首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective To examine in vivo time-course changes in macromolecular composition of articular cartilage in two surgical models of osteoarthritis (goat: meniscal transection and cartilage incision; rabbit: medial meniscectomy).Design Collagen integrity and proteoglycan (PG) content were evaluated in both models by magnetization transfer (MT) and contrast-enhanced MRI, respectively. The MT rate k m for the exchange process between the bulk water and water bound to collagen was determined as a marker of the collagen network. Local changes in cartilage fixed charge density, i.e., where PGs are depleted, were derived from T1 relaxation maps as obtained after an infusion of Gd(DTPA)2−, a paramagnetic agent.Results In the goat model, the MT rate constant k m was significantly higher at 2 weeks post surgery, a possible sign of cartilage swelling, then decreased below baseline values, most likely indicative of disruption in the collagen framework. Meanwhile, post-Gd(DTPA)2− MRI acquisition indicated a significant and sustained loss of PGs. The rabbit model produced milder lesions. Although the difference was non-significant, k m steadily decreased in response to the surgical insult while kinetics of Gd(DTPA)2− uptake, after reaching a peak level at 6 weeks, were back to normal values after 12 weeks.Conclusion In the goat model, joint instability and cartilage damage was a permanent trigger for cartilage degeneration producing MRI changes. However, biomechanical stress due to partial medial meniscectomy in knees of mature rabbits produced only mild, focal lesions and PG depletion that was partially reversible. This proof-of-concept study identified MT and T1 parameters as useful surrogate markers in animal models of osteoarthritis.  相似文献   

2.
Magnetization exchange effects between the matrix macromolecules (e. g., collagen and proteoglycan) and water were examined in normal, deuterated, and proteoglycan-depleted articular cartilage. Relaxation results (T(2), T(1rho), and T(1)) suggested that a four-site exchange scheme provided an accurate model for articular cartilage relaxation and interspin group coupling details. Magnetization exchange within the collagen-bulk-water, proteoglycan-collagen, and collagen fibrillar water-collagen cartilage subsystems were quantified. Although collagen-bulk-water was the largest of the cartilage coupling subsystems ( approximately 90% signal) and is exploited in MRI, the rates of magnetization transfer (MT) within the latter subsystems were appreciably larger. Magnetization exchange rates for proteoglycan-collagen and collagen fibrillar water-collagen were 120 s(-1) and 4.4 s(-1), respectively. The observation of these latter two exchange subsystems suggested potential clinical MRI-MT applications in detecting molecular abnormalities associated with osteoarthritis.  相似文献   

3.
To study the structural anisotropy and the magic-angle effect in articular cartilage, T1, and T2 images were constructed at a series of orientations of cartilage specimens in the magnetic field by using NMR microscopy (μMRI). An isotropic T1, and a strong anisotropic T2 were observed across the cartilage tissue thickness. Three distinct regions in the microscopic MR images corresponded approximately to the superficial, transitional, and radial histological zones in the cartilage. The percentage decrease of T2 follows the pattern of the curve of (3cos2θ ? 1)2 at the radial zone, where the collagen fibrils are perpendicular to the articular surface. In contrast, little orientational dependence of T2 was observed at the transitional zone, where the collagen fibrils are more randomly oriented. The result suggests that the interactions between water molecules and proteoglycans have a directional nature, which is somehow influenced by collagen fibril orientation. Hence, T2 anisotropy could serve as a sensitive and noninvasive marker for molecular-level orientations in articular cartilage.  相似文献   

4.
Preliminary results from in vivo sodium MRI of human patellar articular cartilage are presented. Sodium images generated of an in vitro bovine patella clearly distinguish the region of proteoglycan depletion from the region of healthy cartilage. This provides the first evidence that sodium imaging may be used to detect changes due to osteoarthritis in vivo. The process of optimizing imaging time and signal-to-noise ratio, as well as potential implications in the detection of osteoar-thritic change, are discussed.  相似文献   

5.
In this study the exchange between 1H magnetization in "free" water (1Hf) and that in a pool with restricted motion (1Hr) was observed in tissues in vivo using NMR saturation transfer methods. Exchange between these two pools was demonstrated by a decrease in the steady-state magnetization and relaxation times of 1Hf with radiofrequency irradiation of 1Hr. The pseudo-first-order rate constant for the movement of magnetization from 1Hf to 1Hr was approximately 1 s-1 in kidney and approximately 3 s-1 in skeletal muscle in vivo. Proton NMR imaging demonstrated that this exchange was tissue specific and generated a novel form of NMR image contrast. The extent of exchange between 1Hf and 1Hr as well as the topological correlation of the exchange with relaxation weighted images suggests that this pathway is a major determinant of the observed relaxation properties of water 1H in vivo.  相似文献   

6.
Cartilage degeneration in osteoarthritis is initiated by a loss of proteoglycan. Intra-articular injection of papain causes a reversible loss of proteoglycan in rabbit knees. Rabbits were scanned with magnetic resonance imaging (MRI), using a 1.5T Signa superconducting magnet with 3 inch surface coil. Spin echo sequences were performed in the coronal and sagittal planes at 0, 24, 48, and 72 h after intra-articular injection of papain to obtain T1, proton density, and T2-weighted images. Cartilage proteoglycan content was measured biochemically and histochemically. Reduced articular cartilage thickness in the MR images of papain-treated knees corresponded to changes in cartilage proteoglycan content.  相似文献   

7.
Human articular cartilage from 16 cadaveric or amputated knees was studied using standard magnetic resonance imaging (MRI), on-resonance magnetization transfer contrast (MTC) and MTC-subtraction MRI. Results were compared with subsequent macroscopic and histopathological findings. MTC-subtraction and T2-weighted spin-echo images visualized cartilaginous surface defects with high sensitivity and specificity. MTC and T2-weighted spin-echo images revealed intra-cartilaginous signal loss without surface defects in 80% of the cases, corresponding to an increased collagen concentration. It is concluded that MTC is sensitive to early cartilage degeneration and MTC-subtraction can be helpful in detecting cartilage defects.  相似文献   

8.
1H transverse nuclear magnetic relaxation times (T2) and self-diffusion coefficients (SDCs) of water were measured in isolated proteoglycan aggregates from pig articular cartilage. The influence of varying osmotic pressure, as well as of different calcium concentrations, on the samples was investigated. Due to a structural transition of the proteoglycans that results from changed electrostatic interactions at higher calcium concentrations, an additional fraction of water protons is observable. These protons are characterized by a very long T2 value and low, restricted diffusion. Additionally, electron microscopic elemental analyses and XFA investigations were performed to estimate the amount of calcium taken up by the proteoglycans. A model for the calcium-mediated structural transition of the cartilage proteoglycans is proposed that explains the experimental results. The investigations suggest the ability of proteoglycans to act as a calcium-concentrating agent and suggest their important role in the calcification process of articular cartilage.  相似文献   

9.
Transection of the anterior cruciate ligament in the dog produces changes in the unstable joint typical of osteoarthritis, although full-thickness cartilage ulceration is rare. Information concerning the late fate of the cartilage after transection is meager. In the present study magnetic resonance imaging (MRI) was used to evaluate cartilage abnormalities 3 years after transection. Plain radiographs of the osteoarthritic and contralateral knees were obtained serially. MRI was performed 3 years after anterior cruciate ligament transection, at which time all three animals exhibited knee instability. Radiographs of the osteoarthritic knees showed osteophytes and subchondral sclerosis with progression between 2 and 3 years. On MRI, articular cartilage margins in the knee were indistinct, and the cartilage was thicker than that in the contralateral knee (maximum difference= 2.7 mm). This increase in thickness is consistent with biochemical data from dogs killed up to 64 weeks after creation of knee instability, which showed marked increases in cartilage bulk and in proteoglycan synthesis and concentration. The findings emphasize that increased matrix synthesis after anterior cruciate ligament transection leads to functional cartilage repair sustained even in the presence of persistent alteration of joint mechanics.  相似文献   

10.

Objective

Quantitative MR imaging techniques of degenerative cartilage have been reported as useful indicators of degenerative changes in cartilage extracellular matrix, which consists of proteoglycans, collagen, non-collagenous proteins, and water. Apparent diffusion coefficient (ADC) mapping of cartilage has been shown to correlate mainly with the water content of the cartilage. As the water content of the cartilage in turn correlates with its viscoelasticity, which directly affects the mechanical strength of articular cartilage, ADC can serve as a potentially useful indicator of the mechanical strength of cartilage. The aim of this study was to investigate the correlation between ADC and viscoelasticity as measured by indentation testing.

Materials and methods

Fresh porcine knee joints (n?=?20, age 6?months) were obtained from a local abattoir. ADC of porcine knee cartilage was measured using a 3-Tesla MRI. Indentation testing was performed on an electromechanical precision-controlled system, and viscosity coefficient and relaxation time were measured as additional indicators of the viscoelasticity of cartilage. The relationship between ADC and viscosity coefficient as well as that between ADC and relaxation time were assessed.

Results

ADC was correlated with relaxation time and viscosity coefficient (R2?=?0.75 and 0.69, respectively, p?Conclusions This study found a moderate correlation between ADC and viscoelasticity in the superficial articular cartilage. Both molecular diffusion and viscoelasticity were higher in weight bearing than non-weight-bearing articular cartilage areas.  相似文献   

11.
Abstract

Purpose: Little is known regarding radiation effects on adult articular (joint) cartilage, though joint damage has been reported following cancer treatment or occupational exposures. The aim of this study was to determine if radiation can reduce cartilage matrix production, induce cartilage degradation, or interfere with the anabolic effects of IGF-1.

Materials and methods: Isolated chondrocytes cultured in monolayers and whole explants harvested from ankles of human donors and knees of pigs were irradiated with 2 or 10 Gy γ-rays, with or without IGF-1 stimulation. Proteoglycan synthesis and IGF-1 signaling were examined at Day 1; cartilage degradation throughout the first 96 hours.

Results: Human and pig cartilage responded similarly to radiation. Cell viability was unchanged. Basal and IGF-1 stimulated proteoglycan synthesis was reduced following exposure, particularly following 10 Gy. Both doses decreased IGF-induced Akt activation and IGF-1 receptor phosphorylation. Matrix metalloproteinases (ADAMTS5, MMP-1, and MMP-13) and proteoglycans were released into media after 2 and 10 Gy.

Conclusions: Radiation induced an active degradation of cartilage, reduced proteoglycan synthesis, and impaired IGF-1 signaling in human and pig chondrocytes. Lowered Akt activation could account for decreased matrix synthesis. Radiation may cause a functional decline of cartilage health in joints after exposure, contributing to arthropathy.  相似文献   

12.
The magnetization transfer ratio of the lumbar discs was spatially quantified from age‐matched subjects and the nucleus pulposus magnetization transfer ratio was correlated with T2‐weighted Pfirrmann grades. A moderate and significant linear correlation between magnetization transfer ratio and Pfirrmann grades was observed, suggesting that nucleus pulposus collagen relative density increases with degeneration. High‐resolution axial magnetization transfer ratio maps revealed elevated magnetization transfer ratio in the nucleus pulposa of injured and heavily degenerated discs. In the injured disc, significant elevation in nucleus pulposa magnetization transfer ratio was not accompanied by significant decrease in disc height. This observation may suggest a possible increase in absolute collagen content, in addition to increased collagen relative density. In summary, magnetization transfer MRI of the disc may serve as a noninvasive diagnostic tool for disc degeneration, in addition to other MRI techniques specific to proteoglycan content. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
One of the first effects of degenerative osteoarthritis is the loss of proteoglycans from the matrix of articular cartilage. Using a model of osteoarthritic change where the cartilage has been enzymatically degraded with trypsin, the sodium NMR characteristics of the cartilage were determined as a function of changes in the proteoglycan content. The results demonstrate that the single quantum sodium signal decreases as the proteoglycan content of the cartilage matrix decreases. In addition, the relaxation characteristics of the sodium change such that the T1 is longer, the T2s is longer, and the T2f is shorter. Short echo-time, T1-weighted sodium images are presented which demonstrate that this information may be utilized to detect the loss of proteoglycans from articular cartilage.  相似文献   

14.
BACKGROUND: Chondral defects may lead to degradative changes in the surrounding cartilage, predisposing patients to developing osteoarthritis. PURPOSE: To quantify changes in the biomechanical and biochemical properties of the articular cartilage adjacent to chondral defects after experimental defect repair. STUDY DESIGN: Controlled laboratory study. METHODS: Specimens were harvested from tissue within (lesion), immediately adjacent to, and at a distance from (remote area) a full-thickness cartilage defect 8 months after cartilage repair with genetically modified chondrocytes expressing insulin-like growth factor-I or unmodified, control chondrocytes. Biomechanical properties, including instantaneous Young's and equilibrium aggregate moduli, were determined by confined compression testing. Biochemical properties, such as water and proteoglycan content, were also measured. RESULTS: The instantaneous Young's modulus, equilibrium modulus, and proteoglycan content increased, whereas water content decreased with increasing distance from the repaired lesion. The instantaneous Young's and equilibrium moduli of the adjacent articular cartilage were 80% and 50% that of remote area samples, respectively, whereas water content increased 0.9% and proteoglycan content was decreased by 35%. No significant changes in biomechanical and biochemical properties were found either in the lesion tissue or in adjacent cartilage with genetic modification of the chondrocytes. CONCLUSION: Articular cartilage adjacent to repaired chondral defects showed significant remodeling 8 months after chondral defect repair, regardless of whether genetically modified or unmodified cells were implanted. CLINICAL RELEVANCE: Changes in the biochemical and biomechanical properties of articular cartilage adjacent to repaired chondral defects may represent remodeling as part of an adaptive process or degeneration secondary to an altered distribution of joint forces. Quantification of these changes could provide important parameters for assessing progress after operative chondral defect repair.  相似文献   

15.
Purpose. To determine the ability of MRI to detect the presence of crystals of calcium pyrophosphate in the articular cartilage of the knee. Design and patients. The MR studies of 12 knees (11 cases) were reviewed retrospectively and correlated with radiographs (12 cases) and the findings at arthroscopy (2 cases) and surgery (1 case). A total of 72 articular surfaces were evaluated. Radiographic, surgical or arthroscopic demonstration of chondrocalcinosis was used as the gold standard. Additionally, two fragments of the knee of a patient who underwent total knee replacement and demonstrated extensive chondrocalcinosis were studied with radiography and MRI using spin-echo T1-, T2- and proton-density-weighted images as well as two- and three-dimensional fat saturation (2D and 3D Fat Sat) gradient recalled echo (GRE) and STIR sequences. Results. MRI revealed multiple hypointense foci within the articular cartilage in 34 articular surfaces, better shown on 2D and 3D GRE sequences. Radiographs showed 12 articular surfaces with chondrocalcinosis. In three cases with arthroscopic or surgical correlation, MRI demonstrated more diffuse involvement of the articular cartilage than did the radiographs. The 3D Fat Sat GRE sequences were the best for demonstrating articular calcification in vitro. In no case was meniscal calcification identified with MRI. Hyperintense halos around some of the calcifications were seen on the MR images. Conclusion. MRI can depict articular cartilage calcification as hypointense foci using GRE techniques. Differential diagnosis includes loose bodies, post-surgical changes, marginal osteophytes and hemosiderin deposition.  相似文献   

16.
Magnetic resonance imaging (MRI) offers the direct visualization of the human musculoskeletal (MSK) system, especially all diarthrodial tissues including cartilage, bone, menisci, ligaments, tendon, hip, synovium, etc. Conventional MRI techniques based on T1‐ and T2‐weighted, proton density (PD) contrast are inconclusive in quantifying early biochemically degenerative changes in MSK system in general and articular cartilage in particular. In recent years, quantitative MR parameter mapping techniques have been used to quantify the biochemical changes in articular cartilage, with a special emphasis on evaluating joint injury, cartilage degeneration, and soft tissue repair. In this article we focus on cartilage biochemical composition, basic principles of T MRI, implementation of T pulse sequences, biochemical validation, and summarize the potential applications of the T MRI technique in MSK diseases including osteoarthritis (OA), anterior cruciate ligament (ACL) injury, and knee joint repair. Finally, we also review the potential advantages, challenges, and future prospects of T MRI for widespread clinical translation. J. Magn. Reson. Imaging 2015;41:586–600. © 2014 Wiley Periodicals, Inc.  相似文献   

17.

Purpose

The combination of chondrogenic factors might be necessary to adequately stimulate articular cartilage repair. In previous studies, enhanced repair was observed following transplantation of chondrocytes overexpressing human insulin-like growth factor I (IGF-I) or fibroblast growth factor 2 (FGF-2). Here, the hypothesis that co-overexpression of IGF-I and FGF-2 by transplanted articular chondrocytes enhances the early repair of cartilage defects in vivo and protects the neighbouring cartilage from degeneration was tested.

Methods

Lapine articular chondrocytes were transfected with expression plasmid vectors containing the cDNA for the Escherichia coli lacZ gene or co-transfected with the IGF-I and FGF-2 gene, encapsulated in alginate and transplanted into osteochondral defects in the knee joints of rabbits in vivo.

Results

After 3 weeks, co-overexpression of IGF-I/FGF-2 improved the macroscopic aspect of defects without affecting the synovial membrane. Immunoreactivity to type-I collagen, an indicator of fibrocartilage, was significantly lower in defects receiving IGF-I/FGF-2 implants. Importantly, combined IGF-I/FGF-2 overexpression significantly improved the histological repair score. Most remarkably, such enhanced cartilage repair was correlated with a 2.1-fold higher proteoglycan content of the repair tissue. Finally, there were less degenerative changes in the cartilage adjacent to the defects treated with IGF-I/FGF-2 implants.

Conclusion

The data demonstrate that combined gene delivery of therapeutic growth factors to cartilage defects may have value to promote cartilage repair. The results also suggest a protective effect of IGF-I/FGF-2 co-overexpression on the neighbouring articular cartilage. These findings support the concept of implementing gene transfer strategies for articular cartilage repair in a clinical setting.  相似文献   

18.
Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) was used for the measurement of relative proteoglycan depletion of articular cartilage in the patellofemoral (PF) joint following a proprietary protocol, which was compared with the X-ray images, proton density weighted MR images (PDWI) and arthroscopic findings. The study examined 30 knees. The ages ranged from 16 to 74 (average 40.3) years. The Gd-DTPA2–containing contrast medium was used in a single dose. The subjects were made to exercise the knee joint for 10 min; and MR images were taken 2 h after intravenous injection of contrast medium. T1-calculated images were produced and the region of interest (ROI) was set as follows. (1) ROI1: entire articular cartilage in a slice through the center of the patella. (2) ROI2: low signal region in T1-calculated images, which were set in a blind fashion by two observers. (3) ROI3: articular cartilage on one side that includes ROI2 where low signal region were detected (medial or lateral). ROI3 was set to examine the contrast of ROI2 with surrounding articular cartilage. The average T1 values of ROI1 was 393.5±33.6 ms for radiographic grade 0 and 361.3±11.1 ms for grade I, which showed a significant difference (P=0.036). The T1 value of ROI2 was 351.6±28.2 ms for grade I, 361.9±38.3 ms for grade II, 362.1±67.7 ms for grade III, and 297.8±54.1 ms for grade IV according to arthroscopic Outerbridge classification. All cases, that demonstrated decrease of T1 values on dGEMRIC (ROI2), showed abnormal arthroscopic or direct viewing findings. The ratio (ROI3/ROI2) in cases of only slight damage classified as Outerbridge grade I (6 cases) was an average of 1.04±0.02 and was 1.0 or greater in all cases, thereby indicating well-defined contrast with the surrounding cartilage. The diagnosis of damage in articular cartilage was possible in all 16 cases with radiographic K–L grade I on dGEMRIC, while the intensity changes were not found in 10 of 16 cases on PDWI. The dGEMRIC with a single-dose would be useful on a diagnosis of the area demonstrating early relative proteoglycan depletion in the articular cartilage of the PF joint prior to any discernible changes in the subchondral bone on X-ray images and exceeds to plain MR images for examining deterioration of articular cartilage.  相似文献   

19.
Quantitative MR microscopy of enzymatically degraded articular cartilage.   总被引:9,自引:0,他引:9  
Structural changes in bovine patellar articular cartilage, induced by component selective enzymatic treatments, were investigated by measuring tissue T(2) relaxation at 9.4 T. This MRI parameter was compared with Young's modulus, a measure of elastic stiffness and loadbearing ability of cartilage tissue. Collagenase was used to digest the collagen network and chondroitinase ABC to remove proteoglycans. Polarized light microscopy and digital densitometry were used to assess enzyme penetration after 44 hr of enzymatic digestion. T(2) relaxation in superficial cartilage increased significantly only in samples treated with collagenase. A statistically significant decrease in Young's modulus was observed in both enzymatically treated sample groups. These results confirm that T(2) of articular cartilage is sensitive to the integrity of collagen in the extracellular matrix. Nonetheless, it does not appear to be an unambiguous indicator of cartilage stiffness, which is significantly impaired in osteoarthrosis.  相似文献   

20.
Ultrashort echo time imaging allows the short T2 Achilles tendon to be directly visualized with MRI. Radiofrequency saturation 1 kHz or less off‐resonance has been used previously to improve image contrast. In this study, magnetization transfer was investigated in the Achilles tendon of eight normal volunteers and one patient with psoriatic arthritis. 2D Ultrashort echo time images were acquired using saturation pulses 2–100 kHz off‐resonance at 4 pulse powers. On‐resonance saturation recovery images were also obtained to estimate T1. The results were fitted to a two compartment quantitative magnetization transfer model. The estimated bound proton fraction for the eight healthy volunteers was 21.0 ± 1.2% (mean ± standard deviation) compared to 16.4% in the patient with psoriatic arthritis (P < 0.05). The T2 of the bound protons was measured as 6.1 ± 0.3 μsec in the healthy volunteers and 6.0 μsec in the patient. This technique appears clinically feasible and may be useful for assessing the collagen and water changes which occur in Achilles tendinopathy. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号