首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown that increased longevity and stress resistance can be induced by sub-lethal exposure to stressors (hormesis). Here we ask whether genes of the dauer formation pathway that are known to modulate life span in Caenorhabditis elegans are required for this hormesis. We find that loss-of-function mutations in any of three genes (daf-16,daf-18, or daf-12) not only reduce or abolish the ability to form dauers but also block the hormetic response increasing life span following sub-lethal heat stress. Indeed, the life expectancy of these dauer-defective mutants is decreased by the same pretreatments that increase the life expectancy of wild-type animals. Additionally, we find that daf-16 and daf-12 are not required for the induction of thermotolerance, but daf-18 is required for its full induction. Our results underscore the importance of the dauer-formation pathway in specifying life span by demonstrating a similar, but not identical, role in life extension attributed to hormesis.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

2.
3.
4.
We have discovered that three longevity mutants of the nematode Caenorhabditis elegans also exhibit increased intrinsic thermotolerance (Itt) as young adults. Mutation of the age-1 gene causes not only 65% longer life expectancy but also Itt. The Itt phenotype cosegregates with age-1. Long-lived spe-26 and daf-2 mutants also exhibit Itt. We investigated the relationship between increased thermotolerance and increased life-span by developing conditions for environmental induction of thermotolerance. Such pretreatments at sublethal temperatures induce significant increases in thermotolerance and small but statistically highly significant increases in life expectancy, consistent with a causal connection between these two traits. Thus, when an animal's resistance to stress is increased, by either genetic or environmental manipulation, we also observe an increase in life expectancy. These results suggest that ability to respond to stress limits the life expectancy of C. elegans and might do so in other metazoa as well.  相似文献   

5.
6.
The human PTEN tumor suppressor gene is mutated in a wide variety of sporadic tumors. To determine the function of PTEN in vivo we have studied a PTEN homolog in Caenorhabditis elegans. We have generated a strong loss-of-function allele of the PTEN homolog and shown that the deficient strain is unable to enter dauer diapause. An insulin-like phosphatidylinositol 3-OH kinase (PI3'K) signaling pathway regulates dauer-stage entry. Mutations in either the daf-2 insulin receptor-like (IRL) gene or the age-1 encoded PI3'K catalytic subunit homolog cause constitutive dauer formation and also affect the life span, brood size, and metabolism of nondauer animals. Strikingly, loss-of-function mutations in the age-1 PI3'K and daf-2 IRL genes are suppressed by loss-of-function mutations in the PTEN homolog. We establish that the PTEN homolog is encoded by daf-18, a previously uncloned gene that has been shown to interact genetically with the DAF-2 IRL AGE-1 PI3'K signaling pathway. This interaction provides clear genetic evidence that PTEN acts to antagonize PI3'K function in vivo. Given the conservation of the PI3'K signaling pathway between C. elegans and mammals, the analysis of daf-18 PTEN mutant nematodes should shed light on the role of human PTEN in the etiology of metabolic disease, aging, and cancer.  相似文献   

7.
Protein damage that accumulates during aging can be mitigated by a repair methyltransferase, the l-isoaspartyl-O-methyltransferase. In Caenorhabditis elegans, the pcm-1 gene encodes this enzyme. In response to pheromone, we show that pcm-1 mutants form fewer dauer larvae with reduced survival due to loss of the methyltransferase activity. Mutations in daf-2, an insulin/insulin-like growth factor-1-like receptor, and daf-7, a transforming growth factor-beta-like ligand, modulate pcm-1 dauer defects. Additionally, daf-2 and daf-7 mutant dauer larvae live significantly longer than wild type. Although dauer larvae are resistant to many environmental stressors, a proportionately larger decrease in dauer larvae life spans occurred at 25 degrees C compared to 20 degrees C than in adult life span. At 25 degrees C, mutation of the daf-7 or pcm-1 genes does not change adult life span, whereas mutation of the daf-2 gene and overexpression of PCM-1 increases adult life span. Thus, there are both overlapping and distinct mechanisms that specify dauer and adult longevity.  相似文献   

8.
Recent studies suggest that downregulation of tumor suppressor genes might not only favor cancer development but also postpone organisms' aging and increase longevity. However, there is lack of population-based studies directly supporting this idea. We studied the lgl lethal alleles which are widespread in natural Drosophila populations. We demonstrate, for the first time, that animals heterozygous on the loss-of-function lgl tumor suppressor gene display a clear pre-adult viability advantage under stressful conditions (high 29 degrees C and low 16 degrees C temperatures). We found also the survival and longevity advantage effect of the lgl loss-of-function in the temperature stress conditions. The main features of this longevity influence are following. First, the lgl-dependent life span increase is sex-dependent; in all experimental combinations males are more sensitive than females of relevant genotypes. Second, the effect is stronger under the life-shortening temperature stress, 29 degrees C, where the hormesis was demonstrated. Third, the favoring effect of reduced dosage of tumor suppressor displays clearly in old but not young animals, delaying aging. Forth, the maternal or epigenetic inheritance of thermotolerance from mother to offspring appears to strengthen the observed longevity effects. One possible explanation of this stress-adaptive effect of reduced tumor suppressor dose might be a better resistance of Drosophila post-mitotic cells to a stress-associated apoptosis at old ages.  相似文献   

9.
Abstract Novel artificial intelligence methodologies were applied to analyze gene expression microarray data gathered from mice under a calorie restriction (CR) regimen. The data were gathered from three previously published mouse studies; these datasets were merged together into a single composite dataset for the purpose of conducting a broader-based analysis. The result was a list of genes that are important for the impact of CR on lifespan, not necessarily in terms of their individual actions but in terms of their interactions with other genes. Furthermore, a map of gene interrelationships was provided, suggesting which intergene interactions are most important for the effect of CR on life extension. In particular our analysis showed that the genes Mrpl12, Uqcrh, and Snip1 play central roles regarding the effects of CR on life extension, interacting with many other genes (which the analysis enumerates) in carrying out their roles. This is the first time that the genes Snip1 and Mrpl12 have been identified in the context of aging. In a follow-up analysis aimed at validating these results, the analytic process was rerun with a fourth dataset included, yielding largely comparable results. Broadly, the biological interpretation of these analytical results suggests that the effects of CR on life extension are due to multiple factors, including factors identified in prior theories of aging, such as the hormesis, development, cellular, and free radical theories.  相似文献   

10.
Broad aspects of Caenorhabditis elegans life history, including larval developmental timing, arrest at the dauer diapause, and longevity, are regulated by the nuclear receptor DAF-12. Endogenous DAF-12 ligands are 3-keto bile acid-like steroids, called dafachronic acids, which rescue larval defects of hormone-deficient mutants, such as daf-9/cytochrome P450 and daf-36/Rieske oxygenase, and activate DAF-12. Here we examined the effect of dafachronic acid on pathways controlling lifespan. Dafachronic acid supplementation shortened the lifespan of long-lived daf-9 mutants and abolished their stress resistance, indicating that the ligand is "proaging" in response to signals from the dauer pathways. However, the ligand extended the lifespan of germ-line ablated daf-9 and daf-36 mutants, showing that it is "antiaging" in the germ-line longevity pathway. Thus, dafachronic acid regulates C. elegans lifespan according to signaling state. These studies provide key evidence that bile acid-like steroids modulate aging in animals.  相似文献   

11.
At least three mechanisms determine life span in Caenorhabditis elegans. An insulin-like signaling pathway regulates dauer diapause, reproduction and longevity. Reduction-or loss-of-function mutations in this pathway can extend longevity substantially, suggesting that the wild-type alleles shorten life span. The mutations extend life span by activating components of a dauer longevity assurance program in adult life, resulting in altered metabolism and enhanced stress resistance. The Clock (Clk) genes regulate many temporal processes, including life span. Mutation in the Clk genes clk-1 and gro-1 mildly affect energy production, but repress energy consumption dramatically, thereby reducing the rate of anabolic metabolism and lengthening life span. Dietary restriction, either imposed by mutation or by the culture medium increases longevity and uncovers a third mechanism of life span determination. Dietary restriction likely elicits the longevity assurance program. There is still uncertainty as to whether these pathways converge on daf-16 to activate downstream longevity effector genes such as ctl-1 and sod-3. There is overwhelming evidence that the interplay between reactive oxygen species (ROS) and the capacity to resist oxidative stress controls the aging process and longevity. It is as yet not clear whether metabolic homeostasis collapses with age as a direct result of ROS-derived damage or is selectively repressed by longevity-determining genes. The dramatic decline of protein turnover during senescence results in the accumulation of altered enzymes and in a gradual decline of metabolic performance eventually followed by fatal failure of the system.  相似文献   

12.
In Caenorhabditis elegans, the downregulation of insulin-like signaling induces lifespan extension (Age) and the constitutive formation of dauer larvae (Daf-c). This also causes resistance to oxidative stress (Oxr) and other stress stimuli and enhances the expression of many stress-defense-related enzymes such as Mn superoxide dismutase (SOD) that functions to remove reactive oxygen species in mitochondria. To elucidate the roles of the two isoforms of MnSOD, SOD-2 and SOD-3, in the Age, Daf-c and Oxr phenotypes, we investigated the effects of a gene knockout of MnSODs on them in the daf-2 (insulin-like receptor) mutants that lower insulin-like signaling. In our current report, we demonstrate that double deletions of two MnSOD genes induce oxidative-stress sensitivity and thus ablate Oxr, but do not abolish Age in the daf-2 mutant background. This indicates that Oxr is not the underlying cause of Age and that oxidative stress is not necessarily a limiting factor for longevity. Interestingly, deletions in the sod-2 and sod-3 genes suppressed and stimulated, respectively, both Age and Daf-c. In addition, the sod-2/sod-3 double deletions stimulated these phenotypes in a similar manner to the sod-3 deletion, suggesting that the regulatory pathway consists of two MnSOD isoforms. Furthermore, hyperoxic and hypoxic conditions affected Daf-c in the MnSOD-deleted daf-2 mutants. We thus conclude that the MnSOD systems in C. elegans fine-tune the insulin-like-signaling based regulation of both longevity and dauer formation by acting not as antioxidants but as physiological-redox-signaling modulators.  相似文献   

13.
Neurosecretory control of aging in Caenorhabditis elegans   总被引:3,自引:0,他引:3       下载免费PDF全文
In the nematode Caenorhabditis elegans, an insulin receptor signaling pathway regulates adult life span and developmental arrest at the dauer larval stage. Here we show that the unc-64 and unc-31 genes also function in this pathway. These two genes are involved in mediating Ca2+-regulated secretion. Mutations in unc-64 and unc-31 increase adult life span and cause constitutive dauer formation. Both phenotypes are suppressed by mutations in daf-16, which also suppresses other mutations in this pathway. We present evidence that the site of action of unc-64 is neuronal, suggesting that a neurosecretory signal regulates life span and dauer formation.  相似文献   

14.
Dietary restriction (DR) increases life span in a wide variety of animals. In Caenorhabditis elegans both reduced bacterial concentration (BDR) and culture on non-bacterial, semi-defined, axenic food sources (ADR) increased longevity. An Ins/IGF-1-like (IIF) signalling pathway has been shown to specify life span in C. elegans and it has been suggested that this IIF signalling pathway mediates life extension via DR. We show that both ADR and BDR act independently with mutations in the IIF pathway to increase longevity, stress resistance, and specific activities of superoxide dismutase and catalase. Moreover, these effects are not dependent on daf-16, which is known to suppress other mutations that act through the IIF pathway. We conclude that DR extends life span by mechanisms distinct from those specified by the IIF pathway.  相似文献   

15.
We demonstrate here that the nematode Caenorhabditis elegans displays broad hormetic abilities. Hormesis is the induction of beneficial effects by exposure to low doses of otherwise harmful chemical or physical agents. Heat as well as pretreatment with hyperbaric oxygen or juglone (a chemical that generates reactive oxygen species) significantly increased subsequent resistance to the same challenge. Cross-tolerance between juglone and oxygen was also observed. The same heat or oxygen pretreatment regimens that induced subsequent stress resistance also increased life expectancy and maximum life span of populations undergoing normal aging. Pretreatment with ultraviolet or ionizing radiation did not promote subsequent resistance or increased longevity. In dose-response studies, induced thermotolerance paralleled the induced increase in life expectancy, which is consistent with a common origin.  相似文献   

16.
17.
It is known that a dauer-constitutive gene, daf-2, controls both larval development and adult life span in Caenorhabditis elegans. The increased life span caused by the daf-2 mutation can be enhanced by a daf-12 mutation and suppressed by a daf-16 mutation. In order to determine the correlation between longevity and oxidative stress in these mutants, protein carbonyl (a good indicator of oxidative damage during aging) was measured. Mean life spans of these mutants were in the order of daf-16 < daf-2; daf-16 approximately equal to wild type < daf-2 < daf-2;daf-12. Accumulations of protein carbonyl in these wild-type and daf mutants were in a mirror image of the order of their life spans. These results strongly support the notion that oxidative damage is one of the major causal factors for life-span determination in C. elegans.  相似文献   

18.
The genetics of caloric restriction in Caenorhabditis elegans   总被引:11,自引:0,他引:11       下载免费PDF全文
Low caloric intake (caloric restriction) can lengthen the life span of a wide range of animals and possibly even of humans. To understand better how caloric restriction lengthens life span, we used genetic methods and criteria to investigate its mechanism of action in the nematode Caenorhabditis elegans. Mutations in many genes (eat genes) result in partial starvation of the worm by disrupting the function of the pharynx, the feeding organ. We found that most eat mutations significantly lengthen life span (by up to 50%). In C. elegans, mutations in a number of other genes that can extend life span have been found. Two genetically distinct mechanisms of life span extension are known: a mechanism involving genes that regulate dauer formation (age-1, daf-2, daf-16, and daf-28) and a mechanism involving genes that affect the rate of development and behavior (clk-1, clk-2, clk-3, and gro-1). We find that the long life of eat-2 mutants does not require the activity of DAF-16 and that eat-2; daf-2 double mutants live even longer than extremely long-lived daf-2 mutants. These findings demonstrate that food restriction lengthens life span by a mechanism distinct from that of dauer-formation mutants. In contrast, we find that food restriction does not further increase the life span of long-lived clk-1 mutants, suggesting that clk-1 and caloric restriction affect similar processes.  相似文献   

19.
Parsons PA 《Biogerontology》2002,3(4):233-241
Survival to old age in natural populations is enhanced by high vitality and resilience which depends upon substantial homeostasis and energetic amd metabolic efficiency underlain by genes for stress resistance. Under this assumption increased longevity follows from primary selection for stress resistance where stress targets energy carriers. Furthermore old and young fitness should be correlate dirrespective of age under the stressful selection regime of natural populations. In contrast, antagonistic pleiotropy is most likely under the less rigorous selection regime of well-nourished humans and laboratory populations surviving to old age. Similarly, hormesis for longevity, for example from a mild temperature stress or restricted food intake is most likely under benign environmental conditions. Assuming that aging in natural populations depends upon ecological circumstances, large evolutionary increases in life span are unlikely under the stress theory of aging since organisms are frequently close to their limits of survival where metabolic efficiency is at a premium. Exceptions can occur in island populations and for mutants under laboratory conditions since the risks from environmental hazards are reduced, and life span becomes extended as a consequence. In modern human populations, selection for stress resistance is less intense than in earlier times which should be permissive of the accumulation of stress-sensitive mutants under the mutation-accumulation theory of aging. However, this process is ultimately likely to restrict the evolution of life-span extensions in the future especially if abiotic conditions deteriorate, when survival would depend more directly on metabolic efficiency under stress. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号