首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neural cell adhesion molecule (NCAM) is found on cells as several related polypeptides formed by alternative splicing of the single NCAM gene. The alternatively spliced 30-bp VASE exon in the fourth immunoglobulin-like domain is the structural variation nearest those portions of the polypeptide proposed to mediate cell-cell adhesion. To test the ability of distinct forms of the NCAM molecules to mediate cell adhesion, L cells were transfected with expression vectors encoding rat 140 kD NCAM ± the VASE exon. L cell lines which expressed these polypeptides were isolated and tested for self-aggregation in a low shear, rapid aggregation assay. Increased cellular aggregation of the transfectants was observed to be a function of the NCAM molecule expressed. These transfected cells showed segregation in a long term co-aggregation assay: cells expressing NCAM — VASE formed aggregates which tended to exclude cells expressing NCAM + VASE and vice versa. These results provide direct evidence that this small difference in NCAM structure is sufficient to allow segregation of cells. © 1994 Wiley-Liss, Inc.  相似文献   

2.
Interactions between the neural cell adhesion molecule (NCAM) with NCAM-expressing neurons (trans-interaction) stimulate outgrowth of neurites. The extent of NCAM-triggered neurite outgrowth depends on the presence of 10 amino acids derived from the variable alternatively spliced exon (VASE or π-exon) in the fourth immunoglobulin-like domain of NCAM (Ig4): NCAM with VASE reduces and without VASE enhances neurite outgrowth in cis- or trans-interaction. We have investigated the role of VASE in neurite outgrowth by characterizing the receptors at the cell surface of cultured cerebellar neurons. Results from experiments with L1 and NCAM antibodies and with cerebellar neurons derived from wild-type or NCAM-deficient mice show that substrate-coated Ig4 with VASE (Ig4+) or without VASE (Ig4−) stimulates neurite outgrowth by a trans-interaction with L1 and that Ig4− promotes neurite outgrowth more strongly than Ig4+ by a transinteraction with NCAM. J. Neurosci. Res. 50:62–68, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
The neural cell adhesion molecule (NCAM) is one of the best-characterized cell adhesion molecules of the immunoglobulin superfamily. In the nervous system, NCAM is involved in cell migration, axon fasciculation and in neurite outgrowth. Neurite outgrowth is mediated by homophilic NCAM-NCAM interactions. Alternative splicing generates three major isoforms of NCAM differing in their intracellular portion. Two of them, NCAM 180 and NCAM 140, are transmembrane proteins with large intracellular domains. The present study is concerned with novel details of the intracellular domains of NCAM 140 and NCAM 180. We expressed these NCAM isoforms consisting only of the transmembrane and intracellular domains (without extracellular domains) in PC12 cells and elaborated their function in neurite outgrowth assays. Our data demonstrate that membrane-associated NCAM 180 interferes with neurite outgrowth, whereas membrane-associated NCAM 140 promotes neurite outgrowth.  相似文献   

4.
During the initial assembly of the olfactory pathway, the behavior of olfactory axons changes as they grow from the olfactory epithelium toward the telencephalic vesicle. The axons exit the epithelium singly or in small fascicles, and their growth cones are simple and bullet-shaped. Outside the epithelium, they make a sharp dorsal turn and fasciculate into a single nerve; the growth cones remain simple. Upon entering the ventromedial telencephalon, the axons defasciculate, branch extensively, and end in complex, lamellate growth cones which extend toward the ventrolateral aspect of the telencephalic vesicle. The distribution of laminin, collagen-IV, and fibronectin varies in register with these changes in olfactory axon and growth cone behavior. Each of these extracellular matrix molecules influences olfactory neurite outgrowth and growth cone morphology in vitro consistent with its distribution in vivo. The distribution of E-cadherin, L1, neural cell adhesion molecule (NCAM) and the polysialated form of NCAM also varies in register with changes in olfactory axon behavior. In vitro, L1 modulates embryonic olfactory neurite outgrowth and growth cone morphology consistent with its distribution in vivo. Thus, olfactory axon trajectory, fasciculation, and growth cone morphology change within distinct adhesive environments in the nascent olfactory pathway, and some of the molecules that characterize these environments have differential effects upon olfactory neurite growth and growth cone morphology. Consequently, the patterned expression and activity of extracellular matrix and cell surface adhesion molecules may contribute to the initial assembly of the olfactory pathway. © 1996 Wiley-Liss, Inc.  相似文献   

5.
The neural cell adhesion molecule (NCAM) plays an important role in synaptic plasticity in embryonic and adult brain. Recently, it has been demonstrated that NCAM is capable of binding and hydrolyzing extracellular ATP. The purpose of the present study was to evaluate the role of extracellular ATP in NCAM-mediated cellular adhesion and neurite outgrowth. We here show that extracellularly added adenosine triphosphate (ATP) and its structural analogues, adenosine-5'-O-(3-thiothiophosphate), beta, gamma-methylenadenosine-5'-triphosphate, beta, gamma-imidoadenosine-5-triphosphate, and UTP, in varying degrees inhibited aggregation of hippocampal neurons. Rat glial BT4Cn cells are unable to aggregate when grown on agar but acquire this capacity when transfected with NCAM. However, addition of extracellular ATP to NCAM-transfected BT4Cn cells inhibited aggregation. Furthermore, neurite outgrowth from hippocampal neurons in cultures allowing NCAM-homophilic interactions was inhibited by addition of extracellular nucleotides. These findings indicate that NCAM-mediated adhesion may be modulated by extracellular ATP. Moreover, extracellularly added ATP stimulated neurite outgrowth from hippocampal neurons under conditions non-permissive for NCAM-homophilic interactions, and neurite outgrowth stimulated by extracellular ATP could be inhibited by a synthetic peptide corresponding to the so-called cell adhesion molecule homology domain (CHD) of the fibroblast growth factor receptor (FGFR) and by FGFR antibodies binding to this domain. Antibodies against the fibronectin type-III homology modules of NCAM, in which a putative site for ATP binding and hydrolysis is located, also abolished the neurite outgrowth-promoting effect of ATP. The non-hydrolyzable analogues of ATP all strongly inhibited neurite outgrowth. Our results indicate that extracellular ATP may be involved in synaptic plasticity through a modulation of NCAM-mediated adhesion and neurite outgrowth.  相似文献   

6.
The neural cell adhesion molecule (NCAM) is a modulator of neurite outgrowth in vitro and in vivo. To see if single or tandem extracellular NCAM domains can influence neurite outgrowth, motoneurons from embryonic rat spinal cord were cultured on several NCAM fusion protein substrata. Motoneurons growing on either of two fusion proteins comprising the combined two fibronectin type III homology domains of NCAM with or without a six-amino-acid-long, proline-rich insert (F3I,II+ and F3I,II, respectively) usually developed three or more neurites per cell. Motoneurons grown on NCAM-immunoglobulin domain I (IgI), by contrast, developed many unipolar and bipolar cells, a situation also seen when motoneurons were cultured on control substrata. The neuritic trees of motoneurons grown on F3I,II and F3I,II+ appeared broader and rounder than motoneurons cultured on either control or IgI substrata, and the spreading indices of motoneurons grown on F3I,II and F3I,II+ were significantly lower than when the other substrata were used. Neither of the NCAM-F3 fusion proteins stimulated the outgrowth of single neurites. By contrast, IgI substratum was able to stimulate neurite outgrowth over control substrata. Both NCAM-F3 substrata induced branches in axons and dendrites, whereas IgI substratum did not affect neurite branching significantly. These data indicated that neurite outgrowth and neurite branching on the chosen substrata were not closely linked to each other. Furthermore, the branching characteristics of motoneuron neurites potentially depend on their differentiation states and, possibly, on the conformation of the two NCAM-F3 domains. J. Neurosci. Res. 48:112–121, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
The ability of cells to migrate through tissues depends on their production of a variety of proteases, and the same may be true of growth cones. Urokinase (plasminogen activator) regulates much of the extracellular proteolytic activity, by activating other proteases and as a result of its own proteolytic activity. In order to evaluate the potential role of urokinase as a promoter of axon growth, we have used a plasmid expressing urokinase under a cytomegalovirus promoter to transfect an astrocyte cell line, Neu7, which we have previously shown to provide a poor environment for axon regeneration. Five transfected lines all showed greatly increased ability to promote axon regeneration in both monolayer and three-dimensional cultures. The critical change in the transfected cells was largely within the extracellular matrix, since extracellular matrix laid down by urokinase-secreting cells was more permissive to axon growth than matrix from the parent Neu7 line. The effect was due to urokinase since treatment of the transfected cells with the urokinase inhibitors B623 and B428 rendered both the cells and their matrix much less permissive to axon growth, but did not require plasminogen, since it was blocked neither by serum-free medium nor by plasmin inhibitors. GLIA 23:24–34, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

8.
The central nervous system and peripheral nervous system (CNS/PNS) contain factors that inhibit axon regeneration, including myelin-associated glycoprotein (MAG), the Nogo protein, and chondroitin sulfate proteoglycan (CSPG). They also contain factors that promote axon regeneration, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Axon regeneration into and within the CNS fails because the balance of factor favors inhibiting regeneration, while in the PNS, the balance of factor favors promoting regeneration. The balance of influences in the CNS can be shifted toward promoting axon regeneration by eliminating the regeneration-inhibiting factors, overwhelming them with regeneration-promoting factors, or making axon growth cones non-receptive to regeneration-inhibiting factors. The present in vitro experiments, using adult rat dorsal root ganglion (DRG) neurons, were designed to determine whether the regeneration-inhibiting influences of Schwann cell CSPG are mediated via Schwann cell membrane contact with the DRG neuron cell body or their growth cones. The average longest neurite of neurons in cell body contact with Schwann cells was 7.4-fold shorter than those of neurons without Schwann cell-neuron cell body contact (naked neurons), and the neurites showed substrate specificity, growing only on the Schwann cell membranes and not extending onto the laminin substrate. The neurites of naked neurons showed no substrate specificity and extended over the laminin substrate, as well as onto and off the Schwann cells. After digesting the Schwann cell CSPG with the enzyme C-ABC, neurons in cell body contact with Schwann cells extended neurites the same length as those of naked neurons, and their neurites showed no substrate selectivity. Further, the neurites of naked neurons were not longer than those of naked neurons not exposed to C-ABC. These data indicate that the extent of neurite outgrowth from adult rat DRG neurons and substrate specificity of their growth cone is mediated via contact between the Schwann cell membrane-bound CSPG and the DRG neuron cell body and not with their growth cones. Further, there was no apparent influence of diffusible or substrate-bound CSPG on neurite outgrowth. These results show that eliminating the CSPG of Schwann cells in contact with the cell body of DRG neurons eliminates the sensitivity of their growth cones to the CSPG-induced outgrowth inhibition. This may in turn allow the axons of these neurons to regenerate through the dorsal roots and into the spinal cord.  相似文献   

9.
The present study examined the cellular mechanisms underlying the generation of neuroarchitecture. Identified Helisoma neurons in isolated cell culture normally require factors present in brain-conditioned medium (CM) in order to display the different components of neurite outgrowth (sprouting, elongation, branching, and growth cone motility), which ultimately determine their overall architecture. We report here that cell calcium and cell-substrate interactions can play quite specific roles in the regulation of these different components of neuronal outgrowth. CM-induced neurite outgrowth was inhibited by calcium ionophore A23187. In the absence of CM the calcium channel blocker La3+ (10 microM) reduced intracellular calcium levels and induced neurite sprouting and elongation; growth cone motility and branching were greatly reduced in the La3+-induced neurites. Neurons plated into an environment containing La3+ and a fibronectin substrate exhibited all of the components of neuronal outgrowth normally seen in response to CM. Fibronectin alone had little outgrowth-promoting activity. Neurite elongation rates and branching were increased by exposure to La3+ in neurons on either a CM or fibronectin substrate. The neurons growing on CM or fibronectin whose outgrowth was accelerated by La3+ elaborated neuritic arbors that differed from those of neurons grown in response to CM; differences were seen in neurite length, area of outgrowth, branching frequency, and varicosity numbers. Taken together, these results indicate that 1) calcium and the growth substrate can exert specific effects on neurite sprouting, elongation, growth cone motility, and branching; 2) appropriate levels of activation of these two systems can elicit neurite outgrowth that closely resembles that induced by endogenous growth factors; 3) both the differential expression of the separate components of outgrowth and the kinetics of outgrowth determine a neuron's morphology.  相似文献   

10.
As a means of defining functionally important regions of the L1 neuronal cell adhesion molecule, neurite outgrowth from cerebellar neurons was compared on monolayers of L1-negative B28 glioma cells, B28 cells transfected with wild-type human L1, and B28 cells transfected with variant forms of L1. Neurite outgrowth on L1-positive B28 cells is greatly enhanced over that seen on parental B28 cells. Neurite outgrowth on B28 cells expressing L1 variants that lack either the first or the fifth fibronectin type III repeat is comparable to that seen on monolayers expressing wild-type L1. In contrast, B28 cells expressing L1 without the third fibronectin type III repeat do not support neurite outgrowth above the background level seen on parental B28 cells. This suggests that the third fibronectin type III repeat plays a key role in the ability of L1 to promote neurite extension. This is consistent with reports that the third fibronectin type III repeat mediates L1 homomultimerization and integrin binding and that plasmin cleavage within this domain interferes with L1 function by abolishing these molecular interactions.  相似文献   

11.
12.
Following spinal cord injury, a variety of inhibitory molecules hinder the success of axon regeneration. The motile tip of the axon, the growth cone, shares a similar cytoskeletal array as a migrating cell, and in general the cytoskeleton is regulated by a conserved set of signaling pathways that act downstream of guidance cue and growth factor receptors. We exploit these similarities by using migrating cells as a model system to screen for extracts that promote axon outgrowth. The screen is a high-throughput wound-healing assay performed by a 96-pin tool Biogrid robot where positive candidates are identified as extracts that stimulate complete wound healing. Testing of positive candidates on chick DRG explants has lead to the identification of extracts that promote neurite outgrowth on permissive and inhibitory substrates. Extracts can be fractionated to purity, identifying novel compounds that promote neurite outgrowth on inhibitory substrates.  相似文献   

13.
Cell migration and axon growth during neural development rely upon cell-cell and cell-matrix interactions mediated by surface glycoproteins. The surface glycoprotein recognized on leech neurons by monoclonal antibody Lan3-2 has previously been implicated in the process of axon fasciculation during regeneration in adults. In adult leeches, Lan3-2 binds to a carbohydrate epitope of a 130 kD protein. The present study demonstrates that in embryos the antibody binds to the same carbohydrate epitope of glycoproteins with molecular weights of 130 kD and higher. As a first step in evaluating a possible role of the Lan3-2 glycoprotein or the cells that express it during neural development, we determined its distribution in the developing nervous system of the leech Hirudo medicinalis. In embryos, Lan3-2 epitope is expressed on fasciculated sensory afferents and it appears on the cell bodies before neurite outgrowth. The sensory fibers appear rostrally by embryonic day 10, less than halfway through development. Earlier, by 7 days of development at 20 degrees C, Lan3-2 binds to previously undocumented cell types: (1) cells appearing along the embryonic midline and (2) a cluster of cells located at the rostral edge of the germinal plate. These cells only transiently express this antigen and are present at critical left-right and rostrocaudal boundaries during a period of cell proliferation, movement, and migration that produces the nervous system. Thus the Lan3-2 surface glycoprotein or the cells expressing it are candidates for involvement in axon fasciculation, cell migration, and directed axonal growth.  相似文献   

14.
The brain acid-soluble protein BASP1 (CAP-23, NAP-22) belongs to the family of growth-associated proteins, which also includes GAP-43, a protein recently shown to regulate neural cell adhesion molecule (NCAM)-mediated neurite outgrowth. Here, the effects of BASP1 overexpression were investigated in PC12E2 cells and primary hippocampal neurons. BASP1 overexpression stimulated neurite outgrowth in both cell types. The effects of BASP1 and trans-homophilic NCAM interactions were additive, and BASP1-induced neurite outgrowth was not inhibited by ectopic expression of cytoplasmic NCAM domains. Furthermore, inhibition of signaling via the fibroblast growth factor receptor, Src-family nonreceptor tyrosine kinases, protein kinase C, or GSK3beta, and expression of constructs of the cytoskeletal proteins spectrin and tau inhibited NCAM- but not BASP1-induced neurite outgrowth. Expression of BASP1 mutated at the serine-5 phosphorylation site stimulated neurite outgrowth to a degree comparable to that observed in response to overexpression of wild-type BASP1, whereas expression of BASP1 mutated at the myristoylation site at glycine-1 completely abrogated the stimulatory effects of the protein on neurite outgrowth. Finally, coexpression experiments with dominant negative and wild-type versions of GAP-43 and BASP1 demonstrated that the two proteins could substitute for each other with respect to induction of NCAM-independent neurite outgrowth, whereas BASP1 was unable to replace the stimulatory effect of GAP-43 on NCAM-mediated neurite outgrowth. These observations demonstrate that BASP1 and GAP-43 have overlapping, but not identical, functions in relation to neurite outgrowth and indicate that the main function of BASP1 is to regulate the organization and morphology of the plasma membrane.  相似文献   

15.
Neural cell adhesion molecule, NCAM, is an important regulator of neuronal process outgrowth and synaptic plasticity. Transgenic mice that overexpress the soluble NCAM extracellular domain (NCAM-EC) have reduced GABAergic inhibitory and excitatory synapses, and altered behavioral phenotypes. Here, we examined the role of dysregulated NCAM shedding, modeled by overexpression of NCAM-EC, on development of GABAergic basket interneurons in the prefrontal cortex. NCAM-EC overexpression disrupted arborization of basket cells during the major period of axon/dendrite growth, resulting in decreased numbers of GAD65- and synaptophysin-positive perisomatic synapses. NCAM-EC transgenic protein interfered with interneuron branching during early postnatal stages when endogenous polysialylated (PSA) NCAM was converted to non-PSA isoforms. In cortical neuron cultures, soluble NCAM-EC acted as a dominant inhibitor of NCAM-dependent neurite branching and outgrowth. These findings suggested that excess soluble NCAM-EC reduces perisomatic innervation of cortical neurons by perturbing axonal/dendritic branching during cortical development.  相似文献   

16.
Activation of fibroblast growth factor (FGF) receptors (FGFRs) both by FGFs and by the neural cell adhesion molecule (NCAM) is crucial in the development and function of the nervous system. We found that FGFR substrate 2α (FRS2α), Src homologous and collagen A (ShcA), and phospholipase‐Cγ (PLCγ) were all required for neurite outgrowth from cerebellar granule neurons (CGNs) induced by FGF1 and FGL (an NCAM‐derived peptide agonist of FGFR1). Like FGF1, FGL induced tyrosine phosphorylation of FGFR1, FRS2α, ShcA, and PLCγ in a time‐ and dose‐dependent manner. However, the activation of FRS2α by FGL was significantly lower than the activation by FGF1, indicating a differential signaling profile induced by NCAM compared with the cognate growth factor. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Passages: 1996     
The spatial and temporal expression patterns of several extracellular matrix molecules—laminin and fibronectin and cell surface molecules, neural cell adhesion molecule (NCAM), L1, tenascin, chondroitin sulfate proteoglycan, and peanut agglutinin (PNA) binding sites—were investigated during early olfactory nerve development. NCAM and L1 have similar patterns: They are expressed in the olfactory nerve and on the olfactory receptor neurons (ORNs) commencing with the earliest olfactory axon outgrowth (E12-E15). Their expression patterns suggest that both NCAM and L1 are associated with extension and fasciculation of olfactory axons. A comparison of L1 and olfactory marker protein suggests that L1 is expressed predominantly on immature ORNs. Laminin has an unique punctate staining pattern in the developing olfactory pathway as early as E12. These laminin puncta might play a role in olfactory neurite outgrowth and guidance. At E14, when pioneer olfactory axons enter the brain, the laminin-positive meninges on the surface of the olfactory bulb primordium break down but remain intact in the rest of the telencephalon. This suggests a functional interaction between the olfactory axons and the glial-pial barrier. Fibronectin staining is diffuse throughout the cranial mesenchyme but is absent from the olfactory nerve pathway. No specific patterns of tenascin or chondroitin sulfate, were observed during early olfactory development. PNA binding sites were associated with olfactory axon fasciculation. The expression of several extracellular matrix molecules and cell surface molecules is spatially and temporally regulated in the developing olfactory system. These molecules, thus, may play functional roles in olfactory axon outgrowth, fasciculation, and/or guidance. ©1996 Wiley-Liss, Inc.  相似文献   

18.
Cellular and extracellular inhibitors are thought to restrict axon growth after chronic spinal cord injury (SCI), confronting the axon with a combination of chronic astrocytosis and extracellular matrix-associated inhibitors that collectively constitute the chronic "scar." To examine whether the chronically injured environment is strongly inhibitory to axonal regeneration, we grafted permissive autologous bone marrow stromal cells (MSCs) into mid-cervical SCI sites of adult rats, 6 weeks post-injury without resection of the "chronic scar." Additional subjects received MSCs genetically modified to express neurotrophin-3 (NT-3), providing a further local stimulus to axon growth. Anatomical analysis 3 months post-injury revealed extensive astrocytosis surrounding the lesion site, together with dense deposition of the inhibitory extracellular matrix molecule NG2. Despite this inhibitory environment, axons penetrated the lesion site through the chronic scar. Robust axonal regeneration occurred into chronic lesion cavities expressing NT-3. Notably, chronically regenerating axons preferentially associated with Schwann cell surfaces expressing both inhibitory NG2 substrates and the permissive substrates L1 and NCAM in the lesion site. Collectively, these findings indicate that inhibitory factors deposited at sites of chronic SCI do not create impenetrable boundaries and that inhibition can be balanced by local and diffusible signals to generate robust axonal growth even without resecting chronic scar tissue.  相似文献   

19.
To investigate the possibility that the neurotrophin tyrosine kinase receptors are also recognition molecules by virtue of their immunoglobulin-like domains, the ability of TrkA and TrkB to influence neurite outgrowth was tested in vitro. Cell monolayers of fibroblasts transfected to express either the TrkA or TrkB receptor reduced neurite outgrowth of phaeochromocytoma PC12 cells by 50–60% when compared to mock transfected fibroblasts or fibroblasts transfected with the epidermal growth factor receptor. Neurite outgrowth from cerebellar neurons was inhibited by 30–40% on these substrates. When a recombinantly expressed fragment of TrkA comprising the two immunoglobulin-like domains was coated as a substrate in combination with poly-L-lysine and laminin, neurite outgrowth was inhibited in a dose-dependent manner. This inhibition of neurite outgrowth was not mediated via an interaction with laminin as there is no specific binding of the TrkA fragment to laminin. The adhesion of cell bodies to this substrate was not affected by the immunoglobulin-like domains. These observations suggest that the mammalian neurotrophin receptors not only influence neurite outgrowth by neurotrophin triggered activation of the receptor, but also by cell surface recognition processes conveyed by the immunoglobulin-like domains.  相似文献   

20.
Activation of the extracellular-signal regulated kinase (ERK) cascade may be involved in the promotion of neurite outgrowth by a variety of stimuli. For example, we have previously shown that laminin (LN) and N-cadherin activate ERK2 in chick retinal neurons, and that pharmacological inhibition of MAPK/ERK kinase (MEK), the major upstream ERK2 activator, severely impairs neurite growth induced by these proteins. We have therefore hypothesized that ERK activation through MEK is required for optimal induction of neurite growth by these proteins. Here we show that expression of mutant MEK in transfected retinal neurons alters neuronal responses to LN in a manner consistent with this hypothesis. Neurons expressing a constitutively active MEK construct extended longer neurites on LN than controls, while neurons transfected with a dominant negative construct extended shorter neurites. Further, experiments in which transfected neurons were replated onto polylysine substrates suggest that activation of MEK is sufficient for neurite promotion on a non-inducing substrate, and neurons replated onto LN confirm the pharmacological data that inhibition of MEK activation inhibits LN-induced neurite growth. We conclude that ERK activation plays a direct role in the promotion of neurite outgrowth from retinal neurons by LN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号