首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. In this study, total body clearance (CLt), volume of distribution at steady state (Vss) and plasma concentration–time profiles in humans of model compounds were predicted using chimeric mice with humanized livers.

  2. On the basis of assumption that unbound intrinsic clearance (CLUint) per liver weight in chimeric mice was equal to those in humans, CLt were predicted by substituting human liver blood flow and liver weights in well-stirred model. Vss were predicted by Rodgers equation using scaling factors of tissue-plasma concentration ratios (SFKp) in chimeric mice estimated from a difference between the observed and predicted Vss. These physiological approaches showed high prediction accuracy for CLt and Vss values in humans.

  3. We compared the predictability of CLt and Vss determined by the physiologically based predictive approach using chimeric mice with those from predictive methods reported by Pharmaceutical Research Manufacturers of America. The physiological approach using chimeric mice indicated the best prediction accuracy in each predictive method.

  4. Simulation of human plasma concentration–time profiles were generally successful with physiologically based pharmacokinetic (PBPK) model incorporating CLUint and SFKp obtained from chimeric mice.

  5. Combined application of chimeric mice and PBPK modeling is effective for prediction of human PK in various compounds.

  相似文献   

2.
目的:建立替格瑞洛在健康人群中的生理药动学(PBPK)模型,预测其口服给药后在人体的吸收部位与吸收量及组织分布特征,为预测替格瑞洛药物互相作用和临床治疗提供参考依据。方法:通过文献和ADMET Predictor软件计算获取替格瑞洛建模的理化参数及生物药剂学参数,通过替格瑞洛注射给药的药动学数据获取替格瑞洛在人体的清除率(CL),应用Gastro PlusTM软件建立替格瑞洛口服给药的PBPK预测模型,并对模型进行验证和优化。通过所建立的预测模型,能预测药物体内药-时曲线,预测药物吸收部位与吸收量及口服给药后药物在各个组织及器官中的药物暴露量。结果:模型拟合替格瑞洛的药-时曲线与实测值的平均折合误差(AFE)和绝对平均折合误差(AAFE)值分别为1.0和1.1,这表明所建立的PBPK模型有效性良好。药物主要的吸收部位为空肠,吸收量为35.8%。口服替格瑞洛后,药物在身体各个组织中均有广泛的分布,其在脂肪组织、红骨髓和黄骨髓中的药物显露量约是血中药物暴露量1.6倍。结论:所建立的PBPK模型可较好模拟替格瑞洛口服给药后的体内药动学行为,对于预测药物可能的相互作用及临床给药方案有指导意义。  相似文献   

3.
The pharmacokinetics of the solvent methylene chloride have been studied using a physiologically based model that was developed for iv administrations to mice. Subsequently, the model was expanded to simulate pharmacokinetic behavior in mice and rats following single and repeated oral exposures. Through computer simulations, how different dosing variables, such as dose vehicle and exposure route, could influence the time course of methylene chloride concentrations at potentially critical sites of toxicity was examined. With this technique, methods of quantifying tissue exposure as it relates to externally applied doses was sought. In this way pharmacokinetic models help investigators design experiments that lead to more appropriate and reliable toxicologic assessment studies.  相似文献   

4.
  1. Ten compounds from the Merck Research Laboratories pipeline were selected to evaluate the utility of using intrinsic clearance derived from recombinantly expressed cytochromes P450 (CYP) and physiologically based pharmacokinetic modelling to predict Phase I pharmacokinetics using simCYP. The compounds selected were anticipated to be eliminated predominantly by P450 metabolism.

  2. There was a reasonable agreement between the predicted and actual clinical exposure with 80% of the predicted exposures being within three-fold of the observed values. Furthermore, prediction of C(t) (plasma concentration at a specified time point) and Tmax were acceptable with greater than or equal to 70% of the predicted data being within three-fold of the observed values. However, prediction of Cmax was unreliable and may have been due to error in predicting the time-dependent change in volume of distribution and/or error in estimating absorption rate.

  3. Although it is acknowledged that research is needed to improve predictive performance, the data presented are supportive of using recombinant P450 intrinsic clearance and physiologically based pharmacokinetic modelling to predict Phase I pharmacokinetics for compounds eliminated by P450 metabolism.

  相似文献   

5.
Glycyrrhizic acid is widely applied as a sweetener in food products and chewing tobacco. In addition, it is of clinical interest for possible treatment of chronic hepatitis C. In some highly exposed subjects, side effects such as hypertension and symptoms associated with electrolyte disturbances have been reported. To analyze the relationship between the pharmacokinetics of glycyrrhizic acid in its toxicity, the kinetics of glycyrrhizic acid and its biologically active metabolite glycyrrhetic acid were evaluated. Glycyrrhizic acid is mainly absorbed after presystemic hydrolysis as glycyrrhetic acid. Because glycyrrhetic acid is a 200-1000 times more potent inhibitor of 11-beta-hydroxysteroid dehydrogenase compared to glycyrrhizic acid, the kinetics of glycyrrhetic acid are relevant in a toxicological perspective. Once absorbed, glycyrrhetic acid is transported, mainly taken up into the liver by capacity-limited carriers, where it is metabolized into glucuronide and sulfate conjugates. These conjugates are transported efficiently into the bile. After outflow of the bile into the duodenum, the conjugates are hydrolyzed to glycyrrhetic acid by commensal bacteria; glycyrrhetic acid is subsequently reabsorbed, causing a pronounced delay in the terminal plasma clearance. Physiologically based pharmacokinetic modeling indicated that, in humans, the transit rate of gastrointestinal contents through the small and large intestines predominantly determines to what extent glycyrrhetic acid conjugates will be reabsorbed. This parameter, which can be estimated noninvasively, may serve as a useful risk estimator for glycyrrhizic-acid-induced adverse effects, because in subjects with prolonged gastrointestinal transit times, glycyrrhetic acid might accumulate after repeated intake.  相似文献   

6.
The objective of this study is to assess the effectiveness of physiologically based pharmacokinetic (PBPK) models for simulating human plasma concentration–time profiles for the unique drug dataset of blinded data that has been assembled as part of a Pharmaceutical Research and Manufacturers of America initiative. Combinations of absorption, distribution, and clearance models were tested with a PBPK approach that has been developed from published equations. An assessment of the quality of the model predictions was made on the basis of the shape of the plasma time courses and related parameters. Up to 69% of the simulations of plasma time courses made in human demonstrated a medium to high degree of accuracy for intravenous pharmacokinetics, whereas this number decreased to 23% after oral administration based on the selected criteria. The simulations resulted in a general underestimation of drug exposure (Cmax and AUC0‐t). The explanations for this underestimation are diverse. Therefore, in general it may be due to underprediction of absorption parameters and/or overprediction of distribution or oral first‐pass. The implications of compound properties are demonstrated. The PBPK approach based on in vitro‐input data was as accurate as the approach based on in vivo data. Overall, the scientific benefit of this modeling study was to obtain more extensive characterization of predictions of human PK from PBPK methods. © 2011 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:4127–4157, 2011  相似文献   

7.
BACKGROUND: The major aim of this study was to develop a strategy for predicting human pharmacokinetics using physiologically based pharmacokinetic (PBPK) modelling. This was compared with allometry (of plasma concentration-time profiles using the Dedrick approach), in order to determine the best approaches and strategies for the prediction of human pharmacokinetics. METHODS: PBPK and Dedrick predictions were made for 19 F. Hoffmann-La Roche compounds. A strategy for the prediction of human pharmacokinetics using PBPK modelling was proposed in this study. Predicted values (pharmacokinetic parameters, plasma concentrations) were compared with observed values obtained after intravenous and oral administration in order to assess the accuracy of the prediction methods. RESULTS: By following the proposed strategy for PBPK, a prediction would have been made prospectively for approximately 70% of the compounds. The prediction accuracy for these compounds in terms of the percentage of compounds with an average-fold error of <2-fold was 83%, 50%, 75%, 67%, 92% and 100% for apparent oral clearance (CL/F), apparent volume of distribution during terminal phase after oral administration (V(z)/F), terminal elimination half-life (t(1/2)), peak plasma concentration (C(max)), area under the plasma concentration-time curve (AUC) and time to reach C(max) (t(max)), respectively. For the other 30% compounds, unacceptable prediction accuracy was obtained in animals; therefore, a prospective prediction of human pharmacokinetics would not have been made using PBPK. For these compounds, prediction accuracy was also poor using the Dedrick approach. In the majority of cases, PBPK gave more accurate predictions of pharmacokinetic parameters and plasma concentration-time profiles than the Dedrick approach. CONCLUSIONS: Based on the dataset evaluated in this study, PBPK gave reasonable predictions of human pharmacokinetics using preclinical data and is the recommended approach in the majority of cases. In addition, PBPK modelling is a useful tool to gain insights into the properties of a compound. Thus, PBPK can guide experimental efforts to obtain the relevant information necessary to understand the compound's properties before entry into human, ultimately resulting in a higher level of prediction accuracy.  相似文献   

8.
9.
beta-Chloroprene (2-chloro-1,3-butadiene; CD), which is used in the synthesis of polychloroprene, caused significant incidences of several tumor types in B6C3F1 mice and Fischer rats, but not in Wistar rats or Syrian hamsters. This project investigates the relevance of the bioassay lung tumor findings to human health risk by developing a physiologically based toxicokinetic (PBTK) model and exploring a tissue specific exposure-dose-response relationship. Key steps included identification of the plausible genotoxic mode of action, experimental quantification of tissue-to-air partition coefficients, scaling of in vitro parameters of CD metabolism for input into the PBTK model, comparing the model with in vivo experimental gas uptake data, selecting an appropriate tissue dosimetric, and predicting a corresponding human exposure concentration. The total daily milligram amount of CD metabolized per gram of lung was compared with the animal bioassay response data, specifically combined bronchiolar adenoma/carcinoma. The faster rate of metabolism in mouse lung agreed with the markedly greater incidence of lung tumors compared with the other rodent species. A lung tissue dose was predicted for the combined rodent lung tumor bioassay data at a 10% benchmark response. A human version of the PBTK model predicted that the lung tissue dose in humans would be equivalent to continuous lifetime daily exposure of 23 ppm CD. PBTK model sensitivity analysis indicated greater dependence of model predictions of dosimetry on physiological than biochemical parameters. The combined analysis of lung tumor response across species using the PBTK-derived internal dose provides an improved alternative to default pharmacokinetic interspecies adjustments for application to human health risk assessment.  相似文献   

10.
The capability of physiologically based pharmacokinetic models to incorporate age-appropriate physiological and chemical-specific parameters was utilized to predict changes in internal dosimetry for six volatile organic compounds (VOCs) across different ages of rats. Typical 6-h animal inhalation exposures to 50 and 500 ppm perchloroethylene, trichloroethylene, benzene, chloroform, methylene chloride, or methyl ethyl ketone (MEK) were simulated for postnatal day 10 (PND10), 2-month-old (adult), and 2-year-old (aged) rats. With the exception of MEK, predicted venous blood concentrations of VOCs in the aged rat were equal or up to 1.5-fold higher when compared to the adult rat at both exposure levels, whereas levels were predicted to be up to 3.8-fold higher in the case of PND10 at 50 ppm. Predicted blood levels of MEK were similar in the adult and aged rat, but were more than 5-fold and 30-fold greater for PND10 rats at 500 and 50 ppm, respectively, reflecting high water solubility along with lower metabolic capability and faster ventilation rate per unit body weight (BW) of PND10 animals. Steady-state blood levels of VOCs, simulated by modeling constant exposure, were predicted to be achieved in the order PND10 > adult > aged, largely due to increasing fat volume. The dose metric, total amount metabolized per unit liver volume was generally much lower in PND10 than in adult rats. The blood:air partition coefficient, fat volume, and fat blood flow were identified as critical determinants for the predicted differences in venous blood concentrations between the adult and aged. The lower metabolic capability, largely due to a smaller liver size, and faster ventilation rate per unit BW of PND10 animals contribute the most to the differences between PND10 and adult rats. This study highlights the pharmacokinetic differences and the relevant parameters that may contribute to differential susceptibility to the toxic effects of VOCs across life stages of the rat.  相似文献   

11.
Abstract

1.?Cynomolgus monkeys are widely used in preclinical studies as non-human primate species. Pharmacokinetics of human cytochrome P450 probes determined in cynomolgus monkeys after single oral or intravenous administrations were extrapolated to give human plasma concentrations.

2.?Plasma concentrations of slowly eliminated caffeine and R-/S-warfarin and rapidly eliminated omeprazole and midazolam previously observed in cynomolgus monkeys were scaled to human oral biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Results of the simplified human PBPK models were consistent with reported experimental PK data in humans or with values simulated by a fully constructed population-based simulator (Simcyp).

3.?Oral administrations of metoprolol and dextromethorphan (human P450 2D probes) in monkeys reportedly yielded plasma concentrations similar to their quantitative detection limits. Consequently, ratios of in vitro hepatic intrinsic clearances of metoprolol and dextromethorphan determined in monkeys and humans were used with simplified PBPK models to extrapolate intravenous PK in monkeys to oral PK in humans.

4.?These results suggest that cynomolgus monkeys, despite their rapid clearance of some human P450 substrates, could be a suitable model for humans, especially when used in conjunction with simple PBPK models.  相似文献   

12.
13.
Drug approval processes require extensive testing and have recently put more emphasis on understanding mechanistic drug action in the body including toxicity and safety.1 Consequently, there is an urgent need in the pharmaceutical industry to develop mechanistic pharmacokinetic (PK) models able to both expedite knowledge gain from experimental trials and, simultaneously, address safety concerns. We previously developed a first principles based whole-body PK model, which incorporated physiological dimensions and drug mass transport. In this follow-up article, we demonstrate how the first principles model in combination with novel physiological scaling laws yields more reliable interspecies and intraspecies extrapolation of drug biodistribution. We show how experimental dose-response data in rats for immunosuppressant cyclosporin are sufficient for predicting the biodistribution of this drug in pigs, monkeys, and humans. The predicted drug concentrations extrapolated by interspecies scaling laws match well with the experimental measurements. These promising results demonstrate that the whole-body PK modeling approach not only elucidates drug mechanisms from a biochemical standpoint, but offers better scaling precision. Better models can substantially accelerate the introduction of drug leads to clinical trials and eventually to the market by offering more understanding of the drug mechanisms, aiding in therapy design, and serving as an accurate dosing tool.  相似文献   

14.
15.
1.?The pharmacokinetic data of cytochrome P450 probes in humans can be extrapolated from corresponding data in cynomolgus monkeys, dogs and minipigs using simplified physiologically based pharmacokinetic (PBPK) modeling. In this study, the modeling methodology was further adapted to estimate human plasma concentrations of P450 probes based on data from mice transplanted with human hepatocytes or based on data from marmosets.

2.?Using known species allometric scaling factors, the observed plasma concentrations of caffeine, warfarin, omeprazole, metoprolol, and midazolam in chimeric TK-NOG mice with humanized liver were scaled to human oral monitoring equivalents. Using the same approach, the previously reported pharmacokinetics of the five P450 probes in marmosets were also scaled to reported equivalents in humans using in vitro metabolic clearance data.

3.?Human plasma concentration profiles of the five P450 probes estimated by simplified human PBPK models based on the observed pharmacokinetics in mice with humanized liver and on the reported pharmacokinetics in marmosets were consistent with previously published pharmacokinetic data in Caucasians.

4.?These results suggest that mice with humanized liver and/or marmosets could be suitable pharmacokinetic models for humans during research into new drugs, especially when used in combination with simple PBPK models.  相似文献   

16.
17.

Aim:

To develop and evaluate a whole-body physiologically based pharmacokinetic (WB-PBPK) model of bisoprolol and to simulate its exposure and disposition in healthy adults and patients with renal function impairment.

Methods:

Bisoprolol dispositions in 14 tissue compartments were described by perfusion-limited compartments. Based the tissue composition equations and drug-specific properties such as log P, permeability, and plasma protein binding published in literatures, the absorption and whole-body distribution of bisoprolol was predicted using the ''Advanced Compartmental Absorption Transit'' (ACAT) model and the whole-body disposition model, respectively. Renal and hepatic clearances were simulated using empirical scaling methods followed by incorporation into the WB-PBPK model. Model refinements were conducted after a comparison of the simulated concentration-time profiles and pharmacokinetic parameters with the observed data in healthy adults following intravenous and oral administration. Finally, the WB-PBPK model coupled with a Monte Carlo simulation was employed to predict the mean and variability of bisoprolol pharmacokinetics in virtual healthy subjects and patients.

Results:

The simulated and observed data after both intravenous and oral dosing showed good agreement for all of the dose levels in the reported normal adult population groups. The predicted pharmacokinetic parameters (AUC, Cmax, and Tmax) were reasonably consistent (<1.3-fold error) with the observed values after single oral administration of doses ranging from of 5 to 20 mg using the refined WB-PBPK model. The simulated plasma profiles after multiple oral administration of bisoprolol in healthy adults and patient with renal impairment matched well with the observed profiles.

Conclusion:

The WB-PBPK model successfully predicts the intravenous and oral pharmacokinetics of bisoprolol across multiple dose levels in diverse normal adult human populations and patients with renal insufficiency.  相似文献   

18.
Occupational and environmental settings present opportunities for humans to come into contact with a variety of chemicals via the dermal route. The chemicals contacting the skin are likely to be diluted with a vehicle or present as a component of a mixture. In order to support risk assessment activities, we evaluated the vehicle effects on dermal penetration of two halogenated hydrocarbons, dibromomethane (DBM) and bromochloromethane (BCM). In vivo exposures to 15 combinations of of these in water, mineral oil, and corn oil vehicles were conducted, and blood was sampled for dibromomethane and bromochloromethane during the exposure at 0.5, 1, 2, 4, 8, 12, and 24 h. A physiologically based pharmacokinetic (PBPK) model was used to estimate the total amounts of dibromomethane or bromochloromethane that were absorbed during the exposure, and the dermal permeability coefficients were determined. While the permeability coefficients for dibromomethane and bromochloromethane were approximately 73- and 40-fold higher, respectively, in the water vehicle than in the corn oil, the permeability coefficient, when normalized for the skin:vehicle matrix partition coefficient, varied by less than a factor of 2. The permeability in an aqueous vehicle was then successfully used to predict the permeability coefficient for dibromomethane in a nonpolar vehicle, peanut oil.  相似文献   

19.
The performance of allometric scaling of dose as a power of body weight under a variety of extrapolation conditions with respect to species, route, exposure intensity, and mechanism/mode of action, remains untested in many cases. In this paper, animal-human internal dose ratio comparisons have been developed for 12 chemicals (benzene, carbon tetrachloride, chloroform, diisopropylfluorophosphate, ethanol, ethylene oxide, methylene chloride, methylmercury, styrene, tetrachloroethene, trichloroethene, and vinyl chloride). This group of predominantly volatile and lipophilic chemicals was selected on the basis that their kinetics have been well-studied and can be predicted in mice, rats, and humans using physiologically based pharmacokinetic (PBPK) models. PBPK model predictions were compared to the allometric scaling predictions for interspecies extrapolation. Recommendations for the application of the allometric scaling are made with reference to internal dose measure (mode of action) and concentration level. The results of this assessment generally support the use of scaling factors recommended in the published literature, which includes scaling factors of 1.0 for risk assessments in which toxicity is attributed to the parent chemical or stable metabolite, and -0.75 for dose-response assessments in which toxicity is attributed to the formation of a reactive metabolite from an inhaled compound. A scaling factor of 0.75 is recommended for dose-response assessments of orally administered compounds in which toxicity is attributed to the parent chemical or stable metabolite and 1.0 for risk assessments in which toxicity is attributed to the formation of a reactive metabolite from a compound administered by the oral route. A dose-dependency in the results suggests that the scaling factors appropriate at high exposures may differ from those at low exposures, primarily due to the impact of saturable metabolism.  相似文献   

20.
  1. The pharmacokinetics of cytochrome P450 probes in humans can be extrapolated from corresponding data in cynomolgus monkeys using simplified physiologically based pharmacokinetic (PBPK) modeling. In the current study, despite some species difference in drug clearances, this modeling methodology was adapted to estimate human plasma concentrations of P450 probes based on data from commonly used medium-sized experimental animals, namely dogs and minipigs.

  2. Using known species allometric scaling factors and in vitro metabolic clearance data, the observed plasma concentrations of slowly eliminated caffeine and warfarin and rapidly eliminated omeprazole, metoprolol and midazolam in two young dogs were scaled to human oral monitoring equivalents. Using the same approach, the previously reported pharmacokinetics of the five P450 probes in minipigs was also scaled to human monitoring equivalents.

  3. The human plasma concentration profiles of the five P450 probes estimated by the simplified human PBPK models based on observed/reported pharmacokinetics in dogs/minipigs were consistent with previously published pharmacokinetic data in humans.

  4. These results suggest that dogs and minipigs, in addition to monkeys, could be suitable models for humans during research into new drugs, especially when used in combination with simple PBPK models.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号