首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1-Alkylazacycloalkan-2-one esters of naproxen were synthesized and assayed to determine their stability in phosphate buffer and isopropyl myristate, susceptibility to undergoing in vitro enzymatic hydrolysis and flux through excised human skin. 1-Methylazacycloalkan-2-one esters of naproxen (I–IV) proved poorly stable both in aqueous media and isopropylmyristate while 1-ethylazacycloalkan-2-one esters (V–VIII) were much more stable. Esters V–VIII were readily hydrolyzed in vitro by porcine esterase and esters V–VI penetrated excised human skin better than the parent drug from aqueous suspensions. On the basis of the results obtained, 1-ethylpyrrolidone and 1-ethylvalerolactam appear to be suitable promoieties for obtaining naproxen dermal prodrugs.  相似文献   

2.
A series of acyloxyalkyl esters of ketoprofen and naproxen were synthesized and investigated as topical prodrugs with the aim of improving the dermal delivery of the drugs. In addition, some hydroxyalkyl esters of ketoprofen and naproxen were synthesized as possible intermediates of acyloxyalkyl prodrugs. All of the prodrugs were more lipophilic than their parent molecules, as evaluated by drug partitioning between 1-octanol and phosphate buffer at pH 7.4 (log Papp). However, their solubilities in aqueous solutions decreased markedly compared with the parent molecules. The prodrugs were stable toward chemical hydrolysis in aqueous solutions (pH 7.4), but were hydrolyzed to the parent drug both in 80% human serum and in human skin homogenate, with half-lives ranging from 4 to 137 min and from 13 to 403 min, respectively. The abilities of the selected naproxen acyloxyalkyl prodrugs to deliver naproxen through excised human skin were evaluated. Generally, the prodrugs showed similar dermal delivery as the parent drug through cadaver skin. In the present series of lipophilic prodrugs of naproxen, the prodrug with the highest aqueous solubility was the most effective prodrug to deliver naproxen through the skin.  相似文献   

3.
Objectives For topical application of quercetin it is necessary to improve the low efficiency of its intradermal delivery as well as its low solubility in aqueous and organic vesicles. The aim of this study was to determine the usefulness of a microemulsion for that purpose. Methods A microemulsion consisting of isopropyl myristate, 150 mm NaCl solution, Tween 80 and ethanol was prepared. The skin delivery of quercetin by microemulsion using excised guinea‐pig and Yucatan micropig skin in Franz diffusion cells was examined. Lipid peroxidation in skin was also tested using iron(II) and citrate. Key findings Using a w/o microemulsion as a vehicle, intradermal delivery of quercetin was significantly increased, as was its solubility. Quercetin penetrated deep into the skin, but no transfer was observed into the receptor compartment. It was confirmed that quercetin retained in the skin dose‐dependently inhibited lipid peroxidation. Conclusions The findings indicate the potential use of microemulsions for the skin delivery of quercetin, where it exerts antioxidative effects.  相似文献   

4.
Purpose. To synthesize and evaluate various novel aminoacyloxyalkyl esters of naproxen (3a-i) and naproxenoxyalkyl diesters of glutamic and aspartic acids (3j-m) as potential dermal prodrugs of naproxen. Methods. The prodrugs 3a-m were synthesized, and their aqueous solubilities, lipophilicities and hydrolysis rates were determined in a buffered solution and in human serum. The permeation of selected prodrugs across excised postmortem human skin was studied in vitro. Results. The aminoacyloxyalkyl prodrugs showed higher aqueous solubilities and similar lipid solubilities, in terms of octanol-buffer partition coefficients (log Papp) at pH 5.0, when compared with naproxen. At pH 7.4 the prodrugs were significantly more lipophilic than naproxen. Prodrugs3a-i showed moderate chemical stability in aqueous solutions at pH 5.0 and were rapidly converted to naproxen in human serum (t1/2 = 4–19 min). The selected aminoacyloxyalkyl prodrugs possessed a higher flux across the skin than naproxen, with a maximum enhancement of 3-fold compared to naproxen. Prodrugs 3j-mshowed poor aqueous solubility and permeation across the skin. Conclusions. Combinations of adequate aqueous solubility and lipophilicity of naproxen aminoacyloxyalkyl prodrugs having fast rates of enzymatic hydrolysis resulted in improved dermal delivery of naproxen.  相似文献   

5.
Six new 1-alkylazacycloalkan-2-one esters of ketorolac (1-6) were synthesized and evaluated as potential dermal prodrugs. In vitro experiments were carried out to evaluate their chemical and enzymatic stability and permeation through excised human skin. Furthermore, partition coefficients n-octanol-water of ketorolac and its esters were determined to obtain information about their lipophilicity. Esters 1-6 showed increased lipophilicity compared to the parent drug, good stability in phosphate buffer pH 7.4, and were readily hydrolyzed in human plasma. Results from in vitro percutaneous absorption studies showed that, among all esters synthesized, only for esters 2 and 4 did a higher cumulative amount of drug penetrate through the skin, compared with that obtained after topical application of ketorolac.  相似文献   

6.
Novel polyoxyethylene esters of 18 beta-glycyrrhetic acid (GA) were synthesized and evaluated as potential dermal prodrugs. The permeation of these prodrugs (1a-e) was studied in-vitro, using excised human skin membranes (SCE; stratum corneum/epidermis) mounted in Franz type cells, and in-vivo, evaluating the ability of these compounds to inhibit methyl nicotinate (MN)-induced skin erythema in healthy human subjects. All the esters synthesized showed a good water stability, while the enzymatic hydrolysis rate was significantly affected by the length of the polyoxyethylenic chain used as promoiety. In in-vitro percutaneous absorption studies, only esters 1b and 1c (respectively triethylen- and tetraethylenglycol derivatives) showed an increased flux through SCE membranes compared with GA. Furthermore, we observed an appreciable and sustained in-vivo topical anti-inflammatory activity of esters 1b and 1c compared with the parent drug.  相似文献   

7.
Piperazinylalkyl prodrugs of naproxen improve in vitro skin permeation.   总被引:1,自引:0,他引:1  
Novel morpholinyl (4a) and piperazinylalkyl (4b-e) esters were synthesized and evaluated in vitro for their properties as bioreversible topically administered dermal prodrugs of naproxen. These ionizable prodrugs exhibited various aqueous solubilities and lipophilicities, depending on the pH of medium. As indicated by octanol-buffer partition coefficients (logP(app)) at pH 7.4, all of the prodrugs were significantly more lipophilic (logP(app)=0.7-3.9) than naproxen (logP(app)=0.3). Furthermore, the most aqueous of the soluble prodrugs (4b-d) were only 2-3-fold less soluble in an aqueous buffer of pH 7.4 ( approximately 30-50 mM) than was naproxen ( approximately 100 mM). At a pH of 5.0, prodrugs showed a generally higher aqueous solubility and similar logP(app) values, compared to naproxen. The chemical and enzymatic hydrolysis of prodrugs at 37 degrees C was investigated in aqueous buffer solutions (pH 5.0 and 7.4) and in 80% human serum (pH 7.4), respectively. The prodrugs showed moderate chemical stability (t(1/2)=15-150 days at pH 5.0), and they were hydrolyzed enzymatically to naproxen, with half-lives ranging from 0.4 to 77 min. In permeation studies using post-mortem human skin in vitro, the flux of naproxen was 6.5 and 1.6 nmol/cm(2). h in a saturated aqueous buffer vehicle of pH 7.4 and 5.0, respectively. Among the prodrugs, two piperazinyl derivatives (4c and 4d) resulted in a 9- and 4-fold enhancement of permeation, respectively, when compared to naproxen itself at pH 7.4. 4c also resulted in a significantly (4-fold) better permeation than naproxen at pH 5.0. In conclusion, piperazinyl esters improved skin permeation of naproxen and are promising prodrugs of naproxen for topical drug delivery.  相似文献   

8.
Novel polyoxyethylene esters of ketoprofen (1(a-e)), naproxen (2(a-e)) and diclofenac (3(a-e)) were synthesized and evaluated as potential dermal prodrugs of naproxen, ketoprofen and diclofenac. These esters were obtained by coupling these drugs with polyoxyethylene glycols by a succinic acid spacer. The aqueous solubilities, lipophilicities and hydrolysis rates of esters 1(a-e), 2(a-e) and 3(a-e) were determined in a buffered solution and in porcine esterase. The permeation of these prodrugs through excised human skin was studied in vitro. Furthermore we investigated the in vivo topical anti-inflammatory activity of esters 1(d), 2(e) and 3(e), which showed the best in vitro profile, evaluating the ability of these compounds to inhibit methyl nicotinate (MN)-induced skin erythema on healthy human volunteers. Esters 1(a-e), 2(a-e) and 3(a-e) showed good water stability and rapid enzymatic cleavage and their hydrolysis rates, both chemical and enzymatic, were not significantly affected by the length of the polyoxyethylenic chain used as promoiety. Concerning in vitro percutaneous absorption studies, only esters 1(d-e), 2(d-e) and 3(c-e) showed an increased flux through stratum corneum and epidermis membranes compared to their respective parent drugs. In vivo results showed an interesting delayed and sustained activity of esters 1(d) and 3(e) compared to the parent drugs. In conclusion polyoxyethylene glycols could prove to be suitable promoieties for ketoprofen, naproxen and diclofenac design since esters 1(d-e), 2(d-e) and 3(c-e) showed some requirements (chemical stability, enzymatic lability and an increased skin permeation) needed to obtain successful dermal prodrugs. Furthermore, was observed an appreciable and sustained in vivo topical anti-inflammatory activity of esters 1(d) and 3(e), compared to the parent drugs, using MN-induced erythema in human volunteers as inflammation model.  相似文献   

9.
Various novel morpholinyl- (3a,b) and methylpiperazinylacyloxyalkyl (3c-f) esters of 2-(6-methoxy-2-naphthyl)propionic acid were synthesized and evaluated in vitro for topical drug delivery as potential prodrugs of naproxen (1). Compounds 3a-f were prepared by coupling the corresponding naproxen hydroxyalkyl ester with the morpholinyl- or (4-methyl-1-piperazinyl)acyl acid in the presence of dicyclohexylcarbodiimide (DCC) and 4-(dimethylamino)pyridine (DMAP) and quantitatively hydrolyzed (t(1/2) = 1-26 min) to naproxen in human serum. Compounds 3c-f showed higher aqueous solubility and similar lipophilicity, determined by their octanol-buffer partition coefficients (log P(app)), at pH 5.0 when compared to naproxen. At pH 7.4 they were significantly more lipophilic than naproxen. The best prodrug 3c led to a 4- and 1.5-fold enhancement of skin permeation when compared to naproxen at pH 7.4 and 5.0, respectively. The present study indicates using a methylpiperazinyl group yields prodrugs that are partially un-ionized under neutral and slightly acidic conditions, and thus, a desirable combination is achieved in terms of aqueous solubility and lipophilicity. Moreover, the resulting combination of biphasic solubility and fast enzymatic hydrolysis of the methylpiperazinylacyloxyalkyl derivatives gave improved topical delivery of naproxen.  相似文献   

10.
Purpose. Physicochemical characterization and in vitro human skin diffusion studies of branched-chain ester and carbonate prodrugs of naltrexone (NTX) were compared and contrasted with straight-chain ester and carbonate NTX prodrugs.Methods. Human skin permeation rates, thermal parameters, solubilities in mineral oil and buffer, and stabilities in buffer and plasma were determined. Partition coefficients between stratum corneum and vehicle were determined for straight- and branched-chain esters with the same number of carbon atoms.Results. Branched prodrugs had lower melting points, lower buffer solubilities, and higher mineral oil solubilities than NTX. The transdermal flux values from all of these branched prodrugs were significantly lower than flux values from the straight-chain ester and the methyl carbonate prodrugs. Straight-chain prodrugs had higher partition coefficient values and higher calculated thermodynamic activities than their branched-chain counterparts. The prodrug hydrolysis to NTX in buffer and plasma was slower for prodrugs with increased branching.Conclusions. Branched-chain prodrugs with bulky moieties had smaller stratum corneum—vehicle partition coefficients and lower thermodynamic activities that resulted in smaller transdermal flux values than straight-chain prodrugs.  相似文献   

11.
The human epidermis contains endogenous retinoids [retinol (vitamin A) and retinyl esters] and carotenoids (mostly beta-carotene). Previous studies in the mouse have shown that the enzymes involved in retinoid metabolism are present in the epidermis. In this study, we wanted to assess the skin penetration and metabolism of topical retinoids in the human. To do this, fresh surgically excised human abdominal skin was mounted on Franz perfusion cells. Topical retinoic acid, retinal, retinol and retinyl palmitate were applied at 2.5 mg/cm(2) in oil-in-water creams containing 0.05% retinoids on the donor compartment, while the receptor compartment was filled with culture medium. The skin was incubated for 24 h at 37 degrees C, then epidermal retinoid concentrations were determined by HPLC. The same experiment was performed with mouse back skin mounted on Franz cells. Finally, topical retinoids were applied on the back of hairless mice for 24 h; then the mice were sacrificed and retinoid concentrations were assayed in the epidermis. In all three models, retinol and its esters were found to be endogenous, as was the case in previous studies in the mouse in vivo. The four applied retinoids penetrated well into the epidermis. Topical retinoic acid did not increase endogenous retinoids, whereas the latter were greatly increased following topical retinal in the mouse. Retinal was also metabolized into retinoic acid, unlike topical retinol and retinyl palmitate, which only increased endogenous retinoids. Topical retinal and retinol did undergo a higher metabolism in both mouse models than in human skin. In summary, the penetration and metabolism patterns of topical retinoids were quite similar in the two mouse models used, indicating that the Franz cells appear to be a good model to predict in vivo metabolism of topical retinoids. When applying this concept to our results obtained in Franz cells with human skin, we conclude that topical retinol and retinal load human skin with both storage and functional vitamin A.  相似文献   

12.
The percutaneous permeation characteristics of 6 potential prodrugs 2-7 in comparison with their parent drug mefenamic acid (1) in vitro using excised human skin were studied. The results show that all potential prodrugs tested were at least 2.0 times as effective as mefenamic acid; compounds 2 and 7 permeated almost 5 times as quickly as mefenamic acid through excised human skin. The relations between the permeation behaviour, the RM values and the melting points were interpreted.  相似文献   

13.
Water-soluble phosphate prodrugs of buparvaquone (1), containing a hydroxynaphthoquinone structure, were synthesized and evaluated in vitro for improved topical and oral drug delivery against cutaneous and visceral leishmaniasis. The successful prodrug synthesis involved a strong base; e.g., sodium hydride. Buparvaquone-3-phosphate (4a) and 3-phosphonooxymethyl-buparvaquone (4b) prodrugs possessed significantly higher aqueous solubilities (>3.5 mg/mL) than the parent drug (相似文献   

14.
Five new oligoethylene ester derivatives (9-13) of 5-iodo-2'-deoxyuridine (IDU) were synthesized and assayed to determine their lipophilicity by both experimental lipophilicity indices (log K') and calculated partition coefficients (CLOGP). In vitro experiments were carried out to evaluate the chemical and enzymatic stability and fluxes through excised human skin of these new IDU derivatives. Esters 9-13 showed increased lipophilicity compared with the parent drug (IDU), had good stability in phosphate buffer (pH 7.4), and were readily hydrolyzed by porcine esterase. No correlation between lipophilicity and skin permeation fluxes of synthesized esters 9-13 was observed. Results from in vitro percutaneous absorption studies showed that, among all esters synthesized, only esters 9 and 10 significantly increased the cumulative amount of IDU that penetrated through excised human skin compared with the parent drug (IDU).  相似文献   

15.
In an attempt to improve the skin delivery characteristics of Zidovudine (AZT, azidothymidine), five aliphatic esters (acetate, butyrate, hexanoate, octanoate, and decanoate) of AZT were synthesized and assessed as prodrugs of AZT. While the water solubility of the esters is lower than that of AZT, the solubilities in isopropylmyristate (IPM) and the partition coefficients (n-octanol: buffer) are higher. Susceptibility to enzymatic hydrolysis in the rat skin homogenate increases as the acyl chain of the ester is lengthened. Among the esters, acetate (C2-AZT) and hexanoate (C6-AZT) showed 2.4- and 4.8-fold enhanced permeation in human skin from an apolar vehicle (IPM) relative to application of AZT itself, respectively.  相似文献   

16.
Ephedrine (I) is delivered through human skin, in vitro, significantly faster from aqueous solutions of 3,4-dimethyl-5-phenyl-oxazolidine (II) with pH values between 7.0 and 10.88 than from corresponding solutions of I. The difference in penetration rates was most marked at pH 7.0 where 917 μg and < 10 μg of I was delivered through 1.3 cm2 of skin in 24 h from 1% w/v solutions of II and I, respectively. No detectable amounts of I were delivered through 1.3 cm2 of skin in 24 h from 1% w/v solutions of I or II in propylene glycol and delivery of I was faster from 1% w/v solutions of I in liquid paraffin than from corresponding solutions of II. Compound II has a lower pKa value than compound I (ca. 5.5 vs 9.63) and a higher partition coefficient between water and liquid paraffin (5.6 vs 1.0). Although II rapidly hydrolyzed to I plus formaldehyde (t50% < 1 min at pH values between 6 and 8), the system rapidly came to an equilibrium which increasingly favoured compound II as the initial concentration of II or the pH value was increased. Hence, it can be concluded that compound II and possibly other oxazolidines are potentially useful prodrugs for promoting the delivery through skin of I and other β-aminoalcohols from aqueous solutions with pH values close to 7.  相似文献   

17.
《Drug delivery》2013,20(7):354-361
Topical administration of celecoxib proved to be an effective mean of preventing skin cancer development and improving anticancer drugs effectiveness in skin tumors treatment. The aim of this study was the development of an effective topical formulation of celecoxib, able to promote drug skin delivery, providing its in depth penetration through the skin layers. Three kinds of vesicular formulations have been investigated as drug carriers: liposomes containing a surfactant, or transfersomes and ethosomes, containing suitable edge activators. Firstly, the effect of membrane composition variations on the system performance has been evaluated for each vesicle type. Selected formulations were characterized for particle size, polydispersity index and encapsulation efficiency. The best formulations were subjected to ex vivo permeation studies through excised human skin. All vesicular formulations markedly (p < 0.001) improved the drug amount penetrated into the skin with respect to an aqueous suspension, from 2.0 to 6.5, up to 9.0 folds for liposomes, transfersomes and ethosomes, respectively. In particular, ethosomes containing Tween 20 as edge activator not only showed the best vesicle dimensions and homogeneity, and the highest encapsulation efficacy (54.4%), but also enabled the highest increase in drug penetration through the skin, probably due to the simultaneous presence in their composition of ethanol and Tween 20, both acting as permeation enhancers. Therefore, among the various vesicular formulations examined in the study, Tween 20-ethosomes can be considered the most promising one as carrier for topical celecoxib applications aimed to prevent skin cancer development and increase the anticancer drugs effectiveness against skin tumors.  相似文献   

18.
In vitro simultaneous transport and metabolism of three ester prodrugs of nicotinic acid (NA), methyl nicotinate (MN), ethyl nicotinate (EN) and butyl nicotinate (BN) were studied using excised skin from hairless mouse. Hydrolysis studies of these esters with and without skin homogenate were also done at 37 degrees C. Both the ester and NA were detected in all receiver solutions in permeation studies, and no chemical hydrolysis of the esters was found, indicating that the esters were hydrolyzed during the skin permeation process. The total (ester+NA) flux from a saturated solution of ester prodrugs was higher than that of NA and was highest for MN, followed by EN and BN, whereas the total permeability coefficient of ester prodrugs increased from MN to BN. A difference in the NA/total flux ratio was found among these prodrugs; thus, esterase activity was also dependent on the alkyl chain length of the esters. The total flux from each ester solution increased linearly with the donor concentration. NA flux from MN and EN solutions increased with an increase in the donor concentration and reached a plateau at the high concentration range, suggesting that metabolic saturation occurred. NA fluxes at the plateau were similar among ester prodrugs and corresponded to the Vmax estimated from the hydrolysis experiment. The order of donor concentration at which NA reached a plateau also corresponded to the order of Km. It was confirmed that a difference in alkyl chain length of the ester prodrugs affected not only permeability but also metabolism in the skin permeation process.  相似文献   

19.
Two alkyl esters of morphine, morphine propionate (MPR) and morphine enanthate (MEN), were synthesized as potential prodrugs for transdermal delivery. The ester prodrugs could enhance transdermal morphine delivery. The mechanisms of this enhancing effect were elucidated in this study. Both prodrugs were more lipophilic than their parent drug as evaluated by the skin/vehicle partition coefficient (log P) and capacity factor (log K'). The in-vitro skin permeation of morphine and its prodrugs from pH 6 buffer was in the order of MEN > MPR > morphine. MPR and MEN respectively enhanced the transdermal delivery of morphine by 2- and 5-fold. A contrary result was observed when using sesame oil as the vehicle. The prodrugs were stable against chemical hydrolysis in an aqueous solution, but were readily hydrolysed to the parent drug when exposed to skin homogenate and esterase. Approximately 98% MPR and approximately 75% MEN were converted to morphine in an in-vitro permeation experiment. The viable epidermis/dermis contributed to a significant resistance to the permeation of ester prodrugs. According to the data of skin permeation across ethanol-, alpha-terpineol-, and oleic acid-pretreated skin, MEN was predominantly transported via lipid bilayer lamellae in the stratum corneum. The intercellular pathway was not important for either morphine or MPR permeation.  相似文献   

20.
Diester prodrugs of apomorphine, diacetyl apomorphine (DAA), and diisobutyryl apomorphine (DIA) were synthesized, and their partition coefficients, capacity factor (log K′), enzymatic hydrolysis, and in vitro permeation across nude mouse skin were characterized. The lipophilicity of the diesters was between that of apomorphine HCl and the apomorphine base. The prodrugs were chemically stable, but enzymatically unstable in esterase medium, skin homogenate, and human plasma. DAA showed a faster hydrolysis in plasma compared to DIA. Total fluxes (nmol/cm2/h) of the parent drug and prodrug were significantly greater after topical treatment with the diesters in aqueous solutions (water, 30% polyethylene glycol in water, and 30% glycerol in water) compared to treatment with HCl and base forms of apomorphine. DIA flux from deionized water was 51 nmol/cm2/h, which exceeded the flux of apomorphine HCl by 10-fold. The extent of parent drug regeneration after topical application ranged 51-88% and 34-61% for DAA and DIA, respectively, depending on the vehicles selected. Permeation measurements using intact and stratum corneum-stripped skins demonstrated that the viable epidermis/dermis was an important barrier to prodrug permeation. Nano-sized lipid emulsions were also used as carriers for apomorphine and its prodrugs. Diester prodrugs exhibited superior skin permeation compared to the parent drug when formulated into the emulsions. DAA and DIA fluxes from lipid emulsions were 11- and 3-fold higher than that of apomorphine HCl. The results in the present work suggest the feasibility of diester prodrugs for the transdermal delivery of apomorphine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号