首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background  

Tuberous sclerosis complex (TSC) is caused by defects in one of two tumor suppressor genes, TSC-1 or TSC-2. TSC-2 gene encodes tuberin, a protein involved in the pathogenesis of kidney tumors. Loss of heterozygosity (LOH) at the TSC2 locus has been detected in TSC-associated renal cell carcinoma (RCC) and in RCC in the Eker rat. Tuberin downregulates the DNA repair enzyme 8-oxoguanine DNA-glycosylase (OGG1) with important functional consequences, compromising the ability of cells to repair damaged DNA resulting in the accumulation of the mutagenic oxidized DNA, 8-oxo-dG. Loss of function mutations of OGG1 also occurs in human kidney clear cell carcinoma and may contribute to tumorgenesis. We investigated the distribution of protein expression and the activity of OGG1 and 8-oxo-dG and correlated it with the expression of tuberin in kidneys of wild type and Eker rats and tumor from Eker rat.  相似文献   

2.
Functional inactivation of tuberous sclerosis 2 gene (Tsc2) leads to renal carcinogenesis in the hereditary renal carcinoma Eker rat models. Recent studies revealed a role of tuberin, a TSC2 product, in suppressing the p70 S6 kinase (p70S6K) activity via inhibition of mammalian target of rapamycin (mTOR). Phosphorylated S6 protein, a substrate of p70S6K, was expressed in the early lesions in Eker rats, and this expression was suppressed by the treatment of rapamycin, an inhibitor of mTOR. We previously isolated the novel gene Niban expressed in renal carcinogenesis of Eker rats. In this study, we demonstrated that the expression of Niban was detected from early preneoplastic lesions in Eker rats. Interestingly, in contrast to the phosphorylated S6 protein, the expression of Niban was unchanged and early lesions still remained even after treatment with rapamycin. These results might suggest the existence of another pathway independent of mTOR-S6K pathway in Tsc2 mutant renal carcinogenesis. In addition, Niban was also expressed in other renal carcinoma models, including Tsc1 and Tsc2 knockout mice, and various types of human renal cell carcinomas. Thus, Niban was commonly expressed in renal carcinomas and might be a new marker for renal carcinogenesis.  相似文献   

3.
4.
Germ-line mutations of the human TSC2 tumor suppressor gene cause tuberous sclerosis (TSC), a disease characterized by the development of hamartomas in various organs. In the Eker rat, however, a germ-line Tsc2 mutation gives rise to renal cell carcinomas with a complete penetrance. The molecular mechanism for this phenotypic difference between man and rat is currently unknown, and the physiological function of the TSC2/Tsc2 product (tuberin) is not fully understood. To investigate these unsolved problems, we have generated a Tsc2 mutant mouse. Tsc2 heterozygous mutant (Tsc2+/-) mice developed renal carcinomas with a complete penetrance, as seen in the Eker rat, but not the angiomyolipomas characteristic of human TSC, confirming the existence of a species-specific mechanism of tumorigenesis caused by tuberin deficiency. Unexpectedly, approximately 80% of Tsc2+/- mice also developed hepatic hemangiomas that are not observed in either TSC or the Eker rat. Tsc2 homozygous (Tsc2-/-) mutants died around embryonic day 10.5, indicating an essential function for tuberin in mouse embryonic development. Some Tsc2-/- embryos exhibited an unclosed neural tube and/or thickened myocardium. The latter is associated with increased cell density that may be a reflection of loss of a growth-suppressive function of tuberin. The mouse strain described here should provide a valuable experimental model to analyze the function of tuberin and its association with tumorigenesis.  相似文献   

5.
Disruption of the TSC1 or TSC2 gene leads to the development of tumors in multiple organs, most commonly affecting the kidney, brain, lung, and heart. Recent genetic and biochemical studies have identified a role for the tuberous sclerosis gene products in phosphoinositide 3-kinase signaling. On growth factor stimulation, tuberin, the TSC2 protein, is phosphorylated by Akt, thereby releasing its inhibitory effects on p70S6K. Here we demonstrate that primary tumors from tuberous sclerosis complex (TSC) patients and the Eker rat model of TSC expressed elevated levels of phosphorylated mammalian target of rapamycin (mTOR) and its effectors: p70S6K, S6 ribosomal protein, 4E-BP1, and eIF4G. In the Eker rat, short-term inhibition of mTOR by rapamycin was associated with a significant tumor response, including induction of apoptosis and reduction in cell proliferation. Surprisingly, these changes were not accompanied by significant alteration in cyclin D1 and p27 levels. Our data provide in vivo evidence that the mTOR pathway is aberrantly activated in TSC renal pathology and that treatment with rapamycin appears effective in the preclinical setting.  相似文献   

6.
Tuberin, a tumor-suppressor protein produced by the tuberous sclerosis gene TSC2, downregulates the Rheb-mTOR-S6K pathway (mTOR axis). Comparison of the effects of human tuberin mutations, such as G1556S, suggests that pathways other than the mTOR axis might also be involved in the pathogenesis of tuberous sclerosis. Here we test this possibility using the rat G1556S-type mutation (GSM) and a transgenic Eker (Tsc2 mutant) rat system. Cells expressing GSM-tuberin failed to downregulate the mTOR axis. GSM-tuberin had an altered localization, which underlie its reduced ability to form a complex with hamartin, and a site-specific alteration in phosphorylation status indicating diverse regulation by Akt. GSM-transgenic (GSM-Tg) rats exhibited suppression of macroscopic renal tumors following N-ethyl-N-nitrosourea treatment. Intriguingly, rats with weaker GSM-Tg expression showed microscopic cystic and pre-tumorous lesions that were restricted in size and expansion, although they had hyper-phosphorylation of ribosomal protein S6. These results highlight a novel pathway involving tuberin that regulates tumor suppression independently of the mTOR inhibitory function. Identification of such a novel pathway will provide clear implications for generation of new therapeutic targets in the treatment of these tumors.  相似文献   

7.
PURPOSE: The involvement of phosphatase and tensin homologue deleted on chromosome ten (PTEN) in endometrial carcinoma has implicated phosphatidylinositol 3-kinase signaling and mammalian target of rapamycin (mTOR) activation in this disease. Understanding the extent of mTOR involvement and the mechanism responsible for activation is important, as mTOR inhibitors are currently being evaluated in clinical trials for endometrial carcinoma. Although tuberous sclerosis complex 2 (TSC2) is the "gatekeeper" for mTOR activation, little is known about defects in the TSC2 tumor suppressor or signaling pathways that regulate TSC2, such as LKB1/AMP-activated protein kinase, in the development of endometrial carcinoma. EXPERIMENTAL DESIGN: We determined the frequency of mTOR activation in endometrial carcinoma (primary tumors and cell lines) and investigated PTEN, LKB1, and TSC2 defects as underlying cause(s) of mTOR activation, and determined the ability of rapamycin to reverse these signaling defects in endometrial carcinoma cells. RESULTS: Activation of mTOR was a consistent feature in endometrial carcinomas and cell lines. In addition to PTEN, loss of TSC2 and LKB1 expression occurred in a significant fraction of primary tumors (13% and 21%, respectively). In tumors that retained TSC2 expression, phosphorylation of tuberin at S939 was observed with a high frequency, indicating that mTOR repression by TSC2 had been relieved via AKT phosphorylation of this tumor suppressor. In PTEN-null and LKB1-null endometrial carcinoma cell lines with functional inactivation of TSC2, phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002 were able to inhibit AKT and mTOR signaling and reverse TSC2 phosphorylation. In contrast, although rapamycin inhibited mTOR signaling, it did not relieve phosphorylation of TSC2 at S939. CONCLUSIONS: Inactivation of TSC2 via loss of expression or phosphorylation occurred frequently in endometrial carcinoma to activate mTOR signaling. High-frequency mTOR activation supports mTOR as a rational therapeutic target for endometrial carcinoma. However, whereas rapamycin and its analogues may be efficacious at inhibiting mTOR activity, these drugs do not reverse the functional inactivation of TSC2 that occurs in these tumors.  相似文献   

8.
Tuberous sclerosis complex (TSC) is a genetic disorder caused by inactivating mutations in the TSC1 or TSC2 genes, which encode hamartin and tuberin, respectively. TSC is characterized by multiple tumors of the brain, kidney, heart, and skin. Tuberin and hamartin inhibit signaling by the mammalian target of rapamycin (mTOR) but there are limited studies of their involvement in other pathways controlling cell growth. Using ELT-3 cells, which are Eker rat-derived smooth muscle cells, we show that ELT-3 cells expressing tuberin (TSC2+/+) respond to platelet-derived growth factor (PDGF) stimulation by activating the classic mitogen-activated protein (MAP)/extracellular signal-regulated kinase kinase (MEK)-1-dependent phosphorylation of p42/44 MAP kinase (MAPK) with nuclear translocation of phosphorylated p42/44 MAPK. In contrast, in tuberin-deficient ELT-3 cells (TSC2-/-), PDGF stimulation results in MEK-1-independent p42/44 MAPK phosphorylation with reduced nuclear localization of phosphorylated p42/44 MAPK. Moreover, in TSC2-/- cells but not in TSC2+/+ cells, cellular growth and activation of p42/44 MAPK by PDGF requires the reactive oxygen species intermediate, superoxide anion (O2*-). Both baseline and PDGF-induced O2*- levels were significantly higher in TSC2-/- cells and were reduced by treatment with rapamycin and inhibitors of mitochondrial electron transport. Furthermore, the exogenous production of O2*- by the redox cycling compound menadione induced MEK-1-independent cellular growth and p42/44 MAPK phosphorylation in TSC2-/- cells but not in TSC2+/+ cells. Together, our data suggest that loss of tuberin, which causes mTOR activation, leads to a novel cellular growth-promoting pathway involving mitochondrial oxidant-dependent p42/44 MAPK activation and mitogenic growth responses to PDGF.  相似文献   

9.
Habib SL  Phan MN  Patel SK  Li D  Monks TJ  Lau SS 《Carcinogenesis》2003,24(3):573-582
The Tsc-2 tumor suppressor gene encodes the protein tuberin, a multi-functional protein with sequence homology to the GTPase activating protein (GAP) for Rap1. Mutations in the Tsc-2 gene are associated with the development of renal tumors. The Eker rat (Tsc-2(EK/+)) bears a mutation in one allele of the Tsc-2 gene, which predisposes these animals to renal cancer. Treatment of wild-type (Tsc-2(+/+)) and mutant (Tsc-2(EK/+)) Eker rats with 2,3,5-tris-(glutathion-S-yl)hydroquinone (TGHQ; 7.5 micro mol/kg. i.v.), a potent redox active and nephrotoxic metabolite of hydroquinone increases the incidence of renal tumors only in animals carrying the mutant Tsc-2(EK/+) allele. We now show that the constitutive expression of 8-oxoguanine-DNA glycosylase (OGG1) in Tsc-2(EK/+) rats is three-fold lower than in wild-type Tsc-2(+/+) rats. Moreover, treatment of wild-type and mutant Eker rats with TGHQ greatly increases 8-oxo-deoxyguanosine (8-oxo-dG) levels within the outer stripe of the outer medulla. Tsc-2(EK/+) rats, with lower constitutive renal OGG1 expression, experience substantially higher levels of 8-oxo-dG than do wild type Tsc-2(+/+) rats. Interestingly, whereas OGG1 expression was rapidly (4 h) induced in Tsc-2(+/+) rats following exposure to TGHQ, it was significantly reduced in Tsc-2(EK/+) rats. The combination of the higher constitutive expression of OGG1 in Tsc-2(+/+) rats, and its rapid induction in response to TGHQ treatment, coupled to the initial decrease in OGG1 expression in Tsc-2(EK/+) rats, results in Tsc-2(EK/+) OGG1 protein levels just 5% of those seen in Tsc-2(+/+) rats 8 h after treatment. Coincidentally, 8-oxo-dG levels in Tsc-2(+/+) rats 8 h after treatment with TGHQ are just 5% of those that occur in Tsc-2(EK/+) rats. The results indicate that the Tsc-2 gene influences constitutive OGG1 expression and the ability of OGG1 to respond to an oxidative stress, consistent with the proposal that Tsc-2 is an acute-phase response gene. In keeping with this view, acute TGHQ-induced cytotoxicity was greater in Tsc-2(EK/+) rats than in Tsc-2(+/+) rats. The mechanism(s) coupling tuberin expression to the regulation of OGG1 are not known and are under investigation.  相似文献   

10.
Astrinidis A  Henske EP 《Oncogene》2005,24(50):7475-7481
The most exciting advances in the tuberous sclerosis complex (TSC) field occurred in 1993 and 1997 with the cloning of the TSC2 and TSC1 genes, respectively, and in 2003 with the identification of Rheb as the target of tuberin's (TSC2) GTPase activating protein (GAP) domain. Rheb has a dual role: it activates mTOR and inactivates B-Raf. Activation of mTOR leads to increased protein synthesis through phosphorylation of p70S6K and 4E-BP1. Upon insulin or growth factor stimulation, tuberin is phosphorylated by several kinases, including AKT/PKB, thereby suppressing its GAP activity and activating mTOR. Phosphorylation of hamartin (TSC1) by CDK1 also negatively regulates the activity of the hamartin/tuberin complex. Despite these biochemical advances, exactly how mutations in TSC1 or TSC2 lead to the clinical manifestations of TSC is far from being understood. Two of the most unusual phenotypes in TSC are the apparent metastasis of benign cells carrying TSC1 and TSC2 mutations, resulting in pulmonary lymphangiomyomatosis, and the ability of cells with TSC1 or TSC2 mutations to differentiate into the separate components of renal angiomyolipomas (vessels, smooth muscle and fat). We will discuss how the TSC signaling pathways are affected by mutations in TSC1 or TSC2, focusing on how these mutations may lead to the renal and pulmonary manifestations of TSC.  相似文献   

11.
The tuberous sclerosis (TSC) genes, TSC1 and TSC2, encode hamartin and tuberin, respectively, and are putative tumor suppressor genes that were originally identified due to their involvement in the inherited autosomal dominant disorder tuberous sclerosis. It has been elucidated that the two proteins form an intracellular heterodimer participating in signaling pathway of the mammalian Target of Rapamycin (mTOR). Recent studies showed that mTOR pathway was frequently activated in blasts from acute myeloid leukemia (AML) patient and associated with proliferation, survival, and drug-resistance of these cells. These phenomena led us to hypothesize that TSC gene might be involved in acute leukemia (AL). In this study, we investigated the TSC1 and TSC2 mRNA expression in 104 newly diagnosed AL patients and 29 healthy controls using real-time quantitative PCR (RQ-PCR) and explored the potential mechanisms of the aberrant expression through methylation-specific PCR (MSP). The results showed that the expression of TSC2 was downregulated in AL patients and the TSC2 promoter was hypermethylated which might be an important mechanism for the downregulation of TSC2 expression.  相似文献   

12.
Rats carrying the Eker tumor–susceptibility mutation (Eker rats) are predisposed to developing renal cell carcinoma. Rats heterozygous for the Eker mutation develop spontaneous multiple bilateral renal cell tumors by the age of 1 yr. In a previous study, Eker-mutation carrier and noncarrier rats were exposed to the renal carcinogen dimethylnitrosamine (DMN), and male rats carrying the Eker mutation exhibited a 70-fold increase in the induction of renal adenomas and carcinomas when compared with noncarrier rats. In this study, spontaneous and DMN-induced rat renal cell tumors (adenomas and carcinomas) were analyzed for mutations of the p53 gene by direct sequencing of cDNA polymerase chain reaction products. There were no mutations in p53 cDNA derived from renal tumors from six untreated rats. Mutations were found in one of 15 of the DMN-induced tumors: a transition at codon 140, CCT → CTT, in a renal adenoma. Additionally, seven cell lines derived from spontaneous renal cell tumors did not contain mutations in p53. The low frequency of p53 mutations (one of 21 renal cell tumors and none of seven cell lines derived from renal cell tumors) indicates that the development of both spontaneous and carcinogen-induced renal tumors involved a non–p53-dependent pathway. As p53 is infrequently mutated in human renal cell carcinomas and in rat renal mesenchymal tumors, it is likely that a tumor suppressor gene or genes other than p53 are involved in the development of renal cancer. © 1995 Wiley-Liss Inc.  相似文献   

13.
Hay N 《Cancer cell》2005,8(3):179-183
The downstream effector of PI3K, Akt, is frequently hyperactivated in human cancers. A critical downstream effector of Akt, which contributes to tumorigenesis, is mTOR. In the PI3K/Akt/mTOR pathway, Akt is flanked by two tumor suppressors: PTEN, acting as a brake upstream of Akt, and TSC1/TSC2 heterodimer, acting as a brake downstream of Akt and upstream of mTOR. In the absence of the TSC1/TSC2 brake, mTOR activity is unleashed to inhibit Akt via an inhibitory feedback mechanism. Two recent studies used mouse genetics to assess the roles of PTEN and TSC2 in cancer, underscoring the importance of Akt-mTOR interplay for cancer progression and therapy.  相似文献   

14.
Akt regulates nuclear/cytoplasmic localization of tuberin   总被引:1,自引:0,他引:1  
  相似文献   

15.
BACKGROUND: The mammalian target of rapamycin (mTOR) pathway is up-regulated in many human cancers, and agents targeting the mTOR pathway are in various stages of clinical development. The goal of the study was to evaluate the potential and limitations of targeting the mTOR pathway in renal cell carcinoma (RCC). METHODS: Immunohistochemical analysis using antibodies against pAkt, PTEN, p27, and pS6 was performed on a tissue microarray constructed from paraffin-embedded specimens from 375 patients treated by nephrectomy for RCC. The expression was associated with pathological parameters and survival. RESULTS: The mTOR pathway was more significantly altered in clear-cell RCC, high-grade tumors, and tumors with poor prognostic features. PS6 and PTEN showed the strongest associations with pathological parameters. Survival tree analysis regarding expression of cytoplasmic pAkt, nuclear pAkt, PTEN, cytoplasmic p27, and pS6 identified staining percentages of 40%, 10%, 75%, 7%, and 70%, respectively, as ideal cutoff values for stratification, with corresponding P-values of .03, .001, .02, .005, and <.0001, respectively. Interestingly, high nuclear pAkt expression was associated with a favorable prognosis, whereas high cytoplasmic pAkt expression was associated with a poor prognosis. In multivariate Cox regression analysis, ECOG PS, T classification, N classification, M classification, cytoplasmic Akt, nuclear pAkt, PTEN, and pS6 were independent prognostic factors of DSS. CONCLUSIONS: Components of the mTOR pathway are significantly associated with pathological features and survival. Not all RCC tumor types seem to be equally amenable to mTOR targeted therapy. PTEN, pAkt, p27, and pS6 may serve as surrogate parameters for patient selection and predicting prognosis. Patients with a highly activated mTOR pathway should benefit most from this therapy. External validation of our results is recommended.  相似文献   

16.
The insulin-like growth factor 1 (IGF-1)-AKT-mTOR pathways sense the availability of nutrients and mitogens and respond by signaling for cell growth and division. The p53 pathway senses a variety of stress signals which will reduce the fidelity of cell growth and division, and responds by initiating cell cycle arrest, senescence, or apoptosis. This study explores four p53-regulated gene products, the beta1 and beta2 subunits of the AMPK, which are shown for the first time to be regulated by the p53 protein, TSC2, PTEN, and IGF-BP3, each of which negatively regulates the IGF-1-AKT-mTOR pathways after stress. These gene products are shown to be expressed under p53 control in a cell type and tissue-specific fashion with the TSC2 and PTEN proteins being coordinately regulated in those tissues that use insulin-dependent energy metabolism (skeletal muscle, heart, white fat, liver, and kidney). In addition, these genes are regulated by p53 in a stress signal-specific fashion. The mTOR pathway also communicates with the p53 pathway. After glucose starvation of mouse embryo fibroblasts, AMPK phosphorylates the p53 protein but does not activate any of the p53 responses. Upon glucose starvation of E1A-transformed mouse embryo fibroblasts, a p53-mediated apoptosis ensues. Thus, there is a great deal of communication between the p53 pathway and the IGF-1-AKT and mTOR pathways.  相似文献   

17.
On July 10, 2016, Alfred G. Knudson, Jr., MD, PhD, a leader in cancer research, died at the age of 93 years. We deeply mourn his loss. Knudson's two‐hit hypothesis, published in 1971, has been fundamental for understanding tumor suppressor genes and familial tumor‐predisposing syndromes. To understand the molecular mechanism of two‐hit‐initiated tumorigenesis, Knudson used an animal model of a dominantly inherited tumor, the Eker rat. From the molecular identification of Tsc2 germline mutations, the Eker rat became a model for tuberous sclerosis complex (TSC), a familial tumor‐predisposing syndrome. Animal models, including the fly, have greatly contributed to TSC research. Because the product of the TSC2/Tsc2 gene (tuberin) together with hamartin, the product of another TSC gene (TSC1/Tsc1), suppresses mammalian/mechanistic target of rapamycin complex 1 (mTORC1), rapalogs have been used as therapeutic drugs for TSC. Although significant activity of these drugs has been reported, there are still problems such as recurrence of residual tumors and adverse effects. Recent studies indicate that there are mTORC1‐independent signaling pathways downstream of hamartin/tuberin, which may represent new therapeutic targets. The establishment of cellular models, such as pluripotent stem cells with TSC2/Tsc2 gene mutations, will facilitate the understanding of new aspects of TSC pathogenesis and the development of novel treatment options. In this review, we look back at the history of Knudson and animal models of TSC and introduce recent progress in TSC research.  相似文献   

18.
19.
Activation of the PI3K/AKT/mTOR pathway is a crucial molecular event in human clear cell renal cell carcinoma (ccRCC), and is also upregulated in diabetic nephropathy. In diabetic rats metabolic changes affect the renal distal tubular epithelium and lead to glycogen-storing Armanni-Ebstein lesions (AEL), precursor lesions of RCC in the diabetes induced nephrocarcinogenesis model. These lesions resemble human sporadic clear cell tubules (CCT) and tumor cells of human ccRCC.Human sporadic CCT were examined in a collection of 324 nephrectomy specimen, in terms of morphologic, metabolic and molecular alterations, and compared to preneoplastic CCT and RCC developed in the rat following streptozotocin-induced diabetes or N-Nitrosomorpholine administration. Diabetic and non-diabetic rats were subjected to the dual PI3K/mTOR inhibitor, NVP/BEZ235.Human sporadic CCT could be detected in 17.3% of kidney specimens. Human and rat renal CCT display a strong induction of the PI3K/AKT/mTOR pathway and related metabolic alterations. Proteins involved in glycolysis and de novo lipogenesis were upregulated. In in vivo experiments, dual inhibition of PI3K and mTOR resulted in a reduction of proliferation of rat diabetes related CCT and increased autophagic activity.The present data indicate that human sporadic CCT exhibit a pattern of morphologic and metabolic alterations similar to preneoplastic lesions in the rat model. Activation of the PI3K/AKT/mTOR pathway in glycogenotic tubuli is a remarkable molecular event and suggests a preneoplastic character of these lesions also in humans.  相似文献   

20.
Although hydroquinone (HQ) is a rodent carcinogen, because of its lack of mutagenicity in standard bacterial mutagenicity assays it is generally considered a nongenotoxic carcinogen. 2,3,5-Tris-(glutathion-S-yl)HQ (TGHQ) is a potent nephrotoxic metabolite of HQ that may play an important role in HQ-mediated nephrocarcinogenicity. TGHQ mediates cell injury by generating reactive oxygen species and covalently binding to tissue macromolecules. We determined the ability of HQ and TGHQ to induce cell transformation in primary renal epithelial cells derived from the Eker rat. Eker rats possess a germline inactivation of one allele of the tuberous sclerosis-2 (Tsc-2) tumor suppressor gene that predisposes the animals to renal cell carcinoma. Treatment of primary Eker rat renal epithelial cells with HQ (25 and 50 microM) or TGHQ (100 and 300 microM) induced 2- to 4-fold and 6- to 20-fold increases in cell transformation, respectively. Subsequently, three cell lines (The QT-RRE 1, 2, and 3) were established from TGHQ-induced transformed colonies. The QT-RRE cell lines exhibited a broad range of numerical cytogenetic alterations, loss of heterozygosity at the Tsc-2 gene locus, and loss of expression of tuberin, the protein encoded by the Tsc-2 gene. Only heterozygous (Tsc-2(EK/+)) kidney epithelial cells were susceptible to transformation by HQ and TGHQ, as wild-type cells (Tsc-2(+/+)) showed no increase in transformation frequency over background levels following chemical exposure. These data indicate that TGHQ and HQ are capable of directly transforming rat renal epithelial cells and that the Tsc-2 tumor suppressor gene is an important target of TGHQ-mediated renal epithelial cell transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号