首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Present literature supports the view of an extrathymic origin for the subset of intestinal intraepithelial lymphocytes (IEL) that express the CD4?CD8+ αα phenotype. This subset would include virtually all T cell receptor (TCR) γδ IEL and a portion of TCR αβ IEL. However, these reports do not exclude the possibility that some CD4?CD8+ αα IEL are actually thymically derived. To clarify this issue, we examined the IEL day 3 neonatally thymectomized (NTX) mice. NTX resulted in as much as 80 % reduction in total TCR γδ IEL and in a nearly complete elimination of TCR αβ CD4?CD8+ αα IEL early in ontogeny (3-to 5-week-old mice). The thymus dependency of TCR γδ IEL and TCR αβ CD4?CD8+ IEL was less prominent in older mice (7- to 10-week-old mice), as the total number of these IEL increased in NTX mice, but still remained severalfold less than that in euthymic mice. Furthermore, we demonstrate, by grafting the fetal thymus of CBF1 (H-2b/d) mice under the kidney capsule of congenitally nude athymic mice of BALB/c background (H-2d), that a substantial number of TCR γδ IEL and TCR αβ CD4?CD8+ αα IEL can be thymically derived (H-2b+). In contrast, but consistent with our NTX data, grafting of adult thymi into nude mice generated virtually no TCR γδ IEL and relatively less TCR αβ CD4?CD8+ αα IEL than did the grafting of fetal thymi. These results suggest that the thymus is the major source of TCR γδ and TCR αβ CD4?CD8+ αα IEL early in ontogeny, but that the extrathymic pathway is probably the major source of these IEL later in ontogeny. A reassessment of the theory that most CD4?CD8+ IEL are extrathymically derived is needed.  相似文献   

2.
We have previously demonstrated that grafting of CBF1(H-2b/d) fetal thymus (FTG) under the kidney capsule of congenitally athymic nude mice of BALB/c background (H-2d) generates a substantial number of T cell receptor (TCR) γδ intestinal intraepithelial lymphocytes (IEL) that were of FTG origin (H-2b+) (see accompanying report). Here we investigated the characteristics of these FTG-derived TCR γδ IEL and compared them to the extrathymically derived TCR γδ IEL found in nude mice. Phenotypically, FTG-derived TCR γδ IEL were similar to their extrathymically derived counterparts in that most were Thy-1 ?, CD5? and CD8αα (homodimer). Vγ and Vδ gene usage in thymus-derived and extrathymically derived TCR γδ IEL were found to be virtually the same. Functionally, FTG-derived TCR γδ IEL were similar to the TCR γδ IEL found in euthymic mice as both were relatively anergic to TCR cross-linking in vitro. However, FTG-derived TCR γδ IEL differed slightly from extrathymically derived TCR γδ IEL, which were completely nonresponsive to the same in vitro stimulation. Overall, these findings support the view that FTG-derived and extrathymically derived TCR γδ IEL are almost indistinguishable. Lastly, we demonstrate that despite their thymic origin, development of FTG-derived TCR γδ IEL partially takes place extrathymically; that is positive selection of FTG-derived Vδ4 IEL occurs extrathymically. In addition, we demonstrate that the CD8 molecule is not necessary for development and homing of FTG-derived TCR γδ IEL. This later finding suggests that the CD8αα molecule develops extrathymically for FTG-derived CD8αα TCR γδ IEL.  相似文献   

3.
Present evidence suggests that a majority of murine CD3+ intraepithelial intestinal lymphocytes (IEL) are extrathymically derived T cells and that these extrathymically derived IEL phenotypically express the CD8 homodimer (CD8αα). Recently, CD3? IEL have been reported to express the recombination activating gene (RAG-1), suggesting that precursors to extrathymically derived CD3+CD8+αα IEL exist on the intestinal epithelium. To study in detail whether these CD3? IEL can develop into CD3+CD8+αα IEL, we analyzed the CD3? IEL subset and found that it can be separated into two subsets, namely CD3?CD8? and CD3?CD8+ IEL. We show that (1) CD3?CD8? IEL are mostly small, non-granular and phenotypically Pgp-1+ IL-2R+ B220?, while CD3?CD8+ IEL are mostly large, granular and phenotypically Pgp-1? IL-2R+ B220+, (2) CD3?-CD8+ IEL express the RAG-1 gene, and (3) CD3?CD8?, CD3?CD8+ and CD3+CD8+αα IEL, respectively, appear sequentially in normal ontogeny and in bone marrow-reconstituted thymectomized radiation chimeras. In the latter, virtually all CD3+CD8+αα IEL expressed the γδ T cell receptor (TCR), but not the αβ TCR. From this and what is presently known about T cell development, we propose that CD3?CD8+ IEL are an intermediate in extrathymic IEL development and that the development of extrathymically derived IEL occurs at the intestinal epithelium from CD3?CD8? to CD3?CD8+ to CD3+(γδ TCR)CD8+αα.  相似文献   

4.
Extrathymic T cell differentiation pathways have been reported, although the thymus is the main site of T cell differentiation. The thymus is also known to produce several cytokines that induce proliferation of thymocytes. In the present study, we investigated the influence of thymus-derived cytokines on extrathymic T cell differentiation by intraperitoneal implantation with a diffusion chamber which encloses fetal thymus (we named it fetal thymus-enclosed diffusion chamber, FTEDC) in athymic BALB/c nu/nu mice. Increase in number of T cells bearing T cell receptor (TcR) α/β was detected in lymph nodes and spleens of FTEDC-implanted nude mice 1 week after implantation, whereas no such increase was detected in control nude mice implanted with a diffusion chamber without thymus. The FTEDC-induced increase of T cells was suppressed by intraperitoneal injection of anti-interleukin-7 monoclonal antibody (mAb). The TcR α/β T cells in FTEDC-inplanted BALB/c nu/nu mice preferentially expressed Vβ11, although Vβ11-positive T cells are deleted in the thymus of euthymic BALB/c mice by clonal elimination of self-superantigen Dvb 11-specific T cells. TcR α/β T cells in FTEDC-implanted nude mice were of CD4?CD8? phenotype and showed no proliferative response against anti-TcR monoclonal antibody stimulation. These results suggest that the thymus can induce extrathymic T cell differentiation through the influence of thymus-derived cytokine(s) including interleukin-7, and that such extrathymically differentiated T cells have acquired only a little or no ability for proliferation when they recognize antigen by their TcR.  相似文献   

5.
In conventional mice, the T cell receptor (TCR)αβ+ CD8αα+ and CD8αβ+ subsets of the intestinal intraepithelial lymphocytes (IEL) constitute two subpopulations. Each comprise a few hundred clones expressing apparently random receptor repertoires which are different in individual genetically identical mice (Regnault, A., Cumano, A., Vassalli, P., Guy-Grand, D. and Kourilsky, P., J. Exp. Med. 1994. 180: 1345). We analyzed the repertoire diversity of sorted CD8αα and CD8αβ+ IEL populations from the small intestine of individual germ-free mice that contain ten times less TCRαβ+ T cells than conventional mice. The TCRβ repertoire of the CD8αα and the CD8αβ IEL populations of germ-free adult mice shows the same degree of oligoclonality as that of conventional mice. These results show that the intestinal microflora is not responsible for the repertoire oligoclonality of TCRαβ+ IEL. The presence of the microflora leads to an expansion of clones which arise independently of bacteria. To evaluate the degree of expansion of IEL clones in conventional mice, we went on to measure their clone sizes in vivo by quantitative PCR in the total and in adjacent sections of the small intestine of adult animals. We found that both the CD8αα and the CD8αβ TCRαβ IEL clones have a heterogeneous size pattern, with clones containing from 3 × 103 cells up to 1.2 × 106 cells, the clones being qualitatively and quantitatively different in individual mice. Cells from a given IEL clone are not evenly distributed throughout the length of the small intestine. The observation that the TCRαβ IEL populations comprise a few hundred clones of very heterogeneous size and distribution suggests that they arise from a limited number of precursors, which may be slowly but continuously renewed, and undergo extensive clonal expansion in the epithelium.  相似文献   

6.
Both interleukin-7 (IL-7) and IL-7 receptor (R) gene knockout (IL-7−/− and IL-7R−/−) mice were employed in order to directly investigate the importance of the IL-7 and IL-7R signaling pathway for the development of intestinal intraepithelial lymphocytes (IEL). Loss of the IL-7R-specific gene resulted in complete deficiency of the γδ T cell lineage with lack of Vγ4- and Vγ7-specific messages in the epithelium of the gastrointestinal (GI) tract in comparison to control mice of the same genetic background (∼ 40%). Disruption of the IL-7-specific gene resulted in marked, but not complete depletion of γδ T cells (2–3%) in IEL. Furthermore, mRNA for both Vγ4 and Vγ7 genes were detected in the γδ IEL subset of IL-7−/− mice. The subtle differences between IL-7−/− and IL-7R−/− mice suggest that although IL-7 controls most of the expansion and/or development of γδ IEL, another ligand binding to the IL-7R also plays a discernable role. Furthermore, αβ IEL developed more slowly in IL-7R−/− mice when compared with ligand knockouts; however, the frequency of IEL T cells subsequently increased with age and normal levels of CD3+ T cells expressing the αβ TCR were detected by 2 and 3 months of age in IL-7−/− and IL-7R−/− mice, respectively. The direct comparison of IL-7 and IL-7R−/− mice clearly supports the hypothesis that both IL-7 and another IL-7R binding molecule can influence the development of γδ T cells in the intestinal epithelium.  相似文献   

7.
We investigated intraepithelial T cells from the small intestine, SI (jejunum, ileum) and the large intestine, LI (colon) of euthymic (BALB/c, H–2d; C. B–17 +/+, H–2d; C57BL/6, H–2b) and athymic (C57BL/6 nu/nu; BNX bg/bg nu/nu xid/xid) mice. From individual euthymic and athymic mice, 7 × 106 intraepithelial lymphocytes (IEL) per mouse were isolated from the SI. Ten–fold lower numbers of IEL were obtained from the LI epithelium (4 × 105 IEL per mouse). Thymus–dependent and -independent T cells represented > 80% of SI–IEL but the fraction of T cells was reduced from 20% to 40% in LI–IEL. In euthymic mice, αβ T cells predominated in SI–IEL and in particular in LI–IEL populations, while SI–IEL and LI-IEL populations of athymic mice contained predominantly αβ T cells. The intraepithelial T cell subset distribution was different in SI versus LI: mainly CD8+ T cells were present in the SI, but a large CD4+ T cell subset was present in the LI.‘Double positive’ CD4+ CD8α+ T cells were present mainly in the SI epithelium but were rare in the LI epithelium. In euthymic as well as athymic mice, T cells expressing the homodimeric CD8αβ isoform predominated in the SI epithelium, while T cells expressing the heterodimeric CD8αβ isoform predominated in the LI epithelium. LI–derived TCRα+ IEL displayed the CD2+ CD28+ LPAM–1/2? M290+ phenotype, and a fraction of them expressed the L–selectin LECAM–1. In contrast, a large fraction of TCRα+ SI-IEL was CD2? CD28? LPAM–1/2? M290+ and LECAM–1?. RAG–1/2 expression was detectable by RT–PCR in IEL from the SI but not the LI. Striking differences in phenotype were thus apparent between thymus–dependent and thymus–independent T cells in the epithelial layer of the jejunum/ileum and the colon of the mouse.  相似文献   

8.
We have characterized the function, phenotype, ontogenic development, and T cell receptor (TCR) repertoire of a subpopulation of γδ thymocytes, initially defined by expressing low levels of Thy-1, that represents around 5 % and 30 % of total γδ thymocytes in adult C57BL/6 and DBA/2 mice, respectively. Activation of FACS-sorted Thy-1dull γδ thymocytes from DBA/2 mice with anti-γδ monoclonal antibodies in the presence of interleukin-2 (IL-2) results in the secretion of high levels of several cytokines, including interferon-γ (IFN-γ), IL-4, IL-10, and IL-3. In contrast, only IFN-γ was detected in parallel cultures of Thy-1bright γδ thymocytes. Virtually all Thy-1dull γδ thymocytes express high levels of CD44 and low levels of the heat-stable antigen and CD62 ligand, while around half of them express the NK1.1 marker. Thy-1dull γδ thymocytes are barely detectable in newborn animals, and their representation increases considerably during the first 2 weeks of postnatal life. The majority of Thy-1dull γδ thymocytes from DBA/2 mice express TCR encoded by the Vγ1 gene and a novel Vδ6 gene named Vδ6.4. Sequence analysis of these functionally rearranged γ and δ genes revealed highly restricted Vδ-Dδ-Jδ junctions, and somewhat more diverse Vγ-Jγ junctions. We conclude that Thy-1dull γδ thymocytes exhibit properties that are equivalent to those of natural killer TCRαβ T cells. Both cell populations produce the same distinct pattern of cytokines upon activation, share a number of phenotypic markers originally defined for activated or memory T cells, display similar postnatal kinetics of appearance in the thymus and express a very restricted TCR repertoire.  相似文献   

9.
The thymus plays an essential role in the generation and selection of T cells and exports approximately 0.5–1% of thymocytes per day in young animals and considerably fewer in older animals. To date there have been no studies directly examining fetal thymic export in any species. Using the technique of intrathymic injection of fluorescein isothiocyanate, followed by an assay for green fluorescent cells in the periphery and for the expression of cell surface antigens on these cells, we have compared directly the export of T cells from the fetal and postnatal ovine thymus. While the thymus exports both αβ and γδ T cells, our results demonstrate that the proportion of thymic γδ T cells that are exported per day is much higher than that of thymic αβ T cells. Moreover, the export rate of γδ T cells increased from approximately 1 in every 60 γδ thymocytes per day emigrating from the fetal thymus to 1 in every 20 from the postnatal thymus. In addition, we identify a population of CD5+CD4?CD8?γδ? T cells emigrating from the fetal thymus but greatly reduced among thymic emigrants after birth. These findings have several implications regarding the mechanisms and control of selection of both γδ and αβ T cells.  相似文献   

10.
Immunopathology in schistosomiasis consists of a granulomatous response around parasite eggs. It has been established that granuloma formation is mediated by CD4+ T helper cells. However, the role of T cells bearing the γδ T cell receptor (TCR) has not been determined. In this study we utilized mutant mice that lack either αβ or γδ T cells as a result of gene targeting to investigate the relative roles of αβ and γδ T cells in the induction of immunopathology related to schistosomiasis. Mutant and control mice were infected with Schistosoma mansoni and granuloma formation as well as lymph node cell proliferative responses to egg antigens were analyzed after 8 weeks. TCR δ mutant mice (lacking γδ T cells) displayed vigorous formation of egg granulomas that were not significantly different from those observed in normal controls, both in terms of granuloma size and cellular composition. In contrast, TCR α and TCR β mutant mice (lacking αβ T cells) were unable to form granulomas. Moreover, mesenteric lymph node cells from TCR δ mutant and control mice responded strongly to egg antigens in vitro, while TCR α and β mutant mice did not. Our studies show that in schistosomiasis granuloma formation and proliferative responses to egg antigens are strictly dependent on αβ T cells. They also suggest that γδ T cells by themselves can neither mediate a granulomatous inflammation, nor significantly modify one mediated by αβ T cells.  相似文献   

11.
We investigated lamina propria T cells from the small intestine (jejunum/ileum) and the large intestine (colon) of euthymic (BALB/c, C. B-17, C57BL/6) and athymic (C57BL/6 nu/nu; BNX bg/bg nu/nu xid/ xid) mice. CD3+ T cells represented about 40% of the lamina propria lymphocytes (LPL) from the small or the large intestine of euthymic mice, and 20–30% of the LPL populations from the small or large intestine of athymic mice. In the lamina propria T cell population of the small intestine, 85% were of the αβ lineage in euthymic mice, but only 40% were of the αβ lineage in athymic mice. T cells of the αβ lineage were thus more frequent than T cells of the αβ lineage in the intestinal lamina propria T cells of extrathymic origin. CD4+ T cells represented 40% of the lamina propria T cells in the small as well as in the large intestine of euthymic mice, and 20–30% of the T cells in the lamina propria of the nude mouse gut. In euthymic mice, 40% of the T cells in the small intestine lamina propria, and 30% of the T cells in the colonic lamina propria were CD8+, In intestinal lamina propria T cell populations of athymic mice, the CD8+ T cell population was expanded. Most (60–70%) CD8+ T cells in the lamina propria of the small and the large intestine of euthymic and athymic mice expressed the homodimeric CD8α+β? form of the CD8 coreceptor. A fraction of 15–20% of all CD3+ T cells in the lamina propria of the small and the large intestine of euthymic and athymic mice were ‘double negative’ CD4? CD8?. A large fraction of the TCRαβ+ T cells in the colonic lamina propria (but not in the small intestine lamina propria) of euthymic mice expressed the CD2 and the CD28 costimulator molecules, the adhesion molecule LECAM-1 (CD62 L), and could be activated in vitro by CD3 ligation. These data reveal a considerable heterogeneity in the surface phenotype and the functional phenotype of murine lamina propria T cells.  相似文献   

12.
We have compared the expression of CD45RA on αβ and γδ T cells emigrating from the fetal and postnatal thymus. The fetal and postnatal thymus export both CD45RA+ and CD45RA- T cells. The number of γδ+CD45RA+ T cells was remarkably constant regardless of stage of ontogeny or T cell maturity. Around 5--8% of γδ thymic emigrants, thymocytes and peripheral blood lymphocytes expressed CD45RA in both fetal and postnatal animals. In contrast to γδ T cells, up to one quarter of both fetal and postnatal αβ emigrants expressed CD45RA. Post-thymic maturation of CD45RA expression on αβ emigrants, which occurred both before and after birth, appeared to be antigen independent.  相似文献   

13.
The development of T cells belonging to the γδ lineage is not well understood. We have analyzed the cells in the adult murine thymus which express the γδ TcR on the surface in order to learn more about this process. Our data demonstrate a number of clear subpopulations of γδ expressing cells in the thymus based on the expression of Thy-1 and HSA (heat-stable antigen). Only one of these subpopulations, the one expressing both Thy-1 and HSA, contains dividing cells or has a significant rate of turnover. Together with the fact that emigrant γδ cells are HSA+Thy-1+, this suggests that this thymic subpopulation is the sole, or major, source of exported cells. However, the turnover of cells from this population is 5 × 104 - 10 × 104 cells per day, while previous estimates of the rate of export of γδ cells are in the order of 104 cells per day. Furthermore the Vγ profile of recent γδ+ emigrants differs from that of the thymic HSA+Thy-1+ cells. This raises the possibility that only a selected subpopulation of the thymic γδ+HSA+Thy-l+ population is exported, and that some γδ cells may die in situ in the thymus. The function of the other γδ thymic subpopulations, which are turning over very slowly or not at all, (i.e. the HAS?Thy-l? and HAS?Thy-l+ subpopulations) remains unclear.  相似文献   

14.
A candidate avian CD6 homolog is identified by the S3 monoclonal antibody. The S3 antigen exists in a phosphorylated glycoprotein form of 130 kDa and a nonphosphorylated form of 110 kDa. Removal of phosphate groups and N-linked carbohydrates indicates a 78-kDa protein core. During thymocyte differentiation, the γδ T cells do not express S3, whereas mature CD4+ and CD8+ cells of αβ lineage acquire S3 antigen. All αβ T cells in the blood and spleen express the S3 antigen at relatively high levels. In contrast, only the CD8+ sub-population of γδ T cells in the spleen expresses the antigen and neither αβ nor γδ T cells in the intestinal epithelium express the S3 antigen. The S3 antigen is also found on embryonic splenocytes with a phenotypic profile characteristic of avian natural killer cells. The biochemical characteristics and this cellular expression pattern imply that the S3 antigen is the chicken CD6 homolog.  相似文献   

15.
16.
Two aspects of T cell differentiation in T cell receptor (TCR)-transgenic mice, the generation of an unusual population of CD4?CD8?TCR+ thymocytes and the absence of γδ cells, have been the focus of extensive investigation. To examine the basis for these phenomena, we investigated the effects of separate expression of a transgenic TCR α chain and a transgenic TCR β chain on thymocyte differentiation. Our data indicate that expression of a transgenic TCR α chain causes thymocytes to differentiate into a CD4?CD8?TCR+ lineage at an early developmental stage, depleting the number of thymocytes that differentiate into the αβ lineage. Surprisingly, expression of the TCR α chain transgene is also associated with the development of T cell lymphosarcoma. In contrast, expression of the transgenic TCR β chain causes immature T cells to accelerate differentiation into the αβ lineage and thus inhibits the generation of γδ cells. Our observations provide a model for understanding T cell differentiation in TCR-transgenic mice.  相似文献   

17.
Increased proportions of circulating antigen-primed CD45RO+ TCR γδ cells have been found in untreated CoD patients. As certain immunological features are now found in both CoD and healthy persons carrying the HLA DQ2 heterodimer, we sought to establish whether healthy members of the families of CoD patients who are positive for HLA DQ2 and also have increased densities of TCR γδ intraepithelial lymphocytes (IEL) in their small bowel mucosa have elevated levels of circulating TCR γδ memory cells. Peripheral blood T cells were analysed by flow cytometry in 22 patients with CoD and 16 healthy family members. Untreated CoD patients had higher percentages of circulating CD45RO+ TCR γδ cells and CD45RO+ Vδ1+ cells than healthy family members. On the other hand, the amount of circulating Vδ1+ lymphocytes was lower in patients with CoD compared with healthy family members. In contrast, no differences were found between HLA DQ2+ and HLA DQ2? healthy family members in respect of circulating TCR γδ cell subsets. The change in circulating TCR γδ cell subsets found in patients with CoD is thus a consequence of an ongoing immunological process which diminishes on a gluten-free diet rather than a phenomenon directly caused by DQ2. These changes in peripheral blood are not found in healthy individuals who have the same HLA alleles DQA1*0501 and DQB1*0201 encoding the HLA DQ2 and who also have increased densities of TCR γδ IEL in their otherwise normal jejunal mucosa.  相似文献   

18.
19.
We have used the technique of in situ intrathymic injection of fluorescein isothiocyanate to examine L-selectin expression on γδ and αβ T cells immediately after emigrating from the thymus of fetal and postnatal animals. We found that the percentage of L-selectin+ thymocytes exported per day decreased by half after birth and that the export of T cells from the thymus does not rely on expression of the peripheral lymph node homing receptor, L-selectin. Analysis of L-selectin on emigrant and mature T cell subsets revealed a remarkable heterogeneity of expression, both in terms of the numbers of cells expressing this molecule as well as the level of expression. γδ T cells, reportedly not having a propensity for homing to lymph nodes, not only contained the highest proportion of L-selectin+ cells, but also expressed far more of this molecule than either CD4+CD8? or CD4?CD8+ αβ T cells. Furthermore, those emigrant T cells expressing L-selectin are somewhat immature in their expression of this molecule. Subsequent maturation resulted in up-regulation of L-selectin on mature peripheral blood T cells, maturation that was clearly independent of extrinsic antigen. This antigen-independent post-thymic maturation appeared to occur as part of the normal progression from immature thymocyte to mature peripheral T cell in both fetal and postnatal animals.  相似文献   

20.
We followed αβ T cell receptor (TCR) usage in subsets of gut intraepithelial lymphocytes (IEL) in major histocompatibility complex class I-restricted αβ TCR-transgenic (tg) mice. The proportion of tg αβ TCR+ CD8αβ IEL is reduced compared with CD8+ splenocytes of the same animal, particularly under conventional conditions of maintenance. Further fractionation of CD8αβ IEL according to the expression level of surface CD5 revealed that in conventionally housed animals tg TCR+ CD5? CD8αβ IEL are as frequent as in specific pathogen-free (SPF) mice, whereas tg TCR+ CD5int or, even more pronounced, tg TCR+ CD5hi CD8αβ IEL are greatly diminished when compared with mice kept under SPF conditions. Upon antigen-specific stimulation of CD5? CD8αβ IEL in vitro, CD5 surface expression is up-regulated on a large fraction of cells within 48 h. Up-regulation of CD5 surface expression is further enhanced by the presence of the anti-αIEL monoclonal antibody 2E7. This clearly demonstrates that CD5?, and CD5+ CD8αβ IEL cannot be considered as separate T cell lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号