首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Myosin light chains in normal and neonatally denervated rat muscle were studied to examine the neural effect on the differentiation of myosin molecules. Those of fast- or slow-twitch muscle were identified by single fiber gel electrophoresis. Myosin light chains of rat soleus and extensor digitorum longus (EDL) muscles were converted to the fast type after neonatal denervation. In denervated EDL muscle, some hypertrophied intermediate fibers remained even after 30 days. Single fiber gel electrophoresis showed that slow and fast types of myosin light chains coexisted in these hypertrophied fibers.  相似文献   

2.
This study focuses on the effects of neuromuscular hyperactivity on the contractile properties, fiber type composition, and myosin heavy chain (MHC) isoform expression of fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscles in Japanese waltzing mice (JWM) of the C57BL/6J-v2J strain. The same properties were studied in the homologous muscle of control CBA/J mice (CM). In comparison to CM, the JWM exhibited (i) longer activity periods, prolonged bouts of running and a higher food intake, (ii) slower twitch and tetanic contractions of both EDL and SOL muscles, decreased cold and post-tetanic potentiation of the EDL, as well as increased cold and post-tetanic depressions of the SOL. Electrophoretic analyses of MHC isoform revealed a shift toward slower isoforms in both EDL and SOL muscles of JWM as compared to the homologous muscles of CM, namely, a shift from the fastest MHCIIb to the MHCIId/x isoform in the EDL muscle and a shift from MHCIIa to MHCI in the SOL muscle. The latter also contained a higher percentage of type I fibers and displayed a higher capillary density than the SOL muscle of CM. These findings show that the inherently enhanced motor activity of the JWM leads to fiber type transitions in the direction of slower phenotypes. JWM thus represent a suitable model for studying fast-to-slow fiber transitions under the influence of spontaneous motor hyperactivity.  相似文献   

3.
Myostatin (Mstn) is a member of the transforming growth factor-beta family that negatively regulates skeletal muscle mass. Mstn knockout mice have greater skeletal muscle mass than wild-type littermates. We investigated the effect of Mstn on fiber type by comparing adult muscles from the murine Mstn knockout with wild-type controls. Based on myofibrillar ATPase staining, the soleus of Mstn knockout mice displays a larger proportion of fast type II fibers and a reduced proportion of slow type I fibers compared with wild-type animals. Based on staining for succinate dehydrogenase (SDH) activity, a larger proportion of glycolytic fibers and a reduced proportion of oxidative fibers occur in the extensor digitorum longus (EDL) of Mstn knockouts. These differences in distribution of fiber types are accompanied by differences in the expression of myosin heavy chain (MHC) isoforms. In both Mstn knockout soleus and EDL, larger numbers of faster MHC isoforms are expressed at the expense of slower isoforms when compared with wild-type littermates. Thus, the absence of Mstn in the knockout mouse leads to an overall faster and more glycolytic muscle phenotype. This muscle phenotype is likely a consequence of developmental processes, and inhibition of Mstn in adults does not cause a transformation to a more fast and glycolytic phenotype. Our findings suggest that myostatin has a critical role in regulating the formation, proliferation, or differentiation of fetal myoblasts and postnatal fibers.  相似文献   

4.
Tenotomy of the rat soleus (SOL) and gastrocnemius (MG) muscles produces a central degeneration in slow fatigue-resistant fibers, but not in similar fibers of muscles in the extensor and peroneal compartments. To investigate the part that innervation plays in rendering a particular fiber type in a particular muscle susceptible to this degeneration, the SOL, extensor digitorum longus (EDL), and MG muscles were experimentally reinnervated by foreign nerves and tenotomized. When the SOL was reinnervated by the common peroneal nerve, slow fatigue-resistant fibers showed lesions, but when the EDL was reinnervated by the nerve to the SOL, no lesions were found after tenotomy. When the MG was reinnervated by the nerve to the SOL, slow fatigue-resistant fibers that had differentiated in regions normally occupied almost entirely by fast fatigable fibers showed characteristic lesions. These results show that the failure of tenotomy to produce lesions in the EDL is not due to the nature of its innervation and that a fiber type not normally susceptible to the degenerative change will become susceptible when transformed to the slow fatigueresistant type.  相似文献   

5.
Expression of major histocompatibility complex (MHC) class I in skeletal muscle fibers is an early and consistent finding in inflammatory myopathies. To test if MHC class I has a primary role in muscle impairment, we used transgenic mice with inducible overexpression of MHC class I in their skeletal muscle cells. Contractile function was studied in isolated extensor digitorum longus (EDL, fast‐twitch) and soleus (slow‐twitch) muscles. We found that EDL was smaller, whereas soleus muscle was slightly larger. Both muscles generated less absolute force in myopathic compared with control mice; however, when force was expressed per cross‐sectional area, only soleus muscle generated less force. Inflammation was markedly increased, but no changes were found in the activities of key mitochondrial and glycogenolytic enzymes in myopathic mice. The induction of MHC class I results in muscle atrophy and an intrinsic decrease in force‐generation capacity. These observations may have important implications for our understanding of the pathophysiological processes of muscle weakness seen in inflammatory myopathies. Muscle Nerve, 2008  相似文献   

6.
In rats, acetylcholinesterase (AChE) activity in the fast muscles is several times higher than in the slow soleus muscle. The hypothesis that specific neural impulse patterns in fast or slow muscles are responsible for different AChE activities was tested by altering the neural activation pattern in the fast extensor digitorum longus (EDL) muscle by chronic low-frequency stimulation of its nerve. In addition, the soleus muscle was examined after hind limb immobilization, which changed its neural activation pattern from tonic to phasic. Myosin heavy-chain (MHC) isoforms were analyzed by gel electrophoresis. Activity of the molecular forms of AChE was determined by velocity sedimentation. Low-frequency stimulation of the rat EDL for 35 days shifted the profile of MHC II isoforms toward a slower MHCIIa isoform. Activity of the globular G1 and G4 molecular forms of AChE decreased by a factor of 4 and 10, respectively, and became comparable with those in the soleus muscle. After hind limb immobilization, the fast MHCIId isoform, which is not normally present, appeared in the soleus muscle. Activity of the globular G1 form of AChE increased approximately three times and approached the levels in the fast EDL muscle. In the rabbit, on the contrary to the rat, activity of the globular forms of AChE in a fast muscle increased after low-frequency stimulation. The results demonstrate that specific neural activation patterns regulate AChE activity in muscles. Great differences, however, exist among different mammalian species in regard to muscle AChE regulation. J. Neurosci. Res. 47:49–57, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Quantitative freeze-fracture electron microscopy was utilized to study the changes in number and distribution of orthogonal arrays (aggregates of 6-7 nm particles) of the sarcolemmas of the fast twitch extensor digitorum longus (EDL) and slow twitch soleus muscles during the first few weeks of postnatal development in the rat. In the adult rat, orthogonal arrays are present in high densities in the fast twitch type II fibers but only in low densities in slow twitch type I fibers. In this study, the changing histochemical profiles of fiber types in the EDL and soleus muscles were also determined for the first month of postnatal development and correlated with the changing number and distribution of orthogonal arrays during the same time frame. At day 3 postpartum, EDL and soleus fibers possessed few orthogonal arrays. The developing EDL fibers rapidly acquired additional orthogonal arrays until the approximate adult number and distribution were attained at postpartum day 25. In contrast, the slow twitch soleus fibers rapidly acquired orthogonal arrays and type IIA fibers until day 35 when both were in excess of adult values. Subsequently, the number of arrays and type IIA fibers declined to normal adult ranges. We suggest that the patterns of development of orthogonal arrays and fiber types are different in the EDL and soleus because the types of innervating motor units are different in the two muscles. The EDL is innervated almost entirely by fast motor units throughout early development and maturity. The soleus, however, is initially innervated by a more heterogeneous population of motor neurons. Thus, during the period of polyneuronal innervation which occurs normally during the first weeks of postnatal development, many individual soleus fibers may possess simultaneous innervation by axons from different motor neuron types. These dual influences may be responsible for the irregular pattern of development of orthogonal arrays and type IIA fibers in developing soleus fibers. Later, as the adult pattern of monosynaptic innervation is developed, expected adult values of orthogonal arrays and fiber types are attained.  相似文献   

8.
Summary To examine the neural influence upon fiber type differentiation in developing muscles, newborn rats were subjected to sciatic nerve dissection, and the denervated extensor digitorum longus (EDL) (white) and soleus (red) muscles were examined in chronologic sequence by means of histochemistry and electron microscopy. The skeletal muscles in the newborn rats were undifferentiated (type 2C fibers seen on ATPase staining) and contained numerous myotubes. In the controls, the type 2C fibers started to differentiate at around 5 days and had almost completed type differentiation by 30 days in EDL and by 90 days in soleus muscles. On the other hand, none of the fibers in the neonatally denervated muscles developed into well differentiated type 1 and 2A fibers, but both the EDL and soleus showed longlasting type 2C and 2B populations. The satellite cells in the denervated EDL and soleus muscles decreased in number at the same rate as in the control muscles with maturation. The absence of a neural supply in the developing muscles induced a delay in muscle fiber type differentiation but did not influence the satellite cell populations in either EDL or soleus muscles.  相似文献   

9.
10.
Introduction: Skeletal muscles are characterized by their unique ability to regenerate. Injury of a so‐called fast‐twitch muscle, extensor digitorum longus (EDL), results in efficient regeneration and reconstruction of the functional tissue. In contrast, slow‐twitch muscle (soleus) fails to properly reconstruct and develops fibrosis. This study focuses on soleus and EDL muscle regeneration and associated inflammation. Methods: We determined differences in the activity of neutrophils and M1 and M2 macrophages using flow cytometry and differences in the levels of proinflammatory cytokines using Western blotting and immunolocalization at different times after muscle injury. Results: Soleus muscle repair is accompanied by increased and prolonged inflammation, as compared to EDL. The proinflammatory cytokine profile is different in the soleus and ED muscles. Conclusions: Muscle repair efficiency differs by muscle fiber type. The inflammatory response affects the repair efficiency of slow‐ and fast‐twitch muscles. Muscle Nerve 55 : 400–409, 2017  相似文献   

11.
Choline acetyltransferase activity in muscles of old rats   总被引:2,自引:0,他引:2  
The total activity of choline acetyltransferase (ChAc) in the rat extensor digitorum longus (EDL) and soleus muscles increased by 50 and 55%, respectively, between 3 and 9 months of age. In rats 28 to 29 months old, the activity of ChAc in EDL and soleus diminished to 41 and 40%, respectively, of the activity observed in 9-month-old animals. Age changes of ChAc activity in the diaphragm were not significant. The number of muscle fibers in EDL and soleus muscles of rats 28 to 29 months old decreased by 44 and 38% respectively, in comparison with younger animals. Mean muscle fiber diameters did not change between 3 and 9 months of age and decreased by 24, 35 and 9% in the EDL, soleus and diaphragm, respectively, in the 28- to 29-month-old rats. The activity of ChAc expressed in relation to one muscle fiber was about the same in the EDL and soleus muscles. It increased between 3 and 9 months and decreased between 9 and 28 to 29 months of age. The observation that ChAc activity per muscle fiber was identical in the fast EDL and slow soleus muscle suggests that the physiological differences between the two muscles are not caused by a difference in the capacity of their motor nerves to synthesize ACh. In the diaphragm the activity of ChAc per muscle fiber apparently did not diminish in old age. The decrease in the total ChAc activity in the limb muscles of old animals seems due both to a decrease in the number of nerve terminals in the muscles and to a decrease in the amount of enzyme present in individual terminals. We suggest that the maintenance of ChAc activity in the motor nerve terminals in the diaphragm of old rats is due to the continuous activity of this muscle and its motor nerves.  相似文献   

12.
Monospecific antibodies to the fast and slow skeletal muscle forms of the components of the troponin complex were used to follow the changes that occur in troponin I, troponin C, and troponin T during cross-innervation in rabbit skeletal muscles. During the period of transition after either soleus muscle was innervated by a fast nerve or when extensor digitorum longus and tibialis anterior muscles were innervated with slow nerves, most of the fibers contained both fast and slow forms of the components of the troponin complex. About 15 weeks after surgery the transformation of physiologic properties was complete in the soleus. The fully transformed soleus muscle consisted of about 10% of fibers containing only the slow troponin complex; the other 90% of fibers contained only the fast troponin complex. With extensor digitorum longus and tibialis anterior muscles transformation of fiber type was complete in 22 weeks when more than 90% of the innervated fibers contained only the slow troponin complex and the remaining fibers only the fast troponin complex. The results suggest that the synthesis of the forms of the components of the troponin complex appropriate to the activity resulting from the imposed innervation was under some type of coordinated control as was the degradation of the troponin components that were replaced as a consequence of the cross-innervation.  相似文献   

13.
Muscle disuse-induced changes in the cholinergic system of sciatic nerve, slow-twitch soleus (SOL), and fast-twitch extensor digitorum longus (EDL) muscles were studied in rats. Rats with hind limbs suspended for 2 to 3 weeks showed marked elevation in the activity of choline acetyltransferase in sciatic nerve (38%), in the SOL (108%), and in the EDL (67%). Acetylcholinesterase (AChE) activity in the SOL increased 163% without changing the molecular forms pattern of 4S, 10S, 12S, and 16S. No significant (P greater than 0.05) changes in the activity and molecular forms pattern of AChE were seen in the EDL or in AChE activity of sciatic nerve. Nicotinic receptor binding of [3H]acetylcholine was increased in both muscles. When measured after 3 weeks of hind limb suspension the normal distribution of type I fibers in the SOL (87%) was reduced (to 58%) and a corresponding increase in types IIa and IIb fibers occurred. In the EDL no significant change in fiber proportion was observed. Muscle activity, such as loadbearing, appeared to have a greater controlling influence on the characteristics of the slow-twitch SOL muscle than on the fast-twitch EDL muscle.  相似文献   

14.
The purpose of this study was to determine the effect of hind-limb suspension (HS) on morphometric, histologic, and contractile characteristics of fast extensor digitorum longus (EDL) and slow soleus (SOL) twitch muscles in adult and immature mice. Hind-limb suspension for 2 weeks was used to produce atrophy in two groups of mice, ages 4 and 12 weeks, with nonsuspended animals serving as controls. Young HS mice exhibited marked decreases in SOL weight, length, cross-sectional area (CSA), twitch and tetanic tensions, and rates of tension development and relaxation, with increases in fatigue resistance. HS reduced the diameter of both type I and IIA fibers, increased the percentage of type I fibers, and decreased the percentage of type IIA fibers in both young and adult SOL. Muscle weight, length, CSA, IIA and IIB fiber areas, and maximum rate of tetanic tension development were decreased in EDL of young HS mice; fatigue resistance and EDL half-relaxation times were increased. For most parameters evaluated, slow twitch muscle was more affected than fast twitch. HS affected contractile characteristics less than morphometric or histologic parameters. Rates of tension development and relaxation were the contractile parameters most affected by HS, and the time parameters of contraction were least affected. For all measurements young mice were more affected than adult mice.  相似文献   

15.
Individual fibers of prospective fast (extensor digitorum longus; EDL) and slow (soleus) muscles of rats have been analyzed to determine the profiles of key energy-generating enzymes at successive stages of postnatal development. Mean activities of lactate dehydrogenase (LDH) and adenylokinase (AK), 2 enzymes associated with contractile function, are significantly different in the 2 fiber populations at birth; furthermore, wide variations in enzyme activities exist among the individual fibers. There is a progressive refinement of enzyme levels in the soleus into a more uniform fiber population, while the fibers in the EDL progressively diverge into 2 distinct phenotypes. Changes in EDL and soleus are punctuated by periods of rapid change, with the period between 10 and 21 d being most eventful. Generally, the maturation profiles of LDH and AK coincide with the transition from neonatal to adult fast myosins and closely reflect the timing of energy demands imposed by contractile activity patterns. In contrast, activities of the oxidative enzymes malate dehydrogenase and beta-hydroxyacyl CoA dehydrogenase are similar in both muscles at birth and steadily increase during the first 3 weeks, suggesting a progressive adaptation to the aerobic extrauterine environment. After 30 d, there are differential changes in the oxidative profiles of enzymes for fatty acid and glucose metabolism. The profiles follow dietary changes associated with weaning, which suggests a phenotypic dependence of neonatal muscle on the particular available energy substrate. All enzymes are low in all fibers of EDL and soleus at birth, indicating their modest metabolic capacity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Rat muscle nerves were examined histochemically for their activity of acetylcholinesterase (AChE). The corresponding muscles were stained for myofibrillar ATPase and for NADH diaphorase. The nerves to the extensor digitorum longus (EDL) muscle and to the medial head of the gastrocnemius (MG) muscle consist of a motor axons of high AChE activity. Both muscles are characterized by the prevalence of type II muscle fibres. On the other hand, the soleus muscle and the quandratus femoris muscle, both mainly composed of type I muscle fibres, are innervated by a motor axons of low AChE activity. Since it is well established that EDL and MG are typical fast-twitch muscles and that the soleus, and probably also the auadratus femoris, is a typical slow-twitch muscle, it is suggested that, in rat, fast muscles are innervated by motor nerve fibres of high AChE activity and slow muscles are innervated by motor axons of low AChE activity.  相似文献   

17.
We investigated whether neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF) affected the reinnervation of slow and fast motor units. Neurotrophin-impregnated or plain fibronectin (FN) conduits were inserted into a sciatic nerve gap. Fast extensor digitorum longus (EDL) and slow soleus muscles were collected 4 months postsurgery. Muscles were weighed and fibre type proportion and mean fibre diameters were derived from muscle cross-sections. All fibre types in muscles from FN animals were severely atrophied and this correlated well with type 1 fibre loss and atrophy in soleus and type 2b loss and atrophy in EDL. Treatment with NT-4 reversed soleus but not EDL mass loss above the FN group by significantly restoring type 1 muscle fibre proportion and diameters towards those of normal unoperated animals. BDNF did not increase muscle mass but did have minor effects on fibre type and diameter. Thus, NT-4 significantly improved slow motor unit recovery, and provides a basis for therapies intended to aid the functional recovery of muscles after denervating injury.  相似文献   

18.
The ability of an association of three steroid hormones to influence the reinnervation process and the trophism of rabbit muscles denervated by crush of the sciatic nerve was investigated. The beginning of reinnervation was established with electromyographic recordings from the tibialis anterior muscle. The distance from the site of crushing to the point where the motor nerve enters the tibialis anterior muscle was then measured in each animal, and the nerve regeneration velocity (mm/day) was calculated: a slightly but significantly higher (P less than 0.001) mean value was found in treated animals compared with untreated ones. When soleus and extensor digitorum longus (EDL) muscles were histochemically examined 50 days after lesion, a larger mean diameter of type 2c fibers was found in treated than in untreated animals, pointing out a possible useful effect of the treatment. On the contrary, the size reduction of EDL type 2b fibers was more pronounced in treated rabbits, indicating a catabolic influence of the drugs on this fiber type.  相似文献   

19.
The effects of exercise on atrophy of muscle fibres and loss of mitochondria in the extensor digitorum longus (EDL) and soleus muscles were studied in protein deprived rats. They had smaller muscle fibres than aged-matched control rats, the difference being more evident in type 2 than type 1 fibres both in the fast EDL and slow soleus muscles. The loss of weight was more pronounced in the EDL muscle which is composed mainly of type 2 fibres than in the soleus muscle which is composed mainly of type 1 fibres. Protein deprived rats subjected to a programme of periodic running on a treadmill for 12 weeks showed less muscle atrophy than sedentary, protein deprived rats. This effect of exercise in diminishing the degree of atrophy was more pronounced in the type 2 than type 1 fibres. The protein deprived rats which had been sedentary showed a marked loss of subsarcolemmal mitochondria, which was not seen in protein deprived rats undergoing exercise.  相似文献   

20.
An immunohistochemical technique was used to study changes in the distribution of fast and slow forms of troponin I (TN-I) in response to alterations in the nerve supply. Hind limb muscles from normal, spinal-isolated, and cordotomized cats, one leg of which had undergone cross innervation between slow (soleus) and fast (flexor hallucis longus, FHL) muscles, were examined. At 8 months after cross innervation of normal soleus by the FHL nerve, the number of fast TN-I-positive cells had increased from 0.26 to 22.1%. At 8 months after cross innervation of normal FHL muscle with the soleus nerve, the number of fast TN-I-positive cells had decreased from 86.5 to 30.5%. The number of intermediate cells staining for both fast and slow TN-I, increased considerably after cross innervation of both soleus and FHL muscles. Spinal isolation by itself had a dramatic effect on the distribution of fast and slow TN-I, converting almost all the originally slow fibers in the FHL and 60.0% of the soleus fibers to fast TN-I-positive cells in 8 months. Cordotomy, in contrast, produced an increase of only 15.6% in the soleus, and did not change the FHL. There was no quantitative difference in the crossed-and uncrossed muscles of spinal isolated cats. In cordotomized cats, cross innervation of the soleus by the FHL nerve resulted in 32.3% fast TN-I-positive cells, with some fiber type grouping. Thus, distribution of fast and slow forms of TN-I changed after each neural manipulation which altered amounts and patterns of muscle contraction and stretch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号