首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Microglia transform from ameboid to ramified cells during development and display an ameboid appearance again under certain pathological conditions. Some cytokines produced by astrocytes may be responsible for the microglial transformation. In the present study, we compared the effects of cytokines, granulocyte/macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), and interleukin-3 (IL-3) on the morphology of rat cultured microglia. For quantitative evaluation, we employed “transformation index” as calculated by (perimeter of cell)2/4 π (cell area). GM-CSF facilitated the ramification of cultured rat microglia, which was effectively induced in a serum-free medium. However, M-CSF and IL-3 did not induce the ramification. A certain serum adhesion protein (possibly vitronectin) as well as other high molecular weight substances in fetal calf serum inhibited the GM-CSF-induced microglial ramification. Among ordinary supplements for a chemically defined medium, progesterone, insulin, and a high concentration of glucose suppressed the ramification. These findings suggest that GM-CSF may be involved in microglial ramification and that many kinds of supplements that are added to culture media profoundly affect the morphology of microglial cells. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Brain macrophages synthesize interleukin-1 and interleukin-1 mRNAs in vitro   总被引:10,自引:0,他引:10  
Amoeboid microglial cells (brain macrophages) were purified from early post-natal mouse brain cultures. The percentage of cells stained with an anti-Mac-1 antibody was greater than 95%. Stimulation of these brain macrophages by lipopolysaccharides induced the synthesis of interleukin-1 (IL-1), which, in part, remained associated with the cell surface and, in part, was released into the culture medium. In contrast, pure primary astrocyte cultures and cell lines of transformed or immortalised astrocytes did not synthesise significant amounts of IL-1, demonstrating that amoeboid microglia and not astrocytes synthesise IL-1 in vitro. These physiological data were confirmed by RNA hybridisation studies showing that, on LPS treatment, brain macrophages synthesise significant amounts of IL-1 alpha and IL-1 beta mRNAs.  相似文献   

4.
Studies have shown that cytokines released following CNS injury can affect the supportive or cytotoxic functions of microglia. Interleukin-6 (IL-6)-family cytokines are among the injury factors released. To understand how microglia respond to IL-6 family cytokines, we examined the effects of ciliary neurotrophic factor (CNTF) and IL-6 on primary cultures of rat microglia. To assess the functional state of the cells, we assayed the expression of tumor necrosis factor-alpha (TNFalpha), interleukin-1beta (IL-1beta), and cyclooxygenase 2 (COX-2) following stimulation. We show that CNTF reduces COX-2 levels, whereas IL-6 increases the expression of IL-1beta, TNFalpha, and Cox-2. We also examined trophic factor expression and found that CNTF enhances glial cell-line derived neurotrophic factor (GDNF) mRNA and protein secretion, whereas IL-6 has no effect. Correspondingly, conditioned media from CNTF-stimulated microglia promote motor neuron survival threefold beyond controls, whereas IL-6-stimulated microglia decrease neuronal survival twofold. To understand better the signaling mechanisms responsible for the opposite responses of these IL-6-family cytokines, we examined STAT-3 and ERK phosphorylation in CNTF- and IL-6-stimulated microglia. IL-6 markedly increases STAT-3 and ERK phosphorylation after 20 min of treatment, whereas these signal transducers are weakly stimulated by CNTF across a range of doses. We conclude that CNTF modifies microglial activation to support neuronal survival and that IL-6 enhances their capacity to do harm, as a result of different modes of intracellular signaling.  相似文献   

5.
Bassett T  Bach P  Chan HM 《Neurotoxicology》2012,33(2):229-234
Glial cells, including oligodendrocytes, astrocytes and microglia are important to proper central nervous system (CNS) function. Deregulation or changes to CNS populations of astrocytes and microglia in particular are expected to play a role in many neurodegenerative diseases, including Parkinson's disease, amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). Previous studies have reported methylmercury (MeHg) induced changes in glial cell function; however, the effects of MeHg on these cells remains poorly understood. This study aims to examine the effect of MeHg on the secretion of pro-inflammatory cytokines from microglia and astrocytes. The impact of the microglia/astrocyte ratio on cytokine secretion was also examined. Microglia and astrocytes were cultured from the brains of neo-natal BALB/C mice and dosed with MeHg (0-1 μM) and stimulated with PAM(3)CSK(4) (PAM(3)), a toll-like receptor (TLR) ligand. After this, the secretion of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and interleukin-1-beta (IL-1β) was measured by ELISA. MeHg reduced the secretion of IL-6 in a dose dependant manner but did not effect the secretion of TNF-α. No change in IL-1β was observed in any treatments, indicating that PAM(3) cannot induce the secretion of this cytokine from glial cells. Additionally, the ratio of microglia/astrocyte had an effect on the secretion of IL-6 but not TNF-α. These results indicate that MeHg can modify the response of glial cells and the interactions with astrocytes can affect the response of the microglia cells in culture. These results are significant in understanding the potential relationship with MeHg and neurodegenerative diseases and for the interpretation of results of future in vitro studies using monoculture.  相似文献   

6.
Cytokines,chemokines, and cytokine receptors in human microglia   总被引:16,自引:0,他引:16  
  相似文献   

7.
Cultures of astrocytes and microglia express interleukin 18   总被引:11,自引:0,他引:11  
Interleukin 18 (IL-18 or interferon-gamma inducing factor) is a recently discovered pro-inflammatory cytokine and powerful stimulator of the cell-mediated immune response. IL-18 is produced by several sources including monocytes/macrophages, keratinocytes and the zona reticularis and zona fasciculata of the adrenal cortex. IL-18 occurs in brain but its cellular source in the CNS has never been investigated. The presence of IL-18 and its response to stimulation in the brain was tested with primary cultures of microglia, astrocytes and hippocampal neurons. IL-18 mRNA was present in astrocytes and microglia, but not in neurons. The endotoxin lipopolysaccharide (LPS) did not affect IL-18 in astrocytes, but LPS robustly increased IL-18 mRNA in microglia. IL-18 protein was constitutively expressed in astrocytes and induced in microglia by LPS. The levels of interleukin-1beta converting enzyme (ICE), an activating enzyme, and caspase 3 (CPP32), an inactivating enzyme, were assessed to investigate the presence of the appropriate processing enzymes in the cultured cells. ICE was present at constitutive levels in microglia and astrocytes suggesting that these cell types may produce and secrete matured IL-18. Active forms of CPP32 were not detectable in either cell type indicating the absence of a degradative pathway of IL-18. The present results demonstrate that microglia and astrocytes are sources of brain IL-18 and add a new member to the family of cytokines produced in the brain.  相似文献   

8.
Telencephalin (TLCN) is a neuronal surface glycoprotein whose expression is restricted to the telencephalon, the most rostral segment of the brain. TLCN binds to lymphocyte function-associated antigen-1 (LFA-1) integrin. In the central nervous system, LFA-1 is selectively and constitutively expressed by microglia, suggesting that TLCN/LFA-1 binding may mediate cell-cell interactions between telencephalic neurons and microglia. In the present study, we investigated the effects of recombinant TLCN protein on the morphology of microglia. TLCN induced an intensive spreading of lamellipodia, causing a rapid change in microglial morphology. In contrast, TLCN induced no significant change in morphology of neuroblastoma and fibroblasts. Furthermore, the TLCN-induced spreading of microglia was accompanied by a clustering of LFA-1 on cell surface membrane. These results provide evidence that TLCN binding to the surface of microglia transduces signals into microglia that mediate or accelerate cell spreading and LFA-1 redistribution, implying that neuronal TLCN may control the state and/or function of microglia in both physiological and pathological conditions.  相似文献   

9.
Trimethyltin (TMT) is a neurotoxicant known to induce early microglial activation. The present study was undertaken to investigate the role played by these microglial cells in the TMT-induced neurotoxicity. The effects of TMT were investigated in monolayer cultures of isolated microglia or in neuron-enriched cultures and in neuron-microglia and astrocyte-microglia cocultures. The end points used were morphological criteria; evaluation of cell death and cell proliferation; and measurements of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and nitric oxide (NO) release in culture supernatant. The results showed that, in cultures of microglia, TMT (10(-6) M) caused, after a 5-day treatment, an increased release of TNF-alpha, without affecting microglial shape or cell viability. When microglia were cocultured with astrocytes, TNF-alpha release was decreased to undetectable levels. In contrast, in neuron-microglia cocultures, TNF-alpha levels were found to increase at lower concentrations of TMT (i.e., 10(-8) M). Moreover, at 10(-6) M of TMT, microglia displayed further morphological activation, as suggested by process retraction and by decrease in cell size. No morphological activation was observed in cultures of isolated microglial cells and in astrocyte-microglia cocultures. With regard to neurons, 10(-6) M of TMT induced about 30% of cell death, when applied to neuron-enriched cultures, whereas close to 100% of neuronal death was observed in neuron-microglia cocultures. In conclusion, whereas astrocytes may rather dampen the microglial activation by decreasing microglial TNF-alpha production, neuronal-microglial interactions lead to enhanced microglial activation. This microglial activation, in turn, exacerbates the neurotoxic effects of TMT. TNF-alpha may play a major role in such cell-cell communications.  相似文献   

10.
We assessed the effects of soluble molecules (supernatants) produced by pro- (Th1) and anti- (Th2) inflammatory T-cell lines on the capacity of adult human CNS-derived microglia to express or produce selected cell surface and soluble molecules that regulate immune reactivity or impact on tissue protection/repair within the CNS. Treatment of microglia with supernatants from allo-antigen and myelin basic protein-specific Th1 cell lines augmented expression of cell surface molecules MHC class II, CD80, CD86, CD40, and CD54, enhanced the functional antigen-presenting cell capacity of microglia in a mixed lymphocyte reaction, and increased cytokine/chemokine secretion (TNFalpha, IL-6, and CXCL10/IP-10). These Th1-induced effects were not reproduced by interferon-gamma (IFNgamma) alone and were only incompletely blocked by anti-IFNgamma antibody. Th2 cell supernatant treatments did not alter costimulatory/adhesion molecule expression or induce cytokine/chemokine production by microglia. Th2 treatment, furthermore, failed to reduce the induction observed in response to Th1 supernatants. Neither Th1 nor Th2 supernatants induced production of the neurotrophin molecules, nerve growth factor, or brain-derived neurotrophic factor. Our results suggest that soluble molecules released by Th1 and not Th2 cells that infiltrate the CNS can stimulate resident microglia to acquire enhanced effector and accessory cell functions; the Th1-induced effects were not downregulated by Th2 supernatant-mediated bystander suppression.  相似文献   

11.
Seo DR  Kim KY  Lee YB 《Neuroreport》2004,15(7):1157-1161
Immune cells have been shown to release ATP into the extracellular space to provide auto- and paracrine purinergic modulation of immune and inflammatory responses. In the present study, we demonstrate that ATP released from lipopolysaccharide (LPS)-stimulated microglia induces interleukin-10 (IL-10) expression in an autocrine manner. The expression as well as secretion of IL-10 by LPS-stimulated microglia was completely inhibited by apyrase, ATP-hydrolyzing enzyme, whereas tumor necrosis factor-alpha (TNF-alpha) expression was unaffected. LPS-activated microglia rapidly released a low concentration of ATP (10-20 nM) into the medium, and the nanomolar range of extracellular ATP, ADP, adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S), and adenosine 5'-O-(2-thiodiphosphate) (ADP-beta-S) induced IL-10 secretion from microglia in a dose-dependent manner. These results suggest that ATP released from LPS-activated microglia and/or a metabolite of ATP (ADP) may induce IL-10 expression through P2Y purinergic receptors.  相似文献   

12.
Astrocytes and microglia, both produced interleukin-6 (IL-6) in culture by lipopolysaccharide (LPS) stimulation. IL-6 activity was detected 3-5 h after LPS stimulation and reached a maximum at 10 h. Microglia responded faster than astrocytes. Tumor necrosis factor alpha and interleukin 1 also induced IL-6 mRNA and biological activity in astrocytes, but not in microglia. Among these stimuli, LPS was the most potent inducer of IL-6 production by astrocytes. Our results suggest that different regulatory mechanisms for cytokine production exist in glial cells. The possible roles of astrocytes and microglia in CNS immune responses are also discussed.  相似文献   

13.
Microglial cells react early to a neurotoxic insult. However, the bioactive factors and the cell-cell interactions leading to microglial activation and finally to a neuroprotective or neurodegenerative outcome remain to be elucidated. Therefore, we analyzed the microglial reaction induced by methylmercury (MeHgCl) using cell cultures of different complexity. Isolated microglia were found to be directly activated by MeHgCl (10(-10) to 10(-6) M), as indicated by process retraction, enhanced lectin staining, and cluster formation. An association of MeHgCl-induced microglial clusters with astrocytes and neurons was observed in three-dimensional cultures. Close proximity was found between the clusters of lectin-stained microglia and astrocytes immunostained for glial fibrillary acidic protein (GFAP), which may facilitate interactions between astrocytes and reactive microglia. In contrast, immunoreactivity for microtubule-associated protein (MAP-2), a neuronal marker, was absent in the vicinity of the microglial clusters. Interactions between astrocytes and microglia were studied in cocultures treated for 10 days with MeHgCl. Interleukin-6 release was increased at 10(-7) M of MeHgCl, whereas it was decreased when each of these two cell types was cultured separately. Moreover, addition of IL-6 to three-dimensional brain cell cultures treated with 3 x 10(-7) M of MeHgCl prevented the decrease in immunostaining of the neuronal markers MAP-2 and neurofilament-M. IL-6 administered to three-dimensional cultures in the absence of MeHgCl caused astrogliosis, as indicated by increased GFAP immunoreactivity. Altogether, these results show that microglial cells are directly activated by MeHgCl and that the interaction between activated microglia and astrocytes can increase local IL-6 release, which may cause astrocyte reactivity and neuroprotection.  相似文献   

14.
Mechanisms underlying human immunodeficiency virus-1 encephalopathy are not completely known; however, recent studies suggest that the viral protein gp41 may be neurotoxic via activation of inducible nitric oxide synthase (iNOS) in glial cells. In the present study, we investigated the NO-generating activity of primary human fetal astrocytes in response to gp41 and the relationship to microglial cell production of interleukin-1 (IL-1). Gp41 failed to trigger iNOS mRNA expression in highly enriched (>99%) astrocyte or microglial cell cultures. However, gp41-treated microglia released a factor(s) that triggered iNOS mRNA expression and NO production in astrocytes. Because IL-1 receptor antagonist protein blocked gp41-induced NO production, a pivotal role was suggested for microglial cell IL-1 production in astrocyte iNOS expression. Also, gp41 induced IL-1beta mRNA expression and IL-1 production in microglial cell but not astrocyte cultures. Using specific inhibitors, we found that gp41-induced IL-1beta production in microglia was mediated via a signaling pathway involving protein-tyrosine kinase. These data support the hypothesis that gp41 induces astrocyte NO production indirectly by triggering upregulation of microglial cell IL-1 expression.  相似文献   

15.
We recently proposed the involvement of diffusible modulators in signalling astrocytes to increase glial cell line-derived neurotrophic factor (GDNF) expression after selective dopaminergic injury by H2O2 or L-DOPA. Here we report that interleukin-1beta (IL-1beta) is involved in this crosstalk between injured neurons and astrocytes. IL-1beta was detected only in the media from challenged neuron-glia cultures. Exogenous IL-1beta did not change GDNF protein levels in astrocyte cultures, and diminished GDNF levels in neuron-glia cultures. This decrease was not due to cell loss, as assessed by the MTT assay and immunocytochemistry. Neither H2O2 nor L-DOPA induced microglia proliferation or appeared to change its activation state. The IL-1 receptor antagonist (IL-1ra) prevented GDNF up-regulation in challenged cultures, showing that IL-1beta is involved in the signalling between injured neurons and astrocytes. Since IL-1ra decreased the number of dopaminergic neurons in H2O2-treated cultures, we propose that IL-1 has a neuroprotective role in this system involving GDNF up-regulation.  相似文献   

16.
Unfractionated cytokines have been shown to induce in vitro proliferation of neonatal rat Schwann cells but the nature of the mitogen(s) is not known. A mixture of rabbit antibodies specific for recombinant interleukin-1α (IL-1α) and interleukin-1β (IL-1β) inhibited Schwann cell proliferation induced by unfractionated human cytokines whereas antibodies to interleukin-2 (IL-2) and control IgG did not. However, purified human IL-1 and recombinant human IL-1α or β did not induce Schwann cell proliferation on their own.  相似文献   

17.
High serum cholesterol level has been shown as one of the risk factors for Alzheimer's disease (AD), and epidemiological studies indicate that treatment with cholesterol-lowering substances, statins, may provide protection against AD. An acute-phase reaction and inflammation, with increased levels of proinflammatory cytokines, are well known in the AD brain. Notably, there is evidence for antiinflammatory activities of statins, such as reduction in proinflammatory cytokines. Consequently, it is of interest to analyze the effects of statins on microglia, the main source of inflammatory factors in the brain, such as in AD. The aims of this study were to determine the effects of statins (atorvastatin and simvastatin) on microglial cells with regard to the secretion of the inflammatory cytokine interleukin-6 (IL-6) and cell viability after activation of the cells with bacterial lipopolysaccharides (LPS) or beta-amyloid1-40 (Abeta1-40) and in unstimulated cells. Cells of the human microglial cell line CHME-3 and primary cultures of rat neonatal cortical microglia were used. Incubation with LPS or Abeta1-40 induced secretion of IL-6, and Abeta1-40, but not LPS, reduced cell viability. Both atorvastatin and simvastatin reduced the basal secretion of IL-6 and the cell viability of the microglia, but only atorvastatin reduced LPS- and Abeta1-40-induced IL-6 secretion. Both statins potentiated the Abeta1-40-induced reduction in cell viability. The data indicate the importance of also considering the microglial responses to statins in evaluation of their effects in AD and other neurodegenerative disorders with an inflammatory component.  相似文献   

18.
We have previously developed and characterized isolated microglia and astrocyte cultures from rapid (<4 h) brain autopsies of Alzheimer's disease (AD) and nondemented elderly control (ND) patients. In the present study, we evaluate the inflammatory repertoire of AD and ND microglia cultured from white matter (corpus callosum) and gray matter (superior frontal gyrus) with respect to three major proinflammatory cytokines, three chemokines, a classical pathway complement component, a scavenger cell growth factor, and a reactive nitrogen intermediate. Significant, dose-dependent increases in the production of pro-interleukin-1beta (pro-IL-1beta), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory peptide-1alpha (MIP-1alpha), IL-8, and macrophage colony-stimulating factor (M-CSF) were observed after exposure to pre-aggregated amyloid beta peptide (1-42) (Abeta1-42). Across constitutive and Abeta-stimulated conditions, secretion of complement component C1q, a reactive nitrogen intermediate, and M-CSF was significantly higher in AD compared with ND microglia. Taken together with previous in situ hybridization findings, these results demonstrate unequivocally that elderly human microglia provide a brain endogenous source for a wide range of inflammatory mediators.  相似文献   

19.
Liu YP  Lin HI  Tzeng SF 《Brain research》2005,1054(2):152-158
Neural progenitor cells (NPCs) in developing and adult CNS are capable of giving rise to various neuronal and glial cell populations. Neurogenesis in the adult hippocampus has been found to be inhibited by a proinflammatory cytokine, interleukin-6 (IL-6), suggesting that activated microglia in the inflamed brain may control neurogenesis. Yet, little is known about the effect of microglia-derived factors on the cell fate of embryonic NPCs. In this study, we show that neurons with betaIII-tubulin immunoreactivity in the NPC culture were reduced by the condition media collected from microglia treated with endotoxin lipopolysaccharide (LPS/M-CM). Treatment with pentoxifylline (PTX), an inhibitor for tumor necrosis factor-alpha (TNF-alpha) secretion from LPS-activated microglia, blocked the reduction of betaIII-tubulin+ cells in NPC culture. Furthermore, treatment of NPCs with interleukin-18 (IL-18), a recently discovered proinflammatory cytokine, also decreased the number of betaIII-tubulin+ cells in a dose- and time-dependent manner. Surprisingly, we also observed that the remaining betaIII-tubulin+ cells in the LPS/M-CM-treated culture exhibited more branching neurites. Thus, the activated microglia-derived cytokines, TNF-alpha and IL-18, may either inhibit the neuronal differentiation or induce neuronal cell death in the NPC culture, whereas these cells may also produce factors to improve the neurite branching in the NPC culture.  相似文献   

20.
The interaction of phosphatidylserine (PS), exposed on the surface of apoptotic cells and with its specific receptor (PtdSerR) expressed by microglia, is a crucial event in the recognition and clearance of apoptotic neurons. Here, we extend our previous studies in which PS-liposomes mimicking apoptotic cells were used to investigate the functional role of PS-PtdSerR interactions on microglial functional state. Purified rat microglial cells were either incubated with PC12 cells maintained in complete medium (healthy), exposed to staurosporine or serum deprivation (apoptotic), or treated with hydrogen peroxide (necrotic). After 24 hours, supernatants from co-cultures and single cell type cultures were analyzed for nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), interleukin-10 (IL-10), prostaglandin E2 (PGE2), transforming growth factor-beta1 (TGF-beta1), and nerve growth factor (NGF). When lipopolysaccharide (LPS)-activated microglia was cultured with apoptotic PC12 cells, NO and TNF-alpha levels significantly decreased, IL-10 was not affected, and PGE2 levels were substantially increased. In addition, TGF-beta and NGF syntheses increased when resting microglia was cultured with apoptotic but not healthy or necrotic PC12 cells. We proposed that upon interaction with PS-expressing apoptotic neurons, microglia no longer act as a promoter of the inflammatory cascade and that the specific microglial functional state induced by PS-PtdSerR may be relevant for the final outcome of neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号