首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vitro and in vivo activity of T-3912, a novel non-fluorinated topical quinolone, was compared with that of nadifloxacin, ofloxacin, levofloxacin, clindamycin, erythromycin and gentamicin. The in vitro activity of T-3912 against methicillin-susceptible Staphylococcus aureus, ofloxacin-resistant and methicillin-resistant S. aureus, Staphylococcus epidermidis, ofloxacin-resistant S. epidermidis, penicillin-resistant Streptococcus pneumoniae and Propionibacterium acnes was four-fold to 16 000-fold greater than that of other agents at the MIC90 for the clinical isolates. The activity of T-3912 was not influenced by grlA mutation in S. aureus, and the degree of MIC increase of T-3912 for grlA-gyrA double and triple mutants was lowest among the quinolones tested (nadifloxacin, levofloxacin and ofloxacin). The inhibitory activity of T-3912 was compared with other quinolones for DNA gyrase and topoisomerase IV of S. aureus SA113. T-3912 showed the greatest inhibitory activity for both enzymes among the quinolones tested. The isolation frequency of spontaneous mutants resistant to T-3912 was < 1.7 x 10(-9) and < 2.0 x 10(-9) for S. aureus SA113 and P. acnes JCM 6425, respectively. Furthermore, resistance to T-3912 could not be clearly detected in the 28th transfer by the serial passage method. T-3912 exhibited more potent bactericidal activity against S. aureus and P. acnes than nadifloxacin and clindamycin in a short time period. T-3912 in a 1% gel formulation showed good therapeutic activity against a burn infection model caused by S. aureus SA113, P. acnes JCM6425 and multidrug-resistant S. aureus F-2161. These results indicate that T-3912 is potentially a useful quinolone for the treatment of skin and soft-tissue infections and that its potent bactericidal activity might be able to shorten the treatment period.  相似文献   

2.
The activity of ABT-773, a novel ketolide antibiotic, against clinical isolates of anaerobic bacteria was determined and compared to the activities of other antimicrobial agents. MICs at which 90% of isolates were inhibited (MIC(90)s) were 32 microg/ml, respectively, for Eubacterium spp., Lactobacillus spp., Clostridium difficile, and Clostridium ramosum. The MIC(90) for Bilophila wadsworthia, Bacteroides ureolyticus, and Campylobacter gracilis was 1 microg/ml, and that for Prevotella bivia and other Prevotella spp. was 0.5 microg/ml. The MIC(90) for Fusobacterium nucleatum was 8 microg/ml, and that for Fusobacterium mortiferum and Fusobacterium varium was >32 microg/ml. The MIC(90)s for the Bacteroides fragilis group were as follows: for B. fragilis, 8 microg/ml; for Bacteroides thetaiotaomicron, Bacteroides ovatus, Bacteroides distasonis, and Bacteroides uniformis, >32 microg/ml; and for Bacteroides vulgatus, 4 microg/ml. Telithromycin MICs for the B. fragilis group were usually 1 to 2 dilutions higher than ABT-773 MICs. For all strains, ABT-773 was more active than erythromycin by 4 or more dilutions, and for some strains this drug was more active than clindamycin.  相似文献   

3.
The susceptibilities to telithromycin of 203 Streptococcus pneumoniae isolates prospectively collected during 1999 and 2000 from 14 different geographical areas in Spain were tested and compared with those to erythromycin A, clindamycin, quinupristin-dalfopristin, penicillin G, cefotaxime, and levofloxacin. Telithromycin was active against 98.9% of isolates (MICs, < or =0.5 microg/ml), with MICs at which 90% of isolates are inhibited being 0.06 microg/ml, irrespective of the resistance genotype. The corresponding values for erythromycin were 61.0% (MICs, < or =0.25 microg/ml) and >64 microg/ml. The erm(B) gene (macrolide-lincosamide-streptogramin B resistance phenotype) was detected in 36.4% (n = 74) of the isolates, which corresponded to 93.6% of erythromycin-intermediate and -resistant isolates, whereas the mef(A) gene (M phenotype [resistance to erythromycin and susceptibility to clindamycin and spiramycin without blunting]) was present in only 2.4% (n = 5) of the isolates. One of the latter isolates also carried erm(B). Interestingly, in one isolate for which the erythromycin MIC was 2 microg/ml, none of these resistance genes could be detected. Erythromycin MICs for S. pneumoniae erm(B)-positive isolates were higher (range, 0.5 to >64 microg/ml) than those for erm(B)- and mef(A)-negative isolates (range, 0.008 to 2 microg/ml). The corresponding values for telithromycin were lower for both groups, with ranges of 0.004 to 1 and 0.002 to 0.06 microg/ml, respectively. The erythromycin MIC was high for a large number of erm(B)-positive isolates, but the telithromycin MIC was low for these isolates. These results indicate the potential usefulness of telithromycin for the treatment of infections caused by erythromycin-susceptible and -resistant S. pneumoniae isolates when macrolides are indicated.  相似文献   

4.
This study evaluated the current status of antimicrobial resistance in clinical isolates of Streptococcus pyogenes in Taiwan as part of the SMART (Surveillance from Multicenter Antimicrobial Resistance in Taiwan) program. In 2001, 419 different isolates of S. pyogenes, including 275 from respiratory secretions, 87 from wound pus, and 31 from blood, were collected from nine hospitals in different parts of Taiwan. MICs of 23 antimicrobial agents were determined at a central location by the agar dilution method. All of the isolates were susceptible to penicillin (MIC at which 90% of the isolates were inhibited [MIC(90)], moxifloxacin > ciprofloxacin = levofloxacin = gatifloxacin > gemifloxacin) demonstrated potent activity against nearly all of the isolates of S. pyogenes tested. Thirty-two isolates (8%) were not susceptible to quinupristin-dalfopristin. Seventeen percent of isolates had telithromycin MICs of >or=1 microg/ml, and all of these isolates exhibited erythromycin MICs of >or=32 microg/ml. The high prevalence of resistance to telithromycin (which is not available in Taiwan) limits its potential use in the treatment of S. pyogenes infections, particularly in areas with high rates of macrolide resistance.  相似文献   

5.
The in vitro susceptibilities of 103 Mycoplasma pneumoniae isolates, 14 Mycoplasma hominis isolates, 12 Mycoplasma fermentans isolates, and 24 Ureaplasma species to ABT-773, an investigational ketolide, and seven other agents were determined. For M. pneumoniae, the ABT-773 MIC at which 90% of isolates are inhibited (MIC(90); or=16-fold lower than those of all three fluoroquinolones. Minimal bactericidal concentrations determined for a subgroup of organisms were 相似文献   

6.
Pexiganan, a 22-amino-acid antimicrobial peptide, is an analog of the magainin peptides isolated from the skin of the African clawed frog. Pexiganan exhibited in vitro broad-spectrum antibacterial activity when it was tested against 3,109 clinical isolates of gram-positive and gram-negative, anaerobic and aerobic bacteria. The pexiganan MIC at which 90% of isolates are inhibited (MIC90) was 32 micrograms/ml or less for Staphylococcus spp., Streptococcus spp., Enterococcus faecium, Corynebacterium spp., Pseudomonas spp., Acinetobacter spp., Stenotrophomonas spp., certain species of the family Enterobacteriaceae, Bacteroides spp., Peptostreptococcus spp., and Propionibacterium spp. Comparison of the MICs and minimum bactericidal concentrations (MBCs) of pexiganan for 143 isolates representing 32 species demonstrated that for 92% of the isolates tested, MBCs were the same or within 1 twofold difference of the MICs, consistent with a bactericidal mechanism of action. Killing curve analysis showed that pexiganan killed Pseudomonas aeruginosa rapidly, with 10(6) organisms/ml eliminated within 20 min of treatment with 16 micrograms of pexiganan per ml. No evidence of cross-resistance to a number of other antibiotic classes was observed, as determined by the equivalence of the MIC50s and the MIC90s of pexiganan for strains resistant to oxacillin, cefazolin, cefoxitin, imipenem, ofloxacin, ciprofloxacin, gentamicin, and clindamicin versus those for strains susceptible to these antimicrobial agents. Attempts to generate resistance in several bacterial species through repeated passage with subinhibitory concentrations of pexiganan were unsuccessful. In conclusion, pexiganan exhibits properties in vitro which make it an attractive candidate for development as a topical antimicrobial agent.  相似文献   

7.
Time-kill studies examined the activities of telithromycin (HMR 3647), erythromycin A, azithromycin, clarithromycin, roxithromycin, clindamycin, pristinamycin, amoxicillin-clavulanate, and metronidazole against 11 gram-positive and gram-negative anaerobic bacteria. Time-kill studies were carried out with the addition of Oxyrase in order to prevent the introduction of CO(2). Macrolide-azalide-ketolide MICs were 0.004 to 32.0 microg/ml. Of the latter group, telithromycin had the lowest MICs, especially against non-Bacteroides fragilis group strains, followed by azithromycin, clarithromycin, erythromycin A, and roxithromycin. Clindamycin was active (MIC /=99.9% killing) against 6 strains, with 99% killing of 9 strains and 90% killing of 10 strains. After 24 h at twice the MIC, 90, 99, and 99.9% killing of nine, six, and three strains, respectively, occurred. Lower rates of killing were seen at earlier times. Similar kill kinetics relative to the MIC were seen with other macrolides. After 48 h at the MIC, clindamycin was bactericidal against 8 strains, with 99 and 90% killing of 9 and 10 strains, respectively. After 24 h, 90% killing of 10 strains occurred at the MIC. The kinetics of clindamycin were similar to those of pristinamycin. After 48 h at the MIC, amoxicillin-clavulanate showed 99.9% killing of seven strains, with 99% killing of eight strains and 90% killing of nine strains. At four times the MIC, metronidazole was bactericidal against 8 of 10 strains tested after 48 h and against all 10 strains after 24 h; after 12 h, 99% killing of all 10 strains occurred.  相似文献   

8.
The in vitro activity of SCH27899, a novel oligosaccharide antimicrobial agent, was compared with those of representatives of six classes of antimicrobial agents (piperacillin, clarithromycin, clindamycin, vancomycin, sitafloxacin and metronidazole) against clinical isolates of anaerobic bacteria and Propionibacterium acnes. Against Peptostreptococcus: spp. and Clostridium difficile, SCH27899 was the most potent (MIC(90) < 0.125 mg/L) of the agents examined. Besides these Gram-positive anaerobes, SCH27899 showed a moderate level of activity against Prevotella bivia, Prevotella intermedia and Porphyromonas: spp. (MIC(90)< or = 4 mg/L).  相似文献   

9.
NB-003 and NB-003 gel formulations are oil-in-water nanoemulsions designed for use in bacterial infections. In vitro susceptibility of Propionibacterium acnes to NB-003 formulations and comparator drugs was evaluated. Both NB-003 formulations were bactericidal against all P. acnes isolates, including those that were erythromycin, clindamycin, and/or tetracycline resistant. In the absence of sebum, the MIC(90)s/minimum bactericidal concentrations (MBC(90)s) for NB-003, NB-003 gel, salicylic acid (SA), and benzoyl peroxide (BPO) were 0.5/2.0, 1.0/2.0, 1,000/2,000, and 50/200 μg/ml, respectively. In the presence of 50% sebum, the MIC(90)s/MBC(90)s of NB003 and BPOs increased to 128/1,024 and 400/1,600 μg/ml, respectively. The MIC(90)s/MBC(90)s of SA were not significantly impacted by the presence of sebum. A reduction in the MBC(90)s for NB-003 and BPO was observed when 2% SA or 0.5% BPO was integrated into the formulation, resulting in MIC(90)s/MBC(90)s of 128/256 μg/ml for NB003 and 214/428 μg/ml for BPO. The addition of EDTA enhanced the in vitro efficacy of 0.5% NB-003 in the presence or absence of 25% sebum. The addition of 5 mM EDTA to each well of the microtiter plate resulted in a >16- and >256-fold decrease in MIC(90) and MBC(90), yielding a more potent MIC(90)/MBC(90) of ≤1/<1 μg/ml. The kinetics of bactericidal activity of NB-003 against P. acnes were compared to those of a commercially available product of BPO. Electron micrographs of P. acnes treated with NB-003 showed complete disruption of bacteria. Assessment of spontaneous resistance of P. acnes revealed no stably resistant mutant strains.  相似文献   

10.
The in vitro activities of ravuconazole and voriconazole were compared with those of amphotericin B, flucytosine (5FC), itraconazole, and fluconazole against 6,970 isolates of Candida spp. obtained from over 200 medical centers worldwide. Both ravuconazole and voriconazole were very active against all Candida spp. (MIC at which 90% of the isolates tested are inhibited [MIC(90)], 0.25 microg/ml; 98% of MICs were < or 1 microg/ml); however, a decrease in the activities of both of these agents was noted among isolates that were susceptible-dose dependent (fluconazole MIC, 16 to 32 microg/ml) and resistant (MIC, > or = 64 microg/ml) to fluconazole. Candida albicans was the most susceptible species (MIC(90) of both ravuconazole and voriconazole, 0.03 microg/ml), and C. glabrata was the least susceptible species (MIC(90), 1 to 2 microg/ml). Ravuconazole and voriconazole were each more active in vitro than amphotericin B, 5FC, itraconazole, and fluconazole against all Candida spp. and were the only agents with good in vitro activity against C. krusei. These results provide further evidence for the spectrum and potency of ravuconazole and voriconazole against a large and geographically diverse collection of Candida spp.  相似文献   

11.
Agar dilution methodology (with added Oxyrase in the case of the macrolide group to allow incubation without added CO2) was used to compare the activity of RU 64004, a new ketolide, with the activities of erythromycin, azithromycin, clarithromycin, roxithromycin, clindamycin, amoxicillin with and without clavulanate, piperacillin with and without tazobactam, metronidazole, and imipenem against 379 anaerobes. Overall, RU 64004 yielded an MIC at which 50% of the isolates are inhibited (MIC50) of 1.0 microg/ml and an MIC90 of 16.0 microg/ml. In comparison, MIC50s and MIC90s of erythromycin, azithromycin, clarithromycin, and roxithromycin were 2.0 to 8.0 and >64.0 microg/ml, respectively. MICs of macrolides, including RU 64004, were higher for Bacteroides ovatus, Fusobacterium varium, Fusobacterium mortiferum, and Clostridium difficile than for the other species. RU 64004 was more active against gram-positive rods and cocci, Prevotella and Porphyromonas spp., and fusobacteria other than F. mortiferum and F. varium than against the Bacteroides fragilis group. Overall MIC50s and MIC90s (in micrograms per milliliter), respectively, of other compounds were as follows: clindamycin, 1.0 and 16.0; amoxicillin, 4.0 and 64.0; amoxicillin-clavulanate, 0.5 and 4.0; piperacillin, 8.0 and >64.0; piperacillin-tazobactam, 1.0 and 16.0; metronidazole, 1.0 and 4.0; and imipenem, 0.25 and 1.0.  相似文献   

12.
The caspofungin clinical trial database offers an opportunity to assess susceptibility results for Candida pathogens obtained from patients with candidiasis and allows for correlations between efficacy outcomes and MICs. Candida isolates have been identified from patients enrolled in four studies of esophageal candidiasis and two studies of invasive candidiasis. The MICs of caspofungin for all baseline isolates were measured at a central laboratory using NCCLS criteria (document M-27A); MICs for caspofungin were defined as the lowest concentration inhibiting prominent growth at 24 h. MICs were then compared to clinical and microbiological outcomes across the two diseases. Susceptibility testing for caspofungin was performed on 515 unique baseline isolates of Candida spp. obtained from patients with esophageal candidiasis. MICs for caspofungin ranged from 0.008 to 4 microg/ml; the MIC50 and MIC90 were 0.5 and 1.0 microg/ml, respectively. Susceptibility testing was also performed on 231 unique baseline isolates of Candida spp. from patients with invasive candidiasis. The majority (approximately 96%) of MICs were between 0.125 and 2 microg/ml, with MIC50 and MIC90 for caspofungin being 0.5 and 2.0 microg/ml, respectively. Overall, caspofungin demonstrated potent in vitro activity against clinical isolates of Candida species. A relationship between MIC for caspofungin and treatment outcome was not seen for patients with either esophageal candidiasis or invasive candidiasis. Patients with isolates for which the MICs were highest (>2 microg/ml) had better outcomes than patients with isolates for which the MICs were lower (<1 microg/ml). Additionally, no correlation between MIC and outcome was identified for specific Candida species.  相似文献   

13.
AZD2563, a novel oxazolidinone, and a selection of comparator drugs that included linezolid, erythromycin, clindamycin, quinolones, and gentamicin were tested against 384 Staphylococcus aureus (176 oxacillin-resistant S. aureus [ORSA]) and 219 coagulase-negative staphylococci (CoNS; 162 oxacillin resistant) by reference microdilution (all strains) and agar dilution (30 strains) methods. The following results were noted for AZD2563. (Note that, for comparison only, a breakpoint of < or =4 microg/ml [the breakpoint of linezolid] was used for this study, although a susceptibility breakpoint for AZD2563 has not been determined.) For S. aureus, the MIC at which 50% of the isolates tested are inhibited (MIC(50)) was 1 microg/ml, the MIC(90) was 2 microg/ml, and the percent susceptibility was 100%. For CoNS, the MIC(50) was 0.5 microg/ml, the MIC(90) was 1 microg/ml, and the percent susceptibility was 100%. ORSA and OR-CoNS strains were equally inhibited by AZD2563 and linezolid. AZD2563 demonstrated antistaphylococcal activity comparable to that of linezolid.  相似文献   

14.
Retapamulin (SB-275833), the first pleuromutilin to be developed for human topical use, was tested against a selected population of staphylococci and beta-hemolytic streptococci. The MIC90 results for retapamulin were 0.12 microg/ml for Staphylococcus aureus and < or = 0.03 microg/ml for Streptococcus pyogenes; no cross-resistance was observed for organism subsets resistant to oxacillin, erythromycin, or mupirocin.  相似文献   

15.
The in vitro activity of piperacillin-tazobactam and several antibacterial drugs commonly used in Argentinean hospitals for the treatment of severe infections was determined against selected but consecutively isolated strains from clinical specimens recovered from hospitalized patients at 17 different hospitals from 9 Argentinean cities from different geographic areas during the period November 2001-March 2002. Out of 418 Enterobacteriaceae included in the Study 84% were susceptible to piperacillin-tazobactam. ESBLs putative producers were isolated at an extremely high rate since among those isolates obtained from patients with hospital acquired infections 56% of Klebsiella pneumoniae, 32% of Proteus mirabilis and 25% Escherichia coli were phenotypically considered as ESBLs producers Notably P.mirabilis is not considered by for screening for ESBL producers. ESBLs producers were 100% susceptible to imipenem and 70% were susceptible to piperacillin-tazobactam whereas more than 50% were resistant to levofloxacin. The isolates considered as amp C beta lactamase putative producers showed 99% susceptibility to carbapenems while 26.7% were resistant to piperacillin-tazobactam and 38.4% to levofloxacin. Noteworthy only 4% of the Enterobacteriaceae isolates were resistant to amikacin. Piperacillin-tazobactam was the most active agent against Pseudomonas aeruginosa isolates (MIC(90): 128 microg/ml; 78% susceptibility) but showed poor activity against Acinetobacter spp (MIC(90):>256 microg/ml; 21.7% susceptibility). Only 41.7% Acinetobacter spp isolates were susceptible to ampicillin-sulbactam. Piperacillin-tazobactam inhibited 100% of Haemophilus influenzae isolates (MIC(90) < 0.25 microg/ml) but only 16.6% of them were ampicillin resistant. The activity of piperacillin-tazobactam against oxacillin susceptible Staphylococcus aureus or coagulase negative staphylococci was excellent (MIC(90) 2 microg/ml; 100% susceptibility). Out of 150 enterococci 12 isolates (8%) were identified as E.faecium and only three isolates (2%), 2 E.faecium and 1 E.faecalis were vancomycin resistant. All the enterococci isolates were susceptible to linezolid. Piperacillin-tazobactam showed excellent activity (MIC(90) 2 microg/ml; 92% susceptibility). Regarding pneumococci all the isolates showed MICs of 16 microg/ml for piperacillin-tazobactam. Among 34 viridans group streptococci only 67% were penicillin susceptible and 85.2% ceftriaxone susceptible whereas piperacillin-tazobactam was very active (MIC(90) 4 microg/ml).Piperacillin-tazobactam is therefore a very interesting antibacterial drug to be used, preferably in combination (IE: amikacin-vancomycin) for the empiric treatment of severe infections occurring in hospitalized patients in Argentina. Caution must be taken for infections due to ESBL producers considering that the inoculum effect MICs can affect MIC values.  相似文献   

16.
Telavancin is a new semisynthetic glycopeptide anti-infective with multiple mechanisms of action, including inhibition of bacterial membrane phospholipid synthesis and inhibition of bacterial cell wall synthesis. We determined the in vitro activities of telavancin, vancomycin, daptomycin, linezolid, quinupristin-dalfopristin, imipenem, piperacillin-tazobactam, and ampicillin against 268 clinical isolates of anaerobic gram-positive organisms and 31 Corynebacterium strains using agar dilution methods according to National Committee for Clinical Laboratory Standards procedures. Plates with daptomycin were supplemented with Ca(2+) to 50 mg/liter. The MICs at which 90% of isolates tested were inhibited (MIC(90)s) for telavancin and vancomycin were as follows: Actinomyces spp. (n = 45), 0.25 and 1 microg/ml, respectively; Clostridium difficile (n = 14), 0.25 and 1 microg/ml, respectively; Clostridium ramosum (n = 16), 1 and 4 microg/ml, respectively; Clostridium innocuum (n = 15), 4 and 16 microg/ml, respectively; Clostridium clostridioforme (n = 15), 8 and 1 microg/ml, respectively; Eubacterium group (n = 33), 0.25 and 2 microg/ml, respectively; Lactobacillus spp. (n = 26), 0.5 and 4 microg/ml, respectively; Propionibacterium spp. (n = 34), 0.125 and 0.5 microg/ml, respectively; Peptostreptococcus spp. (n = 52), 0.125 and 0.5 microg/ml, respectively; and Corynebacterium spp. (n = 31), 0.03 and 0.5 microg/ml, respectively. The activity of TD-6424 was similar to that of quinupristin-dalfopristin for most strains except C. clostridioforme and Lactobacillus casei, where quinupristin-dalfopristin was three- to fivefold more active. Daptomycin had decreased activity (MIC > 4 microg/ml) against 14 strains of Actinomyces spp. and all C. ramosum, Eubacterium lentum, and Lactobacillus plantarum strains. Linezolid showed decreased activity (MIC > 4 microg/ml) against C. ramosum, two strains of C. difficile, and 15 strains of Lactobacillus spp. Imipenem and piperacillin-tazobactam were active against >98% of strains. The MICs of ampicillin for eight Clostridium spp. and three strains of L. casei were >1 microg/ml. The MIC(90) of TD-6424 for all strains tested was 相似文献   

17.
The in vitro activities of sparfloxacin, temafloxacin, ciprofloxacin, ofloxacin, clarithromycin, erythromycin, tetracycline, cephalothin, penicillin G, and amoxicillin-clavulanic acid against 173 recent clinical bite wound isolates were determined by agar dilution. Sparfloxacin was active against all strains (MIC for 90% of strains tested, < or = 1 micrograms/ml) except for most fusobacteria and one-third of the Prevotella spp. The other fluoroquinolones had similar activities but higher MICs, especially for streptococci. Clarithromycin was more active against many isolates including Pasteurella multocida than erythromycin, with MICs of < or = 2 micrograms/ml (versus 4 micrograms/ml for erythromycin).  相似文献   

18.
In Vitro Activity of the Ketolide ABT-773   总被引:1,自引:0,他引:1       下载免费PDF全文
The in vitro activities of ABT-773, azithromycin, erythromycin, and clindamycin were compared by testing 1,223 clinical isolates selected to represent different species and phenotypes. ABT-773 was particularly potent against staphylococci (the MIC at which 90% of the strains tested were inhibited [MIC(90)] was < or =0.06 microg/ml), including all strains that were macrolide resistant but clindamycin susceptible. Streptococcus pneumoniae and other streptococci were inhibited by low concentrations of ABT-773, and that included most erythromycin-resistant strains. Against Haemophilus influenzae, ABT-773 and azithromycin were similar in their antibacterial potency (MIC(90), 4.0 and 2.0 microg/ml, respectively).  相似文献   

19.
The antimicrobial susceptibilities of 16 clinical isolates of Desulfovibrio spp. were determined. All or most isolates were susceptible to imipenem (MIC(90) [MIC at which 90% of the isolates tested were inhibited], 0.5 microg/ml), metronidazole (MIC(90), 0.25 microg/ml), clindamycin (MIC(90), 4 microg/ml), and chloramphenicol (MIC(90), 16 microg/ml) but were resistant or intermediate to penicillin G (MIC(90), 64 microg/ml), piperacillin (MIC(90), 256 microg/ml), piperacillin-tazobactam (MIC(90), 256 microg/ml), cefoxitin (MIC(90), >256 microg/ml), and cefotetan (MIC(90), 64 microg/ml). Among isolates with decreased susceptibility to beta-lactams (n = 15), only six were beta-lactamase positive and susceptible to amoxicillin-clavulanate and ticarcillin-clavulanate.  相似文献   

20.
The antimicrobial activity of tigecycline and selected antimicrobials was evaluated against bacterial pathogens isolated from patients hospitalized in intensive care units (ICUs) worldwide. A total of 9093 isolates were consecutively collected in >70 medical centers in North America (4157), South America (1830), Europe (3034), and the Asia-Australia (72) areas. The isolates were collected from the bloodstream (68.5%), respiratory tract (13.6%), skin/soft tissue (5.5%), and urinary tract (2.0%) infections in the 2000-2004 period, and susceptibility was tested by reference broth microdilution methods. The most frequently isolated pathogens were Staphylococcus aureus (32.1%), Enterococcus spp. (13.7%), coagulase-negative staphylococci (CoNS; 13.0%), Pseudomonas aeruginosa (8.4%), and Escherichia coli (7.9%). All Gram-positive pathogens (5665) were inhibited at < or =1 microg/mL of tigecycline. Resistance to oxacillin was detected in 43.5% of Staphylococcus aureus and in 85.0% of CoNS, and resistance to vancomycin was observed in 18.6% of enterococci. Tigecycline was very active against Enterobacteriaceae (1876 strains tested) with an MIC90 of < or =1 microg/mL, except for Serratia spp. (2 microg/mL). Extended-spectrum beta-lactamase (ESBL) phenotype was detected in 10% of E. coli and 31% of Klebsiella spp., whereas 28% of Enterobacter spp. were resistant to ceftazidime (AmpC enzyme production). These resistance phenotypes did not adversely affect tigecycline activity. Tigecycline and trimethoprim/sulfamethoxazole were the most active compounds against Stenotrophomonas maltophilia (MIC90, 2 and 1 microg/mL respectively). Tigecycline was also active against Acinetobacter spp. (MIC90, 1 microg/mL), but P. aeruginosa showed decreased susceptibility to tigecycline (MIC90, 16 microg/mL). In summary, isolates from ICU patients worldwide showed high rates of antimicrobial resistance. The most alarming problems detected were vancomycin resistance among enterococci, ESBL-mediated beta-lactam resistance and fluoroquinolone resistance among Enterobacteriaceae, and carbapenem resistance among P. aeruginosa and Acinetobacter spp. Tigecycline exhibited potent in vitro activity against most of clinically important pathogenic bacteria (except P. aeruginosa) isolated from ICU patients and may represent an excellent option for the treatment of infections in this clinical environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号