I (CAMA-I) and compound A mercapturic acid II (CAMA-II), as well as products from β-lyase activation of the respective cysteine conjugates of compound A. The signals of the mercapturic acids, 3,3,3-trifluoro-2-(fluoromethoxy)-propanoic acid and 3,3,3-trifluorolactic acid were visible after combining and concentrating the patient urines. CAMA-I and -II excretions in patients were completed after 24?h.

5.?Since 19F-nuclear magnetic resonance is not sensitive enough, urinary mercapturic acids concentrations were quantified by gas chromatography-electron capture detection. CAMA-I and -II urinary concentrations were 2.3 ± 0.7 and 1.4 ± 0.4?mol?mg?1 creatinine, respectively. Urinary excretion of CAMA-I showed a correlation with sevoflurane exposure, whereas CAMA-II did not.

6.?The results show that 19F-nuclear magnetic resonance is a very selective and convenient technique to detect and quantify HFIP in non-concentrated human urine. 19F-nuclear magnetic resonance can also be used to monitor the oxidative biotransformation of sevoflurane in anaesthetized patients. Compound A-derived mercapturic acids and 3,3,3-trifluoro-2-(fluoromethoxy)-propanoic acid and 3,3,3-trifluorolactic acid, however, require more sensitive techniques such as gas chromatography-electron capture detection and/or gas chromatography-mass spectrometry for quantification.  相似文献   

6.
1: The use of fluorine-19 nuclear magnetic resonance (19F-NMR) and gas chromatography-electron capture detection (GC-ECD) in the analysis of fluorine-containing products in the urine of sevoflurane-exposed patients was explored. 2: Ten patients were anaesthetized by sevoflurane for 135-660 min at a flow rate of 6 l min(-1). Urine samples were collected before, directly after and 24 h after discontinuation of anaesthesia. 3: 19F-NMR analysis of the urines showed the presence of several fluorine-containing metabolites. The main oxidative metabolite, hexafluoroisopropanol (HFIP)-glucuronide, showed two strong quartet signals in the 19F-NMR spectrum. HFIP concentrations after beta-glucuronidase treatment were quantified by (19)F-nuclear magnetic resonance. Concentrations directly after and 24 h after discontinuation of anaesthesia were 131 +/- 41 (mean +/- SEM) and 61 +/- 19 mol mg(-1) creatinine, respectively. Urinary HFIP excretions correlated with sevoflurane exposure. 4: Longer scanning times enabled the measurement of signals from two compound A-derived metabolites, i.e. compound A mercapturic acid I (CAMA-I) and compound A mercapturic acid II (CAMA-II), as well as products from beta-lyase activation of the respective cysteine conjugates of compound A. The signals of the mercapturic acids, 3,3,3-trifluoro-2-(fluoromethoxy)-propanoic acid and 3,3,3-trifluorolactic acid were visible after combining and concentrating the patient urines. CAMA-I and -II excretions in patients were completed after 24 h. 5: Since 19F-nuclear magnetic resonance is not sensitive enough, urinary mercapturic acids concentrations were quantified by gas chromatography-electron capture detection. CAMA-I and -II urinary concentrations were 2.3 +/- 0.7 and 1.4 +/- 0.4 mol mg(-1) creatinine, respectively. Urinary excretion of CAMA-I showed a correlation with sevoflurane exposure, whereas CAMA-II did not. 6. The results show that 19F-nuclear magnetic resonance is a very selective and convenient technique to detect and quantify HFIP in non-concentrated human urine. 19F-nuclear magnetic resonance can also be used to monitor the oxidative biotransformation of sevoflurane in anaesthetized patients. Compound A-derived mercapturic acids and 3,3,3-trifluoro-2-(fluoromethoxy)-propanoic acid and 3,3,3-trifluorolactic acid, however, require more sensitive techniques such as gas chromatography-electron capture detection and/or gas chromatography-mass spectrometry for quantification.  相似文献   

7.
Tributyl phosphate (TBP) is a toxic organophosphorous compound widely used in many industrial applications, including significant usage in nuclear processing. The industrial application of this chemical is responsible for occupational exposure and environmental pollution. In this study, 1H NMR-based metabonomics has been applied to investigate the metabolic response to TBP exposure. Male Sprague-Dawley rats were given a TBP-dose of 15 mg/kg body weight, followed by 24 h urine collection, as was previously demonstrated for finding most of the intermediates of TBP. High-resolution 1H NMR spectroscopy of urine samples in conjunction with statistical pattern recognition and compound identification allowed for the metabolic changes associated with TBP treatment to be identified. Discerning NMR spectral regions corresponding to three TBP metabolites, dibutyl phosphate (DBP), N-acetyl-(S-3-hydroxybutyl)-l-cysteine and N-acetyl-(S-3-oxobutyl)-l-cysteine, were identified in TBP-treated rats. In addition, the 1H NMR spectra revealed TBP-induced variations of endogenous urinary metabolites including benzoate, urea, and trigonelline along with metabolites involved in the Krebs cycle including citrate, cis-aconitate, trans-aconitate, 2-oxoglutarate, succinate, and fumarate. These findings indicate that TBP induces a disturbance to the Krebs cycle energy metabolism and provides a biomarker signature of TBP exposure. We show that three metabolites of TBP, dibutylphosphate, N-acetyl-(S-3-hydroxybutyl)-l-cysteine and N-acetyl-(S-3-oxobutyl)-l-cysteine, which are not present in the control groups, are the most important factors in separating the TBP and control groups (p < 0.0023), while the endogenous compounds 2-oxoglutarate, benzoate, fumarate, trigonelline, and cis-aconetate were also important (p < 0.01).  相似文献   

8.
The metabolic fate of 3-chloro-4-fluoroaniline was investigated in rat following intraperitoneal (i.p.) administration at 5 and 50?mg?kg?1 using a combination of HPLC-MS, HPLC-MS/MS, 19F-NMR spectroscopy, HPLC-NMR spectroscopy and high-pressure liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) with 35Cl and 34S detection. The metabolism of 3-chloro-4-fluoroaniline at both doses was rapid and extensive, to a large number of metabolites, with little unchanged compound excreted via the urine. Dosing at 5?mg?kg?1 with [14C]-labelled compound enabled the comparison of standard radioassay analysis methods with 19F-NMR spectroscopy. 19F-NMR resonances were only readily detectable in the 0–12?h post-dose samples. Dosing at 50?mg?kg?1 allowed the facile and specific detection and quantification of metabolites by 19F-NMR spectroscopy. Metabolite profiling was also possible at this dose level using HPLC-ICPMS with 35Cl-specific detection. The principal metabolites of 3-chloro-4-fluoroaniline were identified as 2-amino-4-chloro-5-fluorophenyl sulfate and 2-acetamido-4-chloro-5-fluorophenyl glucuronide. N-acetylation and hydroxylation followed by O-sulfation were the major metabolic transformations observed.  相似文献   

9.
  1. A study of the rates and routes of excretion of 3-fluoro-[U-14C]aniline following intraperitoneal administration to male bile-cannulated rats by liquid scintillation counting (LSC) gave a total recovery of ~ 90% in the 48?h following dosing, with the majority of the dose being excreted in the urine during the first 24?h (~ 49%).

  2. The total recovery as determined by 19F-nuclear magnetic resonance (19F-NMR) was ~ 49%, with the majority of the dose excreted in the first 24?h (~ 41%). The comparatively low recovery in comparison to that obtained from LSC was due to matrix effects in bile and a contribution from metabolic defluorination.

  3. High-performance liquid chromatography with radiometric profiling of urine and bile revealed a complex pattern of metabolites with the bulk of the dose excreted as a single peak.

  4. Ultra-performance liquid chromatography-orthogonal acceleration time of flight mass spectrometry profiling also showed a complex pattern of metabolites, detecting ~ 21 metabolites of 3-fluoroaniline (3-FA) with six of these detected only in urine and four solely in bile.

  5. 19F-NMR revealed the presence of the parent compound and 15 metabolites in urine collected during the first 24?h after -dosing. The matrix effects of bile on 19F-NMR spectroscopy made metabolite profiling impractical for this biofluid.

  6. The major metabolite of 3-FA was identified as 2-fluoro-4-acetamidophenol-sulfate.

  相似文献   

10.
Rats received diets containing 0, 2000, 10,000, or 50,000 ppm advantame (N-[N-[3-(3-hydroxy-4-methoxyphenyl) propyl]-α-aspartyl]-l-phenylalanine 1-methyl ester, monohydrate) for 2 generations. F0 animals (30/sex/group) were treated from 10 weeks before pairing. Males continued until week 16; females through gestation and lactation. Once weaned, F1 animals (25/sex/group) continued receiving the same diet until F2 pups were weaned. Mean advantame intakes from each of the diets were 164, 833, and 4410 mg/kg bw/day among F0 males, and 204, 1036, and 5431 mg/kg bw/day among F1 males. F0 and F1 females had comparable intakes up to lactation, when intakes increased (up to 8447 mg/kg bw/day from 50,000 ppm diet). No treatment-related effects on mortality, body weights, reproduction, litter observations, or postnatal offspring development were noted. Atypical coloration of the feces and cage liners seen with test diets was attributed to excretion of test material/metabolites in the feces and urine. Slightly higher food consumption was seen in F0 and F1 animals, especially males, receiving 50,000 ppm. However, these differences were considered to be a secondary response to the high levels of non-nutritive material in the diet. The no-observed-adverse-effect level for reproductive and developmental toxicity was considered to be 50,000 ppm, the highest dietary concentration tested.  相似文献   

11.
Cytochrome P450 (CYP) 2E1 was suggested to be the major enzyme involved in trichloroethylene (TRI) metabolism and TRI-induced hepatotoxicity, although the latter molecular mechanism is not fully understood. The involvement of CYP2E1 in TRI-induced hepatotoxicity and its underlying molecular mechanism were studied by comparing hepatotoxicity in cyp2e1+/+ and cyp2e1−/− mice. The mice were exposed by inhalation to 0 (control), 1000, or 2000 ppm of TRI for 8 h a day, for 7 days, and TRI-hepatotoxicity was assessed by measuring plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and histopathology. Urinary metabolites of trichloroethanol and trichloroacetic acid (TCA) were considerably greater in cyp2e1+/+ compared to cyp2e1−/− mice, suggesting that CYP2E1 is the major P450 involved in the formation of these metabolites. Consistent with elevated plasma ALT and AST activities, cyp2e1+/+ mice in the 2000 ppm group showed histopathological inflammation. TRI significantly upregulated PPARα, which might function to inhibit NFκB p50 and p65 signalling. In addition, TRI-induced NFκB p52 mRNA, and significantly positive correlation between NFκB p52 mRNA expression and plasma ALT activity levels were observed, suggesting the involvement of p52 in liver inflammation. Taken together, the current study directly demonstrates that CYP2E1 was the major P450 involved in the first step of the TRI metabolism, and the metabolites produced may have two opposing roles: one inducing hepatotoxicity and the other protecting against the toxicity. Intermediate metabolite(s) from TRI to chloral hydrate produced by CYP2E1-mediated oxidation may be involved in the former, and TCA in the latter.  相似文献   

12.
1. The urinary metabolites of (S)-2-ethyl-7-fluoro-3-oxo-3,4-dihydro-2H-quinoxaline-carboxylic acid isopropylester (GW420867X) have been investigated in samples obtained following oral administration to rabbit, mouse and human. GW420867X underwent extensive biotransformation to form hydroxylated metabolites and glucuronide conjugates on the aromatic ring, and on the ethyl and isopropyl side-chains in all species. In rabbit urine, a minor metabolite was detected and characterized as a cysteine adduct that was not observed in mouse or man. 2. The hydroxylated metabolites and corresponding glucuronide conjugates were isolated by semi-preparative HPLC and characterized using NMR, LC-NMR and LCMS/MS. The relative proportions of fluorine-containing metabolites were determined in animal species by 19F-NMR signal integration. 3. The fluorine atom of the aromatic ring underwent NIH shift rearrangement in the metabolites isolated and characterized in rabbit, mouse and human urine. 4. The characterization of the NIH shift metabolites in urine enabled the detection and confirmation of the presence of these metabolites in human plasma.  相似文献   

13.
Experimental studies have reported that pyrethroid insecticides affect male endocrine and reproductive function, but human data are limited. We recruited 161 men from an infertility clinic between years 2000–2003 and measured serum reproductive and thyroid hormone levels, as well as the pyrethroid metabolites 3-phenoxybenzoic acid (3PBA) and cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DCCA and trans-DCCA) in spot urine samples. When adjusting for potential confounders, categories for all three metabolites, as well as their summed values, were positively associated with FSH (all p-values for trend <0.05). Statistically significant or suggestive positive relationships with LH were also found. In addition, cis-DCCA and trans-DCCA were inversely associated with inhibin B (p for trend = 0.03 and 0.02, respectively). Finally, there was evidence that trans-DCCA was inversely associated with testosterone and free androgen index (the ratio of testosterone to sex hormone binding globulin; p for trend = 0.09 and 0.05, respectively). The observed relationships were consistent with previous findings, but further research is needed for a better understanding of the potential association between pyrethroid insecticides and male reproduction.  相似文献   

14.
1,1,1,3,3-Pentafluoropropane (HFC-245fa) is being developed as a CFC substitute. 1,1,1,3,3-Pentafluoropropane has a low potential for toxicity: the only remarkable toxic effect seen in rats after inhalation exposure to 1,1,1,3,3-pentafluoropropane in concentrations of up to 50,000 ppm for 90 days was an increased incidence of diffuse myocarditis. To elucidate the possible role of biotransformation in 1,1,1,3,3-pentafluoropropane-induced cardiotoxicity, the biotransformation of 1,1,1,3,3-pentafluoropropane was investigated in rats after inhalation exposure and in rat and human liver microsomes. Male and female rats were exposed by inhalation to 50 000, 10 000, and 2000 ppm 1,1,1,3,3-pentafluoropropane for 6 h, urine was collected for 72 h, and metabolites excreted were identified by 19F NMR spectroscopy and quantified by GC/MS. Trifluoroacetic acid and inorganic fluoride were identified as major urinary metabolites of 1,1,1,3,3-pentafluoropropane; 3,3,3-trifluoropropanoic acid and 1,1,1,3,3-pentafluoropropane-2-ol were minor metabolites. The extent of 1,1,1,3,3-pentafluoropropane biotransformation after inhalation was dependent on exposure concentrations. Neither 3,3,3-trifluoropropanoic acid nor 3,3,3-trifluoropyruvic acid were metabolized to trifluoroacetic acid in vitro or in rats. In rat and human liver microsomes, 1,1,1,3,3-pentafluoropropane was biotransformed by a cytochrome P450-dependent reaction to trifluoroacetic acid and 3,3,3-trifluoropropanoic acid. Rates of trifluoroacetic acid formation were 99.2 +/- 20.5 pmol (mg of protein)(-)(1) min(-)(1) and of 3,3,3-trifluoropropanoic acid formation were 17.5 +/- 4.0 pmol (mg of protein)(-)(1) min(-)(1) in liver microsomes from male rats. In human liver microsomes, rates of trifluoroacetic acid formation ranged from 0 to 11.6 pmol (mg of protein)(-)(1) min(-)(1), and rates of 3,3,3-trifluoropropanoic acid formation ranged from 0.7 to 7.6 pmol (mg of protein)(-)(1) min(-)(1). The results show that 1,1,1,3,3-pentafluoropropane is metabolized at low rates in vivo and in vitro. The toxic effects of 1,1,1,3,3-pentafluoropropane may be associated with the formation of the minor metabolite 3,3,3-trifluoropropanoic acid, which is highly toxic in rats.  相似文献   

15.
1. Leniolisib is a novel oral phosphatidylinositol-3-kinase (PI3K) delta inhibitor, currently in clinical development for the treatment of inflammatory and autoimmune diseases.

2. We investigated the absorption, metabolism, and excretion of leniolisib in healthy subjects after a single oral 400?mg dose as part of a first-in-human clinical study. The parent drug and metabolites were quantified by 19F-NMR in plasma, urine and faeces after liquid chromatography separation, and structures were determined by liquid chromatography coupled to tandem mass spectrometry.

3. Drug-related material was mainly excreted as oxidative metabolites in urine and faeces, providing evidence that elimination occurs mainly by metabolism. No metabolites were abundant in plasma relative to the parent drug. An average mass balance of 66% was obtained, demonstrating that relatively extensive elimination/excretion data can be obtained by 19F-NMR in a first in human clinical study without the use of a radiolabeled drug.  相似文献   


16.
In male and female DDY/Slc mice given single oral doses (20 or 500 mg/kg body weight) of 3,5-di-tert-butyl-4-hydroxytoluene (BHT) labelled with 14C at the p-ethyl group, 14C was distributed mainly in the stomach, intestines, liver and kidney, and then excreted in the urine, faeces and expired air. During the 7 days after treatment, 41–65, 26–50 and 6–9% of the 14C dose was excreted in faeces, urine and expired air, respectively, and the total recovery was 96–98%. Levels of 14C in 21 male and 22 female tissues 7 days after treatment were less than 1 μg BHT equivalents/g tissue (ppm) in mice given 20 mg/kg and less than 11 ppm in mice given 500 mg/kg. When [14C]BHT was given orally to male mice at 20 mg/kg/day for 10 days, 14C was rapidly excreted and did not exhibit any tendency to accumulate in any tissues.Thin-layer chromatography and high-performance liquid chromatography analyses showed that more than 43 metabolites were present in the urine and faeces of both species, and all of these were identified to determine metabolic pathways for BHT in mice and rats. Major metabolic reactions of [14C]BHT in mice were the oxidation of the p-methyl group attached to the benzene ring and of the tert-butyl groups. The products from the latter reaction were cyclized to some extent by reacting with the adjacent phenolic OH group to give hemiacetals or lactones. The carboxyl derivatives from the p-methyl oxidation were conjugated with glucuronic acid.When single oral doses of 20 or 500 mg [14C]BHT/kg were given to male Sprague-Dawley rats, metabolites similar to those in mice were found. However, the major biotransformation was oxidation of the p-methyl group, and oxidation of the tert-butyl groups was a minor reaction in rats.  相似文献   

17.
Euglena gracilis is a microalga capable of synthesizing various nutrients of interest in human and animal nutrition. When cultivated aerobically in the dark, Euglena synthesize paramylon, a storage polysaccharide comprised of high molecular weight beta-1,3-D-glucose polymers organized in cytoplasmic granules. Beta-glucans have been shown to have immune modulation effects, including anti-microbial, anti-tumor, and anti-oxidant properties, and metabolic effects, such as regulation of cholesterol and blood sugar levels. Preparations of E. gracilis and paramylon may therefore have potential utility as functional food ingredients for human and animal nutrition. A battery of toxicological studies was conducted on a dried preparation of E. gracilis and paramylon to support their safe food use. The dried alga was not genotoxic in a bacterial reverse mutation test and mammalian micronucleus test. In the subchronic toxicity study, rats were provided E. gracilis in the diet at levels of 0, 12,500, 25,000 or 50,000 ppm. Paramylon was provided at a concentration of 50,000 ppm. No effects that could be attributable to treatment were observed in clinical observations, body weight, food consumption, ophthalmology, hematology and clinical chemistry, urinalysis, and macroscopic and microscopic findings. A NOAEL of 50,000 ppm in the diet was determined for both ingredients.  相似文献   

18.
Label from [14C]vinyl chloride was covalently bound to protein and nucleic acids in vivo and in vitro in the presence of rat liver microsomal fractions or highly purified cytochrome P-450 and NADPH-cytochrome P-450 reductase preparations. The ratio of bound to total non-volatile metabolites increased in going from the in vivo to the microsomal to the purified system. [36Cl]vinyl chloride was metabolized by microsomes and highly purified systems: no label was bound and most could be accounted for as chloride ion. Phenobarbital pretreatment of rats did not induce total metabolism of vinyl chloride in vivo at either 10 or 250 ppm exposure levels; however, binding to protein and RNA was enhanced at the 10 ppm but not the 250 ppm level. Phenobarbital pretreatment increased thein vitro microsomal conversion of vinyl chloride to both total and bound metabolites. A sizeable fraction of the label of [14C]vinyl chloride metabolized in vivo was recovered in the microsomal fraction of the liver, but sodium dodecyl sulfate polyacrylamide gel electrophoresis of in vitro incubations indicated that the metabolites were distributed among many microsomal proteins and not localized to cytochrome P-450. Evidence was obtained for the metabolism of the suspected vinyl chloride metabolite chloroethylene oxide by microsomal epoxide hydratase. However, the epoxide hydratase inhibitor 3,3,3-trichloropropylene oxide, which blocks the microsomal degradation of chloroethylene oxide, did not enhance the level of vinyl chloride bound to either protein or adenosine.  相似文献   

19.
Berberine (BBR) has been confirmed to show extensive bioactivities for the treatments of diabetes and hypercholesterolemia in clinic. However, there are few pharmacokinetic studies to elucidate the excretions of BBR and its metabolites. Our research studied the excretions of BBR and its metabolites in rats after oral administration (200 mg/kg). Metabolites in bile, urine, and feces were detected by liquid chromatography coupled to ion trap time‐of‐flight mass spectrometry; meanwhile, a validated liquid chromatography coupled with tandem mass spectrometry method was developed for their quantifications. Sixteen metabolites, including 10 Phase I and six Phase II metabolites were identified and clarified after dosing in vivo. Total recovered rate of BBR was 22.83% (19.07% of prototype and 3.76% of its metabolites) with 9.2 × 10?6% in bile (24 h), 0.0939% in urine (48 h), and 22.74% in feces (48 h), respectively. 83% of BBR was excreted as thalifendine (M1) from bile, whereas thalifendine (M1) and berberrubine (M2) were the major metabolites occupying 78% of urine excretion. Most of BBR and its metabolites were found in feces containing 84% of prototype. In summary, we provided excretion profiles of BBR and its metabolites after oral administration in rats in vivo.  相似文献   

20.
A combination of 19F-NMR spectroscopy, HPLC-MS/MS, HPLC-MS with constant neutral loss scanning of 127, and HPLC-ICPMS with iodine detection has enabled the profiling, quantification, and limited characterization of the metabolites produced in the earthworm Eisenia veneta, following exposure to 2-fluoro-4-iodoaniline. Mass spectrometric analysis of the worm tissue and coelomic fluid afforded the identification of two Phase II metabolites, N-glutamyl and N-glucoside conjugates, indicating the importance of these pathways in the detoxification of xenobiotics for earthworms. Several further metabolites were observed and quantified by 19F-NMR spectroscopy and HPLC-127I-ICPMS, although these were of low abundance and their structures were not unequivocally identified. The parent compound and the glutamyl conjugate were found to be the major xenobiotic components of both the coelomic fluid and the worm tissue, representing approximately 23 and approximately 35%, respectively, of the dose that was recovered from the earthworm tissue extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号