首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5-HT(1A) receptor antagonists have been suggested to increase the efficacy of selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors in the treatment of depression by enhancing the increase in brain 5-HT induced by 5-HT reuptake blockade. Here, the novel 5-HT(1A) receptor antagonist robalzotan [(R)-3-N, N-dicyclobutylamino-8-fluoro-3, 4-dihydro-2H-1-benzopyran-5-carboxamide hydrogen (2R, 3R) tartrate monohydrate] (12.5, 25, 50, 100 microg/kg, i.v.) was found to completely reverse the acute inhibitory effect of citalopram (300 microg/kg i.v.) or paroxetine (100 microg/kg, i.v.) on the activity of 5-HT neurons in the dorsal raphe nucleus in rats. Robalzotan (5, 50 microg/kg, i.v.) by itself increased the firing rate of the majority of 5-HT cells studied. The present results suggest that robalzotan may indeed augment the increases in 5-HT output induced by selective 5-HT reuptake inhibitors by antagonizing the feedback inhibition of 5-HT cell firing produced by such drugs. Thus, robalzotan may be effective by enhancing the action of selective 5-HT reuptake inhibitors or as monotherapy in the treatment of depression.  相似文献   

2.
A series of new 1-[4-(indol-3-yl)butyl]-4-arylpiperazines was prepared to identify highly selective and potent 5-HT(1A) agonists as potential pharmacological tools in studies of mood disorders. The combination of structural elements (indole-alkyl-amine and aryl-piperazine) known to introduce 5-HT(1A) receptor affinity and the proper selection of substituents (R on the indole moiety and R' on the aryl moiety) led to compounds with high receptor specificity and affinity. In particular, the introduction of the methyl ether or the unsubstituted carboxamide as substituents in position 5 of the indole (R) guaranteed serotonergic 5-HT(1A) affinity compared to the unsubstituted analogue. Para-substituted arylpiperazines (R') decreased dopaminergic D(2) binding and increased selectivity for the 5-HT(1A) receptor. Agonistic 5-HT(1A) receptor activity was confirmed in vivo in the ultrasonic vocalization test, and the results suggest that the introduction of the carboxamide residue leads to better bioavailability than the corresponding methyl ether. 3-[4-[4-(4-Carbamoylphenyl)piperazin-1-yl]butyl]-1H-indole-5-carboxamide 54 was identified as a highly selective 5-HT(1A) receptor agonist [GTPgammaS, ED(50) = 4.7 nM] with nanomolar 5-HT(1A) affinity [IC(50) = 0.9 nM] and selectivity [D(2), IC(50) > 850 nM]. 3-[4-[4-(4-Methoxyphenyl)piperazin-1-yl]butyl]-1H-indole-5-carboxamide 45 is one of the most potent and selective 5-HT(1A) agonists known [5-HT(1A), IC(50) = 0.09 nM; D(2), IC(50) = 140 nM].  相似文献   

3.
The effect of a novel ligand for the 5-HT1A receptor subtype, MDL 73005EF, on the firing rate of serotonergic dorsal raphe neurons was assessed in rat midbrain slices maintained in vitro. Superfusion with MDL 73005EF inhibited neuronal firing in a concentration-dependent manner. Based upon IC50 values, MDL 73005EF was equipotent with buspirone (129 +/- 34 vs. 97 +/- 8 nM, respectively) but significantly less potent than 8-OH-DPAT (8-hydroxy-2(di-n-propylamino)tetralin; 7 +/- 2 nM). Pretreatment with (-)-propranolol (1 microM), a mixed 5-HT1A/B receptor antagonist, blocked by 50% the inhibition of unit activity elicited by MDL 73005EF. Taken together, these data suggest that MDL 73005EF is an agonist at the somatodendritic autoreceptor on dorsal raphe neurons, a 5-HT1A receptor which regulates in part the pacemaker activity of these cells. The results are discussed in the context of receptor reserve, recently proposed to explain apparent discrepancies in the actions of agonists at pre- and postsynaptic 5-HT1A sites.  相似文献   

4.
To examine the role of guanine nucleotide binding (G) proteins in receptor-mediated inhibition of serotonin (5-HT) neurons, we intracerebrally injected pertussis toxin (0.5-1.0 microgram) into rat midbrain in a region immediately rostral to the dorsal raphe nucleus. The baseline firing rate of extracellularly recorded 5-HT neurons was not significantly affected by pertussis toxin treatment. However, in comparison to saline-injected controls, pertussis toxin-injected animals showed markedly blunted sensitivity to agonists that act at 5-HT autoreceptors (isapirone, 5-HT and LSD) and to baclofen, a GABAB agonist. This pertussis toxin-induced blunting of sensitivity was demonstrated in vivo (with intravenous and iontophoretic application of drugs) and in vitro in the dorsal raphe brain slice preparation. The sensitivity of iontophoretically applied GABA itself was not significantly decreased with pertussis toxin treatment, consistent with evidence that GABA administered in this manner acts on dorsal raphe cells mainly through GABAA receptors. Our data provide strong evidence for the role of a pertussis toxin substrate(s) (presumably a G protein(s] in mediating the inhibition induced by the autoreceptor and GABAB receptor on 5-HT neurons in rat dorsal raphe nucleus.  相似文献   

5.
Previous pharmacological studies have suggested that the firing activity of 5-HT cells of the dorsal raphe nucleus is dependent on a tonically active, central adrenergic system. In this study, a wide variety of alpha-adrenoceptor antagonists, WB-4101 (41 ± 20 μg/kg; ED50 ± SD), piperoxan (0.64 ± 0.20 mg/kg), thymoxamine (0.42 ± 0.31 mg/kg) and phenoxybenzamine (3.0 mg/kg) were found to suppress firing when administered sytemically. These alpha-adrenoceptor antagonists, as well as phentolamine and dihydroergocryptine, also reduced 5-HT cell firing when applied iontophoretically. The order of potency of the drugs when applied systemically was WB-4101 ? piperoxan ~- thymoxamine > phenoxybenzamine. This ranking correlates well with their activity at classical peripheral postsynaptic α-adrenoceptors. In addition, the order of potency of microiontophoretically applied adrenergic agonists (norepinephrine > phenylephrine >α-methylnorepinephrine > isoproterenol > salbutamol) in restoring 5-HT cell firing during competitive alpha-adrenoceptor blockade suggests that this receptor should be classified in the alpha-1-adrenoceptor category. Previous anatomical studies have demonstrated that the dorsal raphe receives an adrenergic input. Taken together, these findings suggest that NE terminals, present in the dorsal raphe, mediate a tonically active adrenergic influence upon which the firing of 5-HT cells depends.  相似文献   

6.
It is established that the brain monoaminergic systems are among the main targets of several dependence-inducing drugs, including nicotine. In the present study extracellular electrophysiological recordings were performed to investigate the effects of nicotine on dorsal raphe 5-HT neurones. Nicotine, administered systemically (50-400 microg/kg, i.v.) in chloral hydrate-anaesthetised rats, induced a transient inhibition of the majority of 5-HT neurones recorded (38 of 45). The inhibition was rapid in onset (about 30 s) and the firing rate returned to baseline within 1-3 min. No apparent tachyphylaxis was observed to this inhibitory effect. The centrally acting nicotine antagonist mecamylamine (4 mg/kg, i.v.), but not the peripherally acting nicotine antagonist chlorisondamine (0.3 mg/kg, i.v.) antagonised the nicotine-induced inhibition of 5-HT neurones. The inhibition of 5-HT neurones was also blocked with a selective 5-HT1A receptor antagonist (WAY 100635; 0.1 mg/kg, i.v.), indicating a possible involvement of somato-dendritic 5-HT1A receptors in the effect of nicotine. Interestingly, microiontophoretic application of nicotine into the dorsal raphe failed to inhibit 5-HT neurones, suggesting an indirect effect of nicotine on 5-HT neurones, possibly involving afferent pathways.  相似文献   

7.
Postsynaptic 5-hydroxytryptamine(1A) (5-HT(1A)) receptors have been proposed to participate in the control of dorsal raphe 5-HT neurone activity. To further investigate this hypothesis we performed single-unit extracellular recordings in anaesthetized rats. Pertussis toxin (2 microg/4 microl/day; 2 days, 24-72 h before the experiment) was applied close to the dorsal raphe nucleus to uncouple somatodendritic 5-HT(1A) autoreceptors from their effector system. After this treatment the spontaneous firing rate was higher (approximately +60% P<0.005) than in the vehicle-pretreated group. In addition, intravenous administration of 8-hydroxy-2-(di-n-propylamino)tetralin HBr (8-OH-DPAT) inhibited 5 out of 11 cells of the pertussis toxin-pretreated group (ED(50)=1.65+/-0.94 microg/kg), whereas in the vehicle-pretreated group, all tested cells were inhibited (ED(50)=1.87+/-0.39 microg/kg). Local administration of 8-OH-DPAT did not affect cells (n=12) in pertussis toxin-pretreated rats, even at doses much higher than those needed to completely inhibit 5-HT cells in vehicle-pretreated rats (ED(50)=3.34+/-0.62 fmol). These results confirm the involvement of distal postsynaptic 5-HT(1A) receptors in the control of 5-HT neurone activity in the dorsal raphe nucleus. However, this control does not appear to be exerted on all 5-HT neurones, but rather on a subpopulation of them.  相似文献   

8.
The aim of this study was to investigate the cardiovascular effects of the 5-HT1A receptor agonists, 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin), flesinoxan and 5-carboxamidotryptamine (5-CT) following injection into the dorsal raphe nucleus of conscious rats. 8-OH-DPAT (0.5-2.5 micrograms), hypotension, bradycardia and flat body posture. In contrast, injection of 8-OH-DPAT (0.5 microgram) into the median raphe nucleus caused no cardiovascular changes or flat body posture. (-)Pindolol (0.5 microgram dorsal raphe nucleus) had little effect on cardiovascular parameters, but significantly attenuated the cardiovascular effects of 8-OH-DPAT (0.5 microgram dorsal raphe nucleus). N-Methylatropine (1 mg/kg i.v.) antagonised the cardiovascular effects of 8-OH-DPAT (0.5 microgram dorsal raphe nucleus), suggesting these were vagally mediated. Both pretreatments also appeared to reduce 8-OH-DPAT-induced flat body posture. The results suggest that 8-OH-DPAT activates 5-HT1A receptors in the dorsal raphe nucleus to cause hypotension and bradycardia.  相似文献   

9.
The purpose of the present study was two-fold. Firstly, to present a more comprehensive analysis of the disinhibitory effects of 5-HT1A receptor agonists after discrete dorsal raphe (DRN) injections (Higgins et al. 1988). Secondly, the effects of the 5-HT1B receptor agonist CGS12066B and the 5-HT1B/1C agonist mCPP were examined following injection into this nucleus. The increases in social interaction (SI) induced by intra-raphe injections of 8-OH DPAT (0.02–1 μg), buspirone (0.04–0.2 μg), ipsapirone (0.2 μg) and gepirone (0.2–1 μg) under a high light unfamiliar paradigm (HLU) were typically due to increased bout frequency, duration and a higher incidence of sniff, follow, allogroom behaviour. These increases were qualitatively similar to those seen in control animals tested under low light/familiar (LLF) conditions, thus supporting the belief that the drug-induced increases in SI reflected decreases in anxiety. Furthermore, at doses effective under the HLU condition, 8-OH DPAT, buspirone and gepirone failed to modify SI under conditions of minimal suppression (LLF paradigm). At doses which significantly increased punished responding in a water-lick conflict test 8-OH DPAT, ipsapirone and gepirone tended to also increase unpunished rates of drinking. However, in drug untreated rats, prior habituation to the test apparatus also increased unpunished drinking, suggesting some neophobia-induced suppression. At a comparatively high dose, the 5-HT1B agonist CGS12066B (2.5 μg), but not the putative 5-HT1B/1c agonist mCPP (0.5–12.5 μg), increased SI under the HLU condition. Considered along-side the other compounds described in this report, the relative potency of CGS12066B may be reflective of a 5-HT1A receptor interaction. Together, these data support the proposal that the DRN is an important site through wich 5-HT1A receptor agonists express their anxiolytic actions.  相似文献   

10.
We investigated the effects of the novel 5-HT1A receptor agonist BAY x 3702 on the serotonergic function in rat brain using single unit recordings in the dorsal raphe nucleus (DR) of anesthetized rats and in vivo microdialysis in freely moving rats. The administration of BAY x 3702 (0.25-4 microg/kg i.v.) suppressed the firing activity of 5-HT neurones. This effect was antagonized by a low dose of the selective 5-HT1A receptor antagonist WAY 100635 (5 microg/kg i.v.). In microdialysis experiments, BAY x 3702 (10-100 microg/ kg s.c.) reduced dose-dependently the 5-HT output in the dorsal and median raphe (MnR) nucleus, dorsal hippocampus (DHPC) and medial prefrontal cortex (mPFC) in a regionally selective manner. Maximal effects were observed in the MnR and mPFC, with reductions to approximately 15% of baseline at a dose of 0.1 mg/kg s.c. The decrease in 5-HT output produced in the DR and DHPC was more moderate, to 45% of baseline at 0.1 mg/kg s.c. BAY x 3702. WAY 100635 (0.3 mg/kg s.c.) completely antagonized the effect of BAY x 3702 (30 microg/kg s.c.). The application of BAY x 3702 in the DR (1-100 microM) reduced the local 5-HT output to 25% of baseline. In rats implanted with two dialysis probes (in DR and mPFC) the application of BAY x 3702 (30 microM) in the DR reduced the 5-HT output in the DR and that in mPFC. These effects were significantly antagonized by the co-perfusion of WAY 100635 (100 microM) in the DR. Overall, these results indicate that the systemic administration of BAY x 3702 reduces the 5-HT release with high potency through the activation of midbrain 5-HT1A receptors.  相似文献   

11.
Ziprasidone is a novel antipsychotic agent which binds with high affinity to 5-HT1A receptors (Ki = 3.4 nM), in addition to 5-HT1D, 5-HT2, and D2 sites. While it is an antagonist at these latter receptors, ziprasidone behaves as a 5-HT1A agonist in vitro in adenylate cyclase measurements. The goal of the present study was to examine the 5-HT1A properties of ziprasidone in vivo using as a marker of central 5-HT1A activity the inhibition of firing of serotonin-containing neurons in the dorsal raphe nucleus. In anesthetized rats, ziprasidone dose-dependently slowed raphe unit activity (ED50 = 300 micrograms/kg i.v.) as did the atypical antipsychotics clozapine (ED50 = 250 micrograms/kg i.v.) and olanzapine (ED50 = 1000 micrograms/kg i.v.). Pretreatment with the 5-HT1A antagonist WAY-100,635 (10 micrograms/kg i.v.) prevented the ziprasidone-induced inhibition; the same dose of WAY-100,635 had little effect on the inhibition produced by clozapine and olanzapine. Because all three agents also bind to alpha 1 receptors, antagonists of which inhibit serotonin neuronal firing, this aspect of their pharmacology was assessed with desipramine (DMI), a NE re-uptake blocker previously shown to reverse the effects of alpha 1 antagonists on raphe unit activity. DMI (5 mg/kg i.v.) failed to reverse the inhibitory effect of ziprasidone but produced nearly complete reversal of that of clozapine and olanzapine. These profiles suggest a mechanism of action for each agent, 5-HT1A agonism for ziprasidone and alpha 1 antagonism for clozapine and olanzapine. The 5-HT1A agonist activity reported here clearly distinguishes ziprasidone from currently available antipsychotic agents and suggests that this property may play a significant role in its pharmacologic actions.  相似文献   

12.
1. Systemic administration of phenethylamine-derived, 5-hydroxytryptamine(2) (5-HT(2)) receptor agonists inhibits the firing of midbrain 5-HT neurones, but the 5-HT receptors involved are poorly defined, and the contribution of peripheral mechanisms is uncertain. This study addresses these issues using extracellular recordings of 5-HT neurones in the dorsal raphe nucleus of anaesthetised rats. 2. The 5-HT(2) receptor agonists DOI ((+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride) and DOB ((+/-)-2,5-dimethoxy-4-bromoamphetamine hydrobromide), caused a dose-related (10-100 micro g kg(-1) i.v.) inhibition of 5-HT neuronal activity, with the highest dose reducing firing rates by >80%. 3. Pretreatment with the 5-HT(2) receptor antagonist ritanserin (1 mg kg(-1) i.v.) completely blocked the action of DOI. The 5-HT(2A) receptor antagonist MDL 100,907 (0.2 mg kg(-1) i.v.) blocked the action of both DOI and DOB. In comparison, the 5-HT(2B/C) receptor antagonist SB 206553 (0.5 mg kg(-1) i.v.) caused a small, but statistically significant, shift to the right in the dose response to DOI and DOB. 4. Pretreatment with the peripherally acting 5-HT(2) receptor antagonist BW 501C67 (0.1 mg kg(-1) i.v.) had no effect on the DOI-induced inhibition of 5-HT cell firing, but completely blocked the DOI-induced rise in mean arterial blood pressure. 5. These data indicate that the inhibition of 5-HT cell firing induced by systemic administration of DOI and DOB is mediated predominantly by the 5-HT(2A) receptor-subtype, but that 5-HT(2B/C) receptors also play a minor role. Moreover, central and not peripheral mechanisms are involved. Given evidence that 5-HT(2) receptors are not located on 5-HT neurones, postsynaptic 5-HT feedback mechanisms are implicated.  相似文献   

13.
These experiments were designed to examine the effects of repeated 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) treatment on the autoregulatory control of cortical 5-HT release and dorsal raphe nucleus (DRN) 5-HT neuronal cell firing. Repeated DOI treatment decreased the behavioural responsiveness (wet-dog shakes) of 5-HT2 receptors and attenuated the inhibitory effects of the 5-HT1A receptor agonist, 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin), on both cortical 5-HT release and DRN 5-HT neuronal firing. In contrast, the inhibitory effect of acute DOI on cortical 5-HT release and DRN 5-HT neuronal firing was unaffected by repeated DOI treatment. The results demonstrate that changes in the responsiveness of 5-HT2 receptor function may influence the responsiveness of presynaptic 5-HT1A receptors regulating 5-HT neuronal function. The results also provide further evidence that the inhibition of cortical 5-HT release and DRN 5-HT neuronal firing produced by DOI is not mediated by 5-HT2 receptor activation.  相似文献   

14.
Rationale In rodents, serotonin 1B (5-HT1B) agonists specifically reduce aggressive behaviors, including several forms of escalated aggression. One form of escalated aggression is seen in mice that seek the opportunity to attack another mouse by accelerating their responding during a fixed interval (FI) schedule. Responses preceding the opportunity to attack may reflect aggressive motivation. Objective This study investigated the effects of two 5-HT1B receptor agonists on the motivation to fight and the performance of heightened aggression. Materials and methods Male mice were housed as “residents” and performed nose-poke responses on an FI 10-min schedule with the opportunity to briefly attack an “intruder” serving as the reinforcer. In the first experiment, the 5-HT1B receptor agonist, CP-94,253 (0–10 mg/kg, IP), was given 30 min before the FI 10 schedule. To confirm that CP-94,253 achieved its effects via 5-HT1B receptors, the 5HT1B/1D receptor antagonist, GR 127935 (10 mg/kg, IP) was administrated before the agonist injection. In the second experiment, the 5-HT1B agonist CP-93,129 (0–1.0 μg) was microinjected into the dorsal raphe 10 min before the FI 10 schedule. Results The agonists had similar effects on all behaviors. CP-94,253 and CP-93,129 significantly reduced the escalated aggression towards the intruder at doses lower than those required to affect operant responding. The highest doses of CP-94,253 (10 mg/kg) and CP-93,129 (1.0 μg) decreased the rate and accelerating pattern of responding during the FI 10 schedule; lower doses were less effective. GR 127935 antagonized CP-94,253’s effects on all other behaviors, except response rate. Conclusions These data extend the anti-aggressive effects of 5-HT1B agonists to a type of escalated aggression that is rewarding and further suggest that these effects are associated with actions at 5-HT1B receptors in the dorsal raphe.  相似文献   

15.
A reduction in core body temperature is one of the characteristic consequences of 5-HT1A receptor activation in rodents. In this study, we characterized the hypothermic effects of four 5-HT1A receptor ligands with varying affinity and selectivity at the 5-HT1A receptor. 8-OH-DPAT and flesinoxan (full agonists); ipsapirone (selective partial agonist) and eltoprazine (non selective partial agonist), all induced a dose-dependent reduction in core body temperature, which was maximal 30 min subsequent to administration. This response differed quantitatively between the agonists, in both the extent and the duration of its effects. The selective 5-HT1A receptor antagonist WAY 100635 (0.15 mg/kg), attenuated the hypothermia induced by the partial agonists, ipsapirone (10 mg/kg) and eltoprazine (10 mg/kg). In contrast, the higher dose of WAY 100635 (1 mg/kg) antagonized the effects of all agonists. This study therefore further confirms the utility of hypothermia as a simple, robust in-vivo probe of 5-HT1A receptor function. This paradigm, which was enhanced by use of specific antagonists such as WAY 100635, may prove useful for the detection and characterization of novel 5-HT1A receptor ligands.  相似文献   

16.
In low cerveau isolé transected rats, the effects of microiontophoretic application of putative serotonin 5-HT1A and 5-HT1B agonists on the spontaneous firing rate of CA1 pyramidal cells were compared to those of 5-HT. In contrast to the large current-dependent suppression of unit activity observed with 5-HT, the 5-HT1A compounds, ipsapirone, 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)-tetralin) and LY 165163 (p-aminophenylethyl-m-trifluoromethylphenylpiperazine) and the 5-HT1B compounds, mCPP (m-chlorophenylpiperazine) and TFMPP (trifluoromethylphenylpiperazine), produced only weak inhibition of spontaneous firing. Conversely, using identical ejection parameters, ipsapirone and LY 165163 (previously reported) and 8-OH-DPAT were as effective as 5-HT in inhibiting markedly the baseline activity of serotonergic dorsal raphe neurons; mCPP and TFMPP (previously reported) were only weakly active. In view of the minor suppressant effects of the 5-HT1A agonists on the firing of pyramidal cells, a modulatory role for these compounds was sought. Excitation of pyrimadal cells, induced by microiontophoretic application of glutamate, was attenuated by ipsapirone and 8-OH-DPAT; however, when directly compared in the same cells, ipsapirone was no more effective than the 5-HT1B agonist, mCPP. In summary, the inability of CA1 pyramidal cells to distinguish the actions of 5-HT1A and 5-HT1B ligands is in sharp contrast to the striking differences observed for these compounds with dorsal raphe neurons. Consistent with these findings is the idea that 5-HT1A compounds are full agonists on dorsal raphe neurons but only partial agonists on pyramidal cells.  相似文献   

17.
Systemic administration of the 5-HT2 agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (50 and 100 micrograms kg-1, i.v.) inhibited dorsal raphe neuronal firing. DOI (100 micrograms kg-1, i.v.) also produced a decrease in extracellular 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in the frontal cortex measured by microdialysis. However, local administration of DOI into the frontal cortex produced no change in extracellular 5-HT and 5-HIAA at any dose given (1, 10 and 100ng). The results demonstrate that DOI is a potent inhibitor of 5-HT neuronal firing and terminal release and that the effects on release are not mediated by an action within the terminal region. The site of action and the receptor involved in the inhibition remains to be determined.  相似文献   

18.
Some antidepressant drugs are potent inhibitors of neuronal uptake of serotonin. In vivo, these compounds inhibit serotonergic dorsal raphe neuronal firing rates, presumably through increased stimulation of 5-HT1a autoreceptors. We recorded from electrophysiologically identified serotonergic dorsal raphe neurons in rat brain slices and determined the effects of five serotonin uptake blockers on the firing rates of these units in vitro. Each drug decreased the neuronal firing rates in a concentration-dependent manner. IC50 values derived from concentration-response curves are: fluvoxamine, 0.8 μM; sertraline, 1.1 μM; imipramine, 2.7 μM; chlorimipramine, 2.8 μM; and fluoxetine, 4.2 μM. Exposure of brain slices to 10 μM tetrabenazine, a serotonin depleting agent, prior to treatment with serotonin uptake blockers resulted in a rightward shift of the concentration-response curve. In vitro single unit recording allows: (1) direct comparison with neurochemical data obtained in vitro; (2) access to tissue bypassing blood brain barrier and liver enzymes; (3) quick wash out of drug from tissue; and (4) ability to record from single unitsover long periods (hours). This in vitro test provides a fast, simple means of determining neurophysiological effects of potential antidepressant drugs on the serotonin system.  相似文献   

19.
1. The effects of 5-HT1A antagonists on guinea-pig behaviour and dorsal raphe neuronal activity were investigated. 2. WAY100135 (10 mg kg-1, s.c.) and WAY100635 (1 mg kg-1, s.c.) significantly reduced the behaviours induced by 8-hydroxy-2-(di-n-propylamino) tetralin (8-OHDPAT) (1 mg kg-1, s.c.) indicative of post-synaptic 5-HT1A receptor antagonism. WAY100635 (10 mg kg-1, s.c.) alone induced ear twitches, which were antagonized by ketanserin (1 mg kg-1, s.c.), but no other overt behaviours. 3. WAY100635 (0.125 mg kg-1, i.v.) produced a right-ward shift in the dose-related inhibition of neuronal firing by 8-OHDPAT (5-100 micrograms kg-1, i.v.) but did not affect the maximum inhibition induced by 8-OHDPAT indicating competitive antagonism between 8-OHDPAT and WAY100635 at the 5-HT1A somato-dendritic autoreceptor in the dorsal raphe nucleus of the guinea-pig. WAY100635 also produced a dose-related increase in the basal firing of 5-HT neurones in the dorsal raphe nucleus and restored the firing of dorsal raphe neurones previously inhibited by 8-OHDPAT (10 micrograms kg-1, i.v.). 4. The results indicate that WAY100635 is a competitive 5-HT1A antagonist in the guinea-pig. Furthermore WAY100635 can increase 5-HT neuronal firing, suggesting that it blocks a 5-HT1A receptor-mediated inhibitory tone acting on guinea-pig 5-HT neurones resulting in increased 5-HT release and 5-HT2 receptor-mediated behaviours.  相似文献   

20.
The effect of dextromethorphan (DM) on the inwardly rectifying K(+) currents mediated by 5-HT(1A) receptors in acutely dissociated dorsal raphe (DR) neurones of rats was studied using nystatin-perforated patch and conventional whole-cell patch recording configurations under voltage-clamp conditions. DM rapidly and reversibly inhibited the K(+) currents induced by 10(-7) M 5-HT in a concentration-dependent manner with a half-maximum inhibitory concentration of 1.43 x 10(-5) M. The inhibitory effect of DM was neither voltage- nor use-dependent. DM caused a suppression of the maximum response of the 5-HT concentration-response curve, thus suggesting a non-competitive type of inhibition. In neurones perfused intracellularly with a pipette-solution containing the nonhydrolyzable GTP analog GTPgammaS, 5-HT activated K(+) currents in an irreversible manner. DM suppressed the current irreversibly activated by intracellular GTPgammaS even in the absence of the agonist. DM also inhibited the inwardly rectifying K(+) currents regulated by alpha(2)-adrenoceptors in freshly isolated rat locus coeruleus neurones. These results suggest that DM may inhibit the G-protein coupled inwardly rectifying K(+) channels, but not the neurotransmitter receptors, in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号