首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cycling exercise attenuates atrophy in hindlimb muscles and causes changes in spinal cord properties after spinal cord injury in rats. We hypothesized that exercising soleus muscle expresses genes that are potentially beneficial to the injured spinal cord. Rats underwent spinal cord injury at T10 and were exercised on a motor-driven bicycle. Soleus muscle and lumbar spinal cord tissue were used for messenger RNA (mRNA) analysis. Gene expression of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) was elevated 11- and 14-fold, respectively, in soleus muscle after one bout of exercise performed 5 days after spinal cord transection. Also, c-fos and heat shock protein-27 (HSP27) mRNA abundance were increased 11- and 7-fold, respectively. When exercise was started 2 days after the injury, the changes in gene expression were not observed. By contrast, at 2 but not at 5 days after transection, expression of the HSP27 gene was elevated sixfold in the lumbar spinal cord, independent of exercise. Electromyographic activity in soleus muscles was also decreased at 2 days, indicating that the spinal cord was less permissive to exercise at this early time. Long-term exercise for 4 weeks attenuated muscle atrophy equally well in rats started at 2 days or 5 days after injury. We conclude that BDNF and GDNF released from exercising muscle may be involved in exercise-induced plasticity of the spinal cord. Furthermore, the data suggest that the lumbar spinal cord undergoes time-dependent changes that temporarily impede the ability of the muscle to respond to exercise.  相似文献   

2.
Training chicks on a one-trial passive avoidance task results in transient up-regulation of the N -methyl- d -aspartate (NMDA) receptor in the left intermediate medial hyperstriatum ventrale (IMHV) of the forebrain 30 min post-training. Injection of the non-competitive NMDA receptor inhibitor, (+)-5-methyl-10, 11-dihydro-5H-dibenzo- (a.d)-cyclohepten 5, 10-imine maleate (MK-801), around the time of training renders chicks amnesic for the task. Training also results in enhanced expression of the immediate early gene (IEG) c- fos in the IMHV. To determine the relationship between NMDA receptor up-regulation and IEG induction during memory formation we have examined the expression of Fos, Jun and their related proteins 1 h following training in the presence/absence of the putative amnestic agent MK-801. Western blotting of IMHV samples revealed two protein bands with immunoreactivity to the Fos antibody at 47 and 54 kDa. Using an antibody to Jun, two immunoreactive bands were revealed at 39 and 54 kDa. All bands were enhanced in the left IMHV following passive avoidance training. Post-training intraperitoneal injections of MK-801 (75 mM) produced amnesia in ∼50% of the birds when tested 1 h after training. Injection of MK-801 significantly attenuated expression of these proteins in birds rendered amnesic, but not in those that recalled the task. We conclude that NMDA receptor activation precedes immediate early gene expression in the memory formation cascade.  相似文献   

3.
Cation‐specific epithelial receptors on the tongue have been well demonstrated. However, active regions along the nucleus of the solitary tract (NST) for cations Na+, K+, NH4+ are still unclear, even though the best responses of NST neurons to taste stimuli vary depending on the cell. In the present study, the spatial distribution patterns of cation‐specific active regions in the NST are investigated. The tongues of urethane‐anesthetized Sprague‐Dawley rats (n = 25) were stimulated with artificial saliva (control), 0.5 M NaCl, 1.0 M NaCl, 0.5 M KCl, and 0.3 M NH4Cl. Then, the three‐dimensional positions of c‐Fos‐like‐immunoreactive (cFLI) cells in the NST were generated. The spatial distributions of cFLI cells in the NST were compared among five taste stimulations. cFLI cells were observed throughout the NST, irrespective of the stimulus; however, the intermediate‐medial central regions of the NST had higher numbers of cFLI cells than the other regions in all taste stimulations. Analysis of images revealed that the activated regions in the NST differed significantly depending on the cations. The intermediate‐dorsal‐central region and the caudal‐ventral region were activated by a 0.5 M concentration of sodium, the rostral‐ventral region and the intermediate‐dorsal/ventral region were activated by a 1.0 M concentration of sodium, the intermediate‐dorsal/ventral region was activated by potassium ions, and the rostral‐ventral region and the intermediate‐ventral central region were activated by ammonium ions. These results suggest that the responses of NST cells to cation salt ions are regulated differentially. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
This study evaluated the ‘evoked’ expression of Krox-24 protein in the lumbar spinal cord after peripheral carrageenan-induced inflammation and its modification by preadministration of indomethacin, a non-steroidal anti-inflammatory drug, in freely moving rats. Three h after intraplantar carrageenan (6 mg/150 μl saline) a maximal ‘evoked’ Krox-24 expression was observed in L2–L6 segments of the dorsal horn ipsilateral to carrageenan inflammation. A maximal number of ‘evoked’ Krox-24 neurons was observed in L4–L5 segments, predominantly in the superficial laminae (I–II) and to a lesser extent in the medial part of neck (laminae V–VI) of the dorsal horn. Such an increase was not observed after an intraplantar injection of control vehicle saline. Increasing doses of carrageenan (1,3 and 6 mg) induced a dose-dependent increase (r2 = 0.617, P < 0.0001) in the number of ‘evoked’ Krox-24 neurons observed in the superficial dorsal horn 3 h after carrageenan. Systemic preadministration of indomethacin (1, 2.5 and 5 mg/kg) dose-dependently reduced (r2 = 0.508, P < 0.0001) the total number of carrageenan (6 mg at 3 h)-‘evoked’ Krox-24 neurons (29 ± 5, 45 ± 4 and 57 ± 2% reduction as compared with control, respectively). Systemic indomethacin dose-dependently reduced the inflamed paw and ankle diameter (16 ± 8, 34 ± 12, 54 ± 6% and 48 ± 14, 75 ± 16, 90 ± 7% reduction as compared with the control carrageenan inflammation, respectively). There was a positive correlation between the effect of systemic indomethacin on both ‘evoked’ Krox-24 expression in superficial laminae and the inflammatory signs (r2 = 0.25, P < 0.01 for the paw diameter; r2 = 0.22, P < 0.05 for the ankle diameter). In addition, the total number of ‘evoked’ Krox-24 neurons was significantly reduced (43 ± 5% reduction as compared with control) by an oral pretreatment of indomethacin (10 + 10 mg/kg). Oral indomethacin totally blocked the ankle diameter and reduced the paw diameter (100 ± 14 and 30 ± 6% reduction of the control carrageenan inflammation, respectively).  相似文献   

5.
Fenfluramine (FE) is a halogenated amphetamine derivative used in the treatment of obesity and thought to induce serotonin (5-HT) release from nerve terminals and to reduce re-uptake. However, other pathways may also be involved. In this work, the effects of FE on the major striatal afferent systems, and the possible interactions of these systems in FE-induced striatal expression of Fos, were studied by lesion of the serotonergic and/or dopaminergic system and administration of NMDA glutamate (MK-801) or D1 dopamine (SCH-23390) receptor antagonists. Both the D1 and NMDA receptor antagonists suppressed Fos expression in response to FE almost entirely. FE-induced Fos expression was also dramatically reduced 24 h after 6-hydroxydopamine (6-OHDA) lesion of the dopaminergic system. However, the reduction was not so marked after chronic 6-OHDA lesion, probably due to compensatory changes. Chronic (5,7-dihydroxytryptamine injection, 4 weeks before) or acute (p-chlorophenylalanine injection) lesion of the serotonergic system led to a marked reduction in Fos expression in response to FE (decrease of about 50%). After simultaneous chronic lesion of both serotonergic and dopaminergic systems, a considerable number of Fos-positive nuclei were still observed (decrease of about 70% in the dorsal and dorsomedial regions). The FE-induced expression of Fos was almost totally suppressed (decrease of about 95% in the dorsal and dorsomedial regions) after simultaneous acute lesion. Our results indicate that FE-induced striatal expression of Fos is due in large measure to DA release and dopaminergic stimulation of D1 receptors. However, concurrent stimulation of NMDA glutamate receptors also appears to be essential, and 5-HT release (although not indispensable) doubles striatal Fos expression. Synapse 28:71–82, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
The basal expression of the protein products of the inducible immediate early genes (IEGs), Fos, Jun, and Krox 24, was investigated in rat hippocampus using immunocytochemical visualization methods with antisera specific for Fos only, Fos and the Fos-related antigens (FRAs), the Jun family, and Krox 24 (previously described as TIS 8, egr-1, NGF-IA or zif 268). In the normal adult rat brain basal levels of Jun, Krox 24 and Fos-related antigens but not Fos were seen within the hippocampus. More specifically very high basal levels of Jun were seen in the dentate granule cells with high basal Krox 24 levels seen in the CA1-subiculum region of the rat hippocampus. Basal FRAs but not Fos-positive cells were seen at low levels in the dentate granule cells. The implications of these results to the functioning of IEG proteins in hippocampal neurons is discussed.  相似文献   

7.
Immediately following unilateral vestibular deafferentation (UVD), expression of the c-fos protein increased in both vestibular nucleus complexes (VNCs). By 10 h post-UVD, c-fos proteins were more evident in the bilateral medial vestibular nuclei (MVN), but their expression had decreased in the bilateral superior vestibular nuclei (SVN) and lateral vestibular nuclei (LVN) compared to immediately post-UVD. At 50 h post-UVD, c-fos protein expression was still evident in the bilateral VNC, but had decreased relative to immediately post-UVD. Immediately post-UVD, c-jun protein expression increased in the bilateral VNC, but was more noticeable at 10 h post-UVD. By 50 h post-UVD, c-jun protein expression had decreased markedly throughout the bilateral VNC. The krox-24 protein could not be seen anywhere in the immediate post-UVD condition. However, it was expressed at a low level in the bilateral MVN at 10 h post-UVD; by 50 h post-UVD, this expression had decreased. No evidence of apoptosis was observed following UVD.  相似文献   

8.
Transient global ischaemia induces the expression of immediate early genes. Using in situ hybridization, the expression of c- fos, fosB, fra-1, fra-2 , c- jun and junB was studied after 15 min of normothermic and hypothermia (33°C) transient forebrain ischaemia in the rat, induced by common carotid occlusion combined with systemic hypotension. Two phases of induction of the immediate early genes were observed. The early phase, peaking at 1–2 h of reperfusion, was dominated by marked expression in the dentate gyrus. The second phase, with maximal expression at 12–36 h of reperfusion, was observed particularly in the vulnerable CA1 and CA3 regions. Hypothermia increased the early induction of one of the genes studied, signifying a differential effect of hypothermia upon the signal transduction mechanisms activating these genes. The late induction occurred earlier after hypothermic than after normothermic ischaemia. The early expression of immediate early genes is due to the rapid activation of cytosolic response elements caused by the ischaemic insult. We suggest that the late induction is a stress signal for activation of repair processes, analogous to the cellular response seen after UV light-induced DMA damage. The relatively fast induction of the immediate early genes following hypothermic ischaemia may reflect a faster resumption of normal intracellular signalling, enhancing neuronal recovery.  相似文献   

9.
Previous studies demonstrated that the spiny rat Proechimys guyannensis exhibits resistance to experimental epilepsy. Neural activation was studied in the Proechimys hippocampus, using Fos induction, within 24 h after pilocarpine-induced seizures; neurodegenerative events were investigated in parallel, using FluoroJade B histochemistry. These parameters were selected since pilocarpine-induced limbic epilepsy is known to elicit immediate early gene expression and cell loss in the hippocampus of seizure-prone laboratory rodents. At variance with matched experiments in Wistar rats, pilocarpine injection resulted in Proechimys in seizure episodes that, as previously reported, did not develop into status epilepticus. At 3 h and 8 h after seizure onset, Fos immunoreactivity filled the dentate gyrus of both rat species, and was quite marked in pyramidal cells of the Proechimys Ammon's horn. At 24 h, Fos immunoreactivity dropped in the Wistar hippocampus and persisted in Proechimys. At 8 h and 24 h, FluoroJade-stained neurons were very few in the Proechimys hippocampus, whereas they were abundant in that of Wistar rats. Double immunohistochemistry for Fos and parvalbumin, the protein expressed by fast-spiking hippocampal interneurons, indicated that Fos was induced up to 24 h in the vast majority of parvalbumin-containing cells of the Proechimys hippocampus, and in a minority of these cells in the Wistar hippocampus. The findings demonstrate that early postepileptic neurodegeneration is very limited in the Proechimys hippocampus, in which sustained Fos induction persists for several hours. The findings also indicate that Fos induction and persistence may not correlate with seizure intensity and may not be associated with neuronal death. Finally, the data implicate differential mechanisms of interneuron activity in anti-convulsant and pro-convulsant phenomena.  相似文献   

10.
Fos expression induced by nociceptive mechanical distention of the proximal colon was examined in the lumbosacral spinal cord in freely moving rats equipped with a chronic balloon in the proximal colon. Fos protein in lumbosacral neurons was detected immunocytochemically, and colocalization with nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) activity was determined histochemically at 1 hour after distention. Distention of the proximal colon (10 ml, 30 seconds on/off for 10 minutes, about 90 mm Hg) increased the number of Fos-positive cells in the lumbar 6 (L6) and sacral 1 and 2 (S1, S2) segments, whereas no change was observed in the L1–L5 and S3 segments compared with the sham distended group or with animals that received no treatment. In L6–S2 segments, Fos-positive neurons were increased by two-fold in laminae I-VII (mainly in laminae I and outer II) and area X (surrounding the central canal) and by nine-fold in the sacral parasympathetic nucleus. Results of time course studies indicate that the maximal increase in Fos expression observed at 1 hour after distention returns to basal levels within 4 hours. In the S1 segment, distention of the proximal colon increased the percentage of NADPHd/Fos-positive neurons selectively in the parasympathetic nucleus by 40% compared with less than 4% in the sham distention group; the number and pattern of NADPHd-stained cells were not modified. These results indicate that noxious distention of the proximal colon for a short duration in awake rats selectively activates neurons in the L6-S2 segments of the dorsal horn mainly in laminae involved in nociceptive and autonomic processing. The marked activation of NADPHd-positive neurons in the sacral parasympathetic nucleus suggests a possible role of nitric oxide in the visceroautonomic reflexes induced by distention of the proximal colon. J. Comp. Neurol. 390:311–321, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
In order to elucidate the effect of aging on nociceptive neurons in the central nervous system, c-fos was used as a marker of excitability of neurons in the medullary dorsal horn (MDH) and the first spinal segment (C1) following noxious stimulation of the lateral face of young and aged rats. The distribution of c-fos-positive cells was dense in the superficial laminae and sparse in the deep laminae of the MDH and C1 in both young and aged animals following subcutaneous injection of formalin into the lateral face, whereas few c-fos-positive cells were labeled after saline injection. The distribution of c-fos-positive cells in the superficial laminae of the aged rats was found to be denser and more rostro-caudally expanded compared to that in the young rats. C-fos-positive cells were distributed more rostro-caudally in aged than in young rats. There was no difference between young and aged rats in the distribution of c-fos-positive cells in the deep laminae. Substance P (SP), 5-HT and calcitonin gene-related peptide-like immunoreactive (CGRP-LI) fibers and varicosities showed similar distribution density in the MDH and C1. Furthermore, many 5-HT-LI aberrant fibers and varicosities were observed in the MDH and C1 of the aged rats. The SP-LI and CGRP-LI cells in the trigeminal ganglion of aged rats were larger than those of young rats. These findings suggest that a deficit of the descending 5-HT inhibitory system produces the increment of c-fos-positive cells in the MDH and C1 of aged rats, resulting in the recruitment of a larger number of neurons in the superficial laminae of the MDH and C1 for conveying nociceptive sensory information to the central nervous system.  相似文献   

12.
The goal of this study was to examine the topological specificity of methamphetamine-induced activation of the immediate-early gene proteins, Fos and Zif268, in the nigrostriatal system in a unilateral 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease with or without intrastriatal grafts of fetal ventral mesencephalon. Methamphetamine (3 mg/kg, i.p.) induced Fos-like immunoreactivity (FLI) dominantly in the striatum and the globus pallidus (GP) on the intact side as well as in the substantia nigra pars reticulata (SNr) on the lesioned side in the 6-OHDA rats. Lower levels of methamphetamine-induced FLI in the striatum and GP on the lesioned side were restored by intrastriatal grafts which could completely suppress the methamphetamine-induced rotation. In the striatum, a similar tendency could be observed between Fos and Zif268 immunoreactivity following methamphetamine. However, sparse immunoreactivity of Zif268 could be detected in the GP and SNr on both sides in the 6-OHDA rats. Intrastriatal grafts had little influence on Zif268 expression in these two regions. The differential expression of Fos and Zif268 was observed among the three regions of the nigrostriatal system following methamphetamine in the 6-OHDA rats. This may suggest that Fos and Zif268 therefore possess gene-specific and region-specific functions in the basal ganglia nuclei.  相似文献   

13.
14.
15.
We present the first comparative investigation of the basal and transsynaptically induced expression of c-JUN, JUN B, JUN D, c-FOS, FOS B, and KROX-24 proteins in the spinal cord, using immunocytochemistry with specific antibodies. We demonstrate that electrical stimulation of the sciatic nerve at A delta/C-fiber (not A alpha/beta-fiber) intensity strongly induces the expression of these immediate-early gene-encoded proteins. Basal immunoreactivity was found for c-JUN in motoneurons, for JUN D in almost every cell of the gray matter, and for KROX-24 in the superficial dorsal horn. One hour after electrical stimulation of the sciatic nerve at A delta/C-fiber intensity, expression of all proteins except JUN D reached its maximum. Initially immunoreactivity was restricted to the ipsilateral dorsal horn, but after 4 hours appeared contralaterally. Expression of JUN D was increased only after 4 hours. Within the dorsal horn, the expression of c-JUN, JUN B, FOS B, and KROX-24 was mainly restricted to the superficial layers. Immunoreactivity decreased to basal levels between 8 and 16 hours. c-FOS and JUN D were expressed in both the superficial and deep dorsal horn; in the latter, c-FOS and JUN D persisted longer. Induced JUN D was present the longest and was still visible after 32 hours. In motoneurons of the ipsilateral ventral horn, c-JUN, JUN D, and c-FOS appeared after 8 hours. Surgical exposure of the sciatic nerve evoked a strikingly prolonged expression of all proteins compared to that following electrical stimulation of the sciatic nerve. Our results demonstrate that stimulation of nociceptive A delta- and C-fibers induces early and late expression of proteins encoded by immediate-early genes with a specific temporal and spatial distribution of the expression of each protein. Furthermore, the extent of protein expression reflects the intensity of noxious stimulation.  相似文献   

16.
BACKGROUND: Visceral hypersensitivity is the main cause of irritable bowel syndrome, c-Fos is a marker of visceral hypersensitivity in the central nervous system. Electroacupuncture can relieve chronic visceral hypersensitivity in rats, but the mechanism is still unknown. OBJECTIVE: To identify c-Fos expression in the spinal cord and cerebral cortex of rats with chronic visceral hypersensitivity, and to test the effects of electroacupuncture on pain sensitivity in rats with chronic visceral hypersensitivity. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at the Animal E:~perimental Center, Shanghai University of Traditional Chinese Medicine, from January to April, 2007. MATERIALS: A total of 24 neonatal, male, Sprague Dawley rats, aged five days old, were equally and randomly assigned into a normal group, a model group, and an electroacupuncture group. Rabbit anti-rat c-Fos antibody and Evision secondary antibody kits (Sigma, USA), diaminobenzidine kit (Dako, Denmark), and an LD202H electroacupuncture apparatus (Huawei, Beijing, China) were used in this study. METHODS: Neonatal rats from the model and electroacupuncture groups were used to establish rat models of chronic visceral hypersensitivity by the saccule stimulation method. After model establishment, 0.25 mm diameter electric needles were inserted into Tianshu (ST 25) and Shangjuxu (ST37) at a depth of approximately 0.5 cm, with an square wave (alternating current frequency at 100/20 Hz, amplitude ranged 0.2-0.6 ms, intensity at 1 mA) once for 20 minutes, once a day, for seven days. Rats in the normal and model groups were not treated. MAIN OUTCOME MEASURES: Following 7 days of treatment, c-Fos expression in the spinal cord and cerebral cortex was detected by immunohistochemistry. After the first electroacupuncture treatment, abdominal withdrawal reflex scores were investigated to evaluate the pain threshold for chronic visceral hypersensitivity in rats. RESULTS: Visceral hypersensitivity increased c-Fos staining (P 〈 0.05), and electroacupuncture significantly decreased the number of these cells to near normal levels (P 〉 0.05). Abdominal withdrawal reflex scores were significantly lower in the electroacupuncture and normal groups than in the model group (P 〈 0.05) and were similar between the electroacupuncture and normal groups (P 〉 0.05). CONCLUSION: Electroacupuncture decreases c-Fos expression in the spinal cord and cerebral cortex and increases pain threshold in a chronic visceral hypersensitivity model in rats.  相似文献   

17.
After a spatial behavioral experience, hippocampal CA1 pyramidal cells express the activity-regulated, immediate early gene Arc in an environment-specific manner, and in similar proportions ( 40%) to cells exhibiting electrophysiologically recorded place fields under similar conditions. Theoretical accounts of the function of the fascia dentata suggest that it plays a role in pattern separation during encoding. The hypothesis that the dentate gyrus (DG) uses a sparse, and thus more orthogonal, coding scheme has been supported by the observation that, while granule cells do exhibit place fields, most are silent in a given environment. To quantify the degree of sparsity of DG coding and its corresponding ability to generate distinct environmental representations, behaviorally induced Arc expression was assessed using in situ hybridization coupled with confocal microscopy. The proportion of Arc(+) cells in the "upper blade" of the fascia dentata (i.e., the portion that abuts CA1) increased in an environment-specific fashion, approximately 4-fold above cage-control activity, after behavioral exploration. Surprisingly, cells in the lower blade of the fascia dentata, which are capable of expressing Arc following electrical stimulation, exhibited virtually no behaviorally-induced Arc expression. This difference was confirmed using "line scan" analyses, which also revealed no patterns or gradients of activity along the upper blade of the DG. The expression of Arc in the upper blade was quantitatively similar after exploring familiar or novel environments. When animals explored two different environments, separated by 20 min, a new group of cells responded to the second environment, whereas two separated experiences in the same environment did not activate a new set of granular cells. Thus, granule cells generate distinct codes for different environments. These findings suggest differential contribution of upper and lower blade neurons to plastic networks and confirm the hypothesis that the DG uses sparse coding that may facilitate orthogonalization of information.  相似文献   

18.
The annexins are a family of Ca2−-dependent phospholipid-binding proteins. In the present study, the spatial expression patterns of annexins I-VI were evaluated in the rat dorsal root ganglia (DRG) and spinal cord (SC) by using indirect immunofluorescence. Annexin I is expressed in small sensory neurons of the DRG, by most neurons of the SC, and by ependymal cells lining the central canal. Annexin II is expressed by most sensory neurons of the DRG but is primarily expressed in the SC by glial cells. Annexin III is expressed by most sensory neurons, regardless of size, by endothelial cells lining the blood vessels, and by the perineurium. In the SC, annexin III is primarily expressed by astrocytes. In the DRG and the SC, annexin IV is primarily expressed by glial cells and at lower levels by neurons. In the DRG, annexin V is expressed in relatively high concentrations in small sensory neurons in contrast to the SC, where it is expressed mainly by ependymal cells and by small-diameter axons located in the superficial laminae of the dorsal horn areas. Annexin VI is differentially expressed by sensory neurons of the DRG, being more concentrated in small neurons. In the SC, annexin VI has the most striking distribution. It is concentrated subjacent to the plasma membrane of motor neurons and their processes. The differential localization pattern of annexins in cells of the SC and DRG could reflect their individual biological roles in Ca2−-signal transduction within the central nervous system. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Narp is an immediate early gene product that acts extracellularly to cluster AMPA receptors at excitatory synapses. The present study tested the hypothesis that drugs of abuse alter Narp expression and thereby influence AMPA receptor transmission in addiction-related circuits. Immunohistochemical studies demonstrated the existence of Narp-positive cells in hippocampus, prefrontal cortex (PFC) and nucleus accumbens (NAc), with lower levels of staining in the ventral tegmental area (VTA). To study the effects of psychomotor stimulants, Narp levels were quantified by Western blotting and normalized to actin. There were no differences in Narp levels in any brain region between rats treated with repeated saline injections, a single amphetamine injection (5 mg/kg), repeated amphetamine injections (5 mg/kg x 5 days), or repeated cocaine injections (20 mg/kg twice daily x 7 days). We also examined the possible role of Narp in individual differences in responding to a novel environment, a predictor of behavioural responses to psychomotor stimulant drugs including the propensity to acquire drug self-administration. Narp levels in the PFC, but not other regions, were significantly correlated with locomotor activity in a novel environment. These findings suggest that differential Narp expression in the PFC may be involved in determining individual vulnerability to drugs of abuse, perhaps by influencing the activity of its excitatory projections.  相似文献   

20.
Spinal cord injury (SCI) is a devastating neurologic injury with functional deficits for which the only currently recommended pharmacotherapy is high-dose methylprednisolone, which has limited efficacy. Estrogen is a multi-active steroid that has shown antiinflammatory and antioxidant effects, and estrogen may modulate intracellular Ca(2+) and attenuate apoptosis. For this study, male rats were divided into three groups. Sham group animals received a laminectomy at T12. Injured rats received both laminectomy and 40 g x cm force SCI. Estrogen-group rats received 4 mg/kg 17beta-estradiol (estrogen) at 15 min and 24 hr post-injury, and vehicle-group rats received equal volumes of dimethyl sulfoxide (vehicle). Animals were sacrificed at 48 hr post-injury, and 1-cm-long segments of the lesion, rostral penumbra, and caudal penumbra were excised. Inflammation was assessed by examining tissue edema, infiltration of macrophages/microglia, and levels of cytosolic and nuclear NFkappaB and inhibitor of kappa B (IkappaBalpha). Myelin integrity was examined using Luxol fast blue staining. When compared to sham, vehicle-treated animals revealed increased tissue edema, increased infiltration of inflammatory cells, decreased cytosolic levels of NFkappaB and IkappaBalpha, increased levels of nuclear NFkappaB, and increased myelin loss. Treatment of SCI rats with estrogen reduced edema and decreased inflammation and myelin loss in the lesion and penumbral areas, suggesting its potential as a therapeutic agent. Further work needs to be done, however, to elucidate the neuroprotective mechanism of estrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号