首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NADPH diaphorase in the spinal cord of rats.   总被引:22,自引:0,他引:22  
To identify spinal neurons that may synthesize nitric oxide, cells and fibers histochemically stained for NADPH diaphorase (a nitric oxide synthase) were studied in the spinal cord of rats. The histochemical reaction gave an image similar to the best Golgi impregnations, staining cells down to their finest processes. Transverse, horizontal, and parasagittal 50 and 100 microns sections were used to follow dendritic and axonal arborizations of stained neurons. Major cell groups were identified in the superficial dorsal horn and around the central canal (at all spinal levels), and in the intermediolateral cell column (at thoracic and sacral levels). Scattered positive cells were also found in deeper dorsal horn, ventral horn, and white matter. In some cases, axons of cells in the dorsal horn could be traced into the white matter; many of these cells resembled neurons projecting to various supraspinal targets. Stained cells in the intermediolateral column, which sent their axons into the ventral root, were presumed to be preganglionic autonomic neurons. Dense plexes of fibers were stained in laminae I and II and in the intermediolateral column. A large number of NADPH diaphorase-positive neurons in the spinal cord appear to be involved in visceral regulation. Fibers of the intermediolateral system had a special relationship with vasculature, suggesting that nitric oxide may help to couple neural activity with regional blood flow in the spinal cord. The abundance of NADPH diaphorase-positive neurons and fibers in the superficial dorsal horn suggests that nitric oxide may also be involved in spinal sensory processing.  相似文献   

2.
The present study used nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry to identify populations of neurons containing nitric oxide synthase and to describe their putative migration during development of the human spinal cord. As early as week 6 (W6) of gestation, diaphorase expression was observed in sympathetic preganglionic neurons (SPNs) and interneurons of the ventral horn. As development proceeded, the SPNs translocated dorsally to form the intermediolateral nucleus, and the interneurons remained scattered throughout the ventral horn. In addition to the dorsal translocation of SPNs, a unique dorsomedially directed migratory pathway was observed. At later stages of development, other groups of SPNs were identified laterally in the lateral funiculus and medially in the intercalated and central autonomic regions. In addition, two "U-shaped" groups of diaphorase-labeled cells were identified around the ventral ventricular zone at W7. Cells of these groups appeared to translocate dorsally over the next weeks and presumably give rise to interneurons within the deep dorsal horn and surrounding the central canal. Furthermore, during W7-14 of gestation, the deep dorsal horn contained a number of diaphorase-positive cells, whereas the superficial dorsal horn was relatively free of staining. These data demonstrate that nitric oxide is present very early in human spinal cord development and that two unique cell migrations initially observed in rodents have now been identified in humans. Furthermore, nitric oxide may be expressed in some populations of neurons as they migrate to their final positions, suggesting that this molecule may play a role in neuronal development.  相似文献   

3.
The development of γ-aminobutyric acid (GABA)-immunoreactive neurons was investigated in the embryonic and posthatch chick lumbosacral spinal cord by using pre- and postembedding immunostaining with an anti-GABA antiserum. The first GABA-immunoreactive cells were detected in the ventral one-half of the spinal cord dorsal to the lateral motor exception of the lateral motor column, appeared throughout the entire extent of the ventral one-half of the spinal gray matter by E6. Thereafter, GABA-immunoreactive neurons extended from ventral to dorsal regions. Stained perikarya first appeared at E8 and then progressively accumulated in the dorsal horn, while immunoreactive neurons gradually declined in the ventral horn. The general pattern of GABA immunoreactivity characteristic of mature animals had been achieved by E12 and was only slightly altered afterwards. In the dorsal horn, most of the stained neurons were observed in laminae I–III, both at the upper (LS 1–3) and at the lower (LS 5–7) segments of the lumbosacral spinal cord. In the ventral horn, the upper and lower lumbosacral segments showed marked differences in the distribution of stained perikarya. GABAergic neurons were scattered in a relatively large region dorsomedial to the lateral motor column at the level of the upper lumbosacral segments, whereas they were confined to the dorsalmost region of lamina VII at the lower segments. The early expression of GABA immunoreactivity may indicate a trophic and synaptogenetic role for GABA in early phases of spinal cord development. The localization of GABAergic neurons in the ventral horn and their distribution along the rostrocaudal axis of the lumbosacral spinal cord coincide well with previous physiological findings, suggesting that some of these GABAergic neurons may be involved in neural circuits underlying alternating rhythmic motor activity of the embryonic chick spinal cord. © 1994 Wiley-Liss, Inc.  相似文献   

4.
The development of GABAergic neurons in the spinal cord of the rat has been investigated by immunocytochemical staining of frozen sections with anti-gamma-aminobutyric acid (GABA) antiserum. In the cervical cord, GABA-immunoreactive fibers first appeared at embryonic day (E) 13 in the presumptive white matter within the ventral commissure, ventral funiculus, and dorsal root entrance zone, and in the ventral roots. There were no GABA-immunoreactive cell bodies detected at this age. By E14, motoneurons, the earliest generated spinal cells, were the first cell population to become GABA-immunoreactive at the cell body level. Thereafter, GABA-immunoreactive neurons increased progressively in number and extended from ventral to dorsal regions. GABA-immunoreactive relay neurons within lamina I of the dorsal horn were initially detected at E17. Interneurons in the substantia gelatinosa, the latest generated cells in the spinal cord, were also the last to express the GABA immunoreactivity at E18. Immunoreactive neurons peaked in intensity and extent at E18 and 19. GABA immunoreactivity was only detectable in neurons within the intermediate and marginal zones 1-3 days after they withdrew from the cell cycle. This contrasts to glutamate decarboxylase immunoreactivity, which is detected in precursor cells in the ventricular zone prior to, or during, withdrawal from the cell cycle. Toward the end of gestation, GABA immunoreactivity declined in intensity and extent. This regression began in the ventral horn of the cervical region and ended in the dorsal horn of the lumbosacral region. During the first week after birth, immunoreactivity in motoneurons and in many other neurons within the ventral horn, intermediate gray, and deeper layers of the dorsal horn disappeared, and only in those neurons predominantly within the superficial layers of the dorsal horn did it persist into adulthood. Thus, the expression and regression of GABA immunoreactivity in the spinal cord followed ventral-to-dorsal, rostral-to-caudal, and medial-to-lateral gradients. These observations indicate that the majority of embryonic spinal neurons pass through a stage of transient expression of GABA immunoreactivity. The functional significance of this transient expression is unknown, but it coincides with the period of intense neurite growth of motoneurons, sensory neurons, and interneurons, and of neuromuscular junction formation, suggesting that the transient presence of GABA may play an important role in the differentiation of sensorimotor neuronal circuits.  相似文献   

5.
In order to examine the relationship between gephyrin (the peripheral membrane protein associated with glycine receptors) and glycinergic boutons, we have carried out a post-embedding immunogold study of glycine-like immunoreactivity on sections of rat lumbar spinal cord which had previously been reacted with monoclonal antibody to gephyrin. In all three areas examined (laminae I and II, lamina III and lamina IX) the majority of profiles which were presynaptic at gephyrin-immunoreactive synapses were enriched with glycine-like immunoreactivity. It was estimated that at least 83% of profiles presynaptic to gephyrin-immunoreactive synapses in the superficial dorsal horn (laminae I and II) were glycine-immunoreactive, while for lamina III and the ventral horn (lamina IX) the proportions were at least 91% and 98% respectively. This provides strong evidence that glycine is a transmitter at those synapses where gephyrin- and glycine-like immunoreactivities are both present, but suggests that gephyrin may sometimes be expressed at non-glycinergic synapses and indicates the need for caution in using gephyrin-immunoreactivity as a marker for glycinergic synapses within the spinal cord. By reacting serial sections of dorsal horn with antisera to glycine and GABA, we have shown that many boutons in laminae I-III of the dorsal horn show both types of immunoreactivity and are therefore likely to use both amino acids as inhibitory transmitters. Many of the boutons which were presynaptic at axoaxonic synapses in the ventral part of lamina II and in lamina III were glycine- and GABA-immunoreactive and in many cases the postsynaptic element was the central axon of a type II synaptic glomerulus. Taken together with pharmacological evidence, this suggests that inhibitory intemeurons in the dorsal horn which use both GABA and glycine may be important in controlling the flow of information from hair follicle afferents to other spinal neurons.  相似文献   

6.
The fact that GABA receptor agonists and antagonists influence nociceptive thresholds when microinjected into the rostroventral medulla or in the spinal cord may reflect the involvement of GABAergic neuronal elements in endogenous antinociceptive pathways. In the present study we used immunocytochemistry and retrograde tract tracing to investigate the contribution of GABAergic projection neurons to the antinociceptive network linking the midbrain periaqueductal gray matter (PAG), the nucleus raphe magnus (NRM), and the spinal cord dorsal horn. The tracer, WGAapoHRP-Au was injected into either the NRM or the spinal cord and the distribution of labeled neurons in sections of the PAG and medulla, respectively, was studied. The same sections were immunostained to demonstrate GABA-immunoreactive neurons. Although GABA-immunoreactive neurons were abundant in the PAG, only 1.5% were retrogradely labeled from the NRM. Similarly, very few GABA-immunoreactive neurons within the cytoarchitectural boundaries of the NRM were retrogradely labeled from the spinal cord. A much higher proportion of GABA-immunoreactive neurons in the region lateral to the NRM, however, were retrogradely labeled from the spinal cord. Eighteen percent of GABA-immunoreactive neurons were retrogradely labeled in the nucleus reticularis paragigantocellularis; conversely, 15% of the retrogradely labeled neurons in this region were GABA-immunoreactive. These results indicate that GABAergic projections constitute a very minor component of the PAG-NRM-spinal cord pathway; however, there is a significant contribution of GABAergic neurons to the spinal projections that originate lateral to the NRM. The majority of GABAergic neurons in the PAG and NRM are presumed to be inhibitory interneurons that directly or indirectly regulate activity in efferent pathways from these regions.  相似文献   

7.
In this study we characterized the distribution of glycine receptor immunoreactivity in the spinal cord of the rat by using monoclonal antisera directed against the purified glycine receptor. There was dense, punctate glycine receptor immunoreactive staining in all regions of the gray matter ventral to the substantia gelatinosa. The densest staining was found in laminae III and IV of the dorsal horn. There were also distinct, tributarylike bands of punctate staining that extended well into the white matter of the lateral and ventral funiculi. The only consistent cell body staining was found in small neurons of the ventral horn. The labelled neurons were distributed among larger, unlabelled motoneurons. In general, the pattern of glycine receptor immunoreactivity was similar at all levels of the spinal cord and was comparable to that seen with binding of a tritiated glycine receptor antagonist, strychnine, to sections of rat spinal cord (Zarbin et al.: J. Neurosci. 1:532-547, '81). Two important exceptions, however, were observed. In contrast to the high levels of strychnine binding reported in the substantia gelatinosa, we found almost no glycine receptor immunoreactivity in laminae I and II of the superficial dorsal horn of the spinal cord or of the trigeminal nucleus caudalis. There was also a notable absence of antibody staining in the intermediolateral cell column of the thoracic cord. The presence of dense glycine receptor immunoreactivity in the region of lamina V and its absence in the superficial dorsal horn are discussed in terms of a possible differential glycinergic control of nociceptive neurons of laminae I and V.  相似文献   

8.
The NO-cGMP Pathway in Neonatal Rat Dorsal Horn   总被引:2,自引:0,他引:2  
Incubation of slices of neonatal rat spinal cord with nitric oxide donor compounds produced marked elevations in cyclic guanosine 3',5'monophosphate (cGMP) levels. The excitatory amino acid receptor agonists N -methyl- d -aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) produced smaller increases, which were blocked by the nitric oxide synthase (NOS) inhibitor M l - N G-nitroarginine (NOArg), indicating that these cGMP responses were mediated by nitric oxide. Immunocytochemistry revealed that, in response to NMDA, cGMP accumulated in a population of small cells and neuropil in laminae II and III of the dorsal horn. This area was also shown, by reduced nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase histochemistry, to contain NOS. These observations suggest that, in the rat spinal cord, NMDA receptor activation is linked to the formation of NO and, hence, of cGMP. This pathway is located selectively in the superficial dorsal horn, consistent with a role in the processing of nociceptive signals.  相似文献   

9.
The colocalization of parvalbumin (PV), calbindin-D28k (CaBP), GABA immunoreactivities, and the ability to accumulate 3H-D-aspartate selectively were investigated in neurons of laminae I-IV of the dorsal horn of the rat spinal cord. Following injection of 3H-D-aspartate into the basal dorsal horn (laminae IV-VI), perikarya selectively accumulating 3H-D-aspartate were detected in araldite embedded semithin sections by autoradiography, and consecutive semithin sections were treated to reveal PV, CaBP and GABA by postembedding immunocytochemistry. Perikarya accumulating 3H-D-aspartate were found exclusively in laminae I-III, and no labelled somata were found in deeper layers or in the intermediolateral column although the labelled amino acid clearly spread to these regions. More than half of the labelled cells were localized in lamina II. In this layer, 16.4% of 3H-D-aspartate-labelled perikarya were also stained for CaBP. In contrast to CaBP, PV or GABA was never detected in neurons accumulating 3H-D-aspartate. A high proportion of PV-immunoreactive perikarya were also stained for GABA in laminae II and III (70.0% and 61.2% respectively). However, the majority of CaBP-immunoreactive perikarya were GABA-negative. GABA-immunoreactivity was found in less than 2% of the total population of cells stained for CaBP in laminae I-IV. A significant proportion of the GABA-negative but PV-immunoreactive neurons also showed CaBP-immunoreactivity in laminae II and IV. These results show that out of the two calcium-binding proteins, CaBP is a characteristic protein of a small subpopulation of neurons using excitatory amino acids and PV is a characteristic protein of a subpopulation of neurons utilizing GABA as a transmitter. However, both proteins are present in additional subgroups of neurons, and neuronal populations using inhibitory or excitatory amino acid transmitters are heterogeneous with regard to their content of calcium-binding proteins in the dorsal horn of the rat spinal cord.  相似文献   

10.
Three types of GABA-immunoreactive cells in the lamprey spinal cord   总被引:1,自引:0,他引:1  
Polyclonal antisera raised against conjugated GABA were used to study the distribution of GABAergic neurons in the spinal cords of lampreys (Lampetra fluviatilis and Ichtyomyzon unicuspis) using immunofluorescence and peroxidase-antiperoxidase techniques. Three morphologically distinct types of GABA-immunoreactive (GABA-ir) cell bodies were observed, multipolar neurons in the lateral grey cell column, apparently bipolar cells in the ventral aspect of the dorsal horn, and small liquor-contacting cells surrounding the central canal. A high density of immunoreactive fibers of spinal origin were present in the lateral and ventral funiculi, whereas the dorsal column had a relatively low density. Dense GABA-ir plexuses were situated in the lateral spinal margin, and in the dorsal part of the dorsal horn. A chronic lesion of the rostral spinal cord did not result in any observable loss of GABA-ir fibers below or above the lesion, suggesting that the 3 types of segmental GABA-ir neurons are the main sources of the GABAergic innervation of the lamprey spinal cord.  相似文献   

11.
Using whole-cell patch-clamp recordings from spinal cord slices of young (10-15 days old) rats, we have characterized and compared the properties of inhibitory synaptic transmission in lamina II and laminae III-IV of the dorsal horn, which are involved in the processing of nociceptive and non-nociceptive sensory information, respectively. All (100%) of laminae III-IV neurons, but only 55% of lamina II neurons, received both gamma-aminobutyric acid (GABA)ergic and glycinergic inputs. The remaining 45% of lamina II neurons received only GABAergic synapses. Neurons receiving only glycinergic synapses were never observed. Among the 55% of lamina II neurons receiving both GABAergic and glycinergic inputs, all displayed a small proportion (approximately 10%) of mixed miniature inhibitory postsynaptic currents (mIPSCs), indicating the presence of a functional GABA/glycine co-transmission at a subset of synapses. Such a co-transmission was never observed in laminae III-IV neurons. The presence of mixed mIPSCs and the differences in decay kinetics of GABAA-type receptor mIPSCs between lamina II and laminae III-IV were due to the endogenous tonic production of 3alpha5alpha-reduced steroids (3alpha5alpha-RS) in lamina II. Stimulation of the local production of 3alpha5alpha-RS was possible in laminae III-IV after incubation of slices with progesterone, subcutaneous injection of progesterone or induction of a peripheral inflammation. This led to the prolongation of GABAergic mIPSCs, but failed to induce the appearance of mixed mIPSCs in laminae III-IV. Our results indicate that, compared with lamina II, inhibitory synaptic transmission in laminae III-IV is characterized by a dominant role of glycinergic inhibition and the absence of a functional GABA/glycine co-transmission.  相似文献   

12.
This study examines the expression of pituitary adenylate cyclase activating polypeptide (PACAP) mRNA in the rat spinal cord during normal conditions and in response to sciatic nerve transection. Previously, PACAP immunoreactivity has been found in fibers in the spinal cord dorsal horn and around the central canal and in neurons in the intermediolateral column (IML). Furthermore, in the dorsal root ganglia, PACAP immunoreactivity and PACAP mRNA expression have been observed preferentially in nerve cell bodies of smaller diameter terminating in the superficial laminae of the dorsal horn. However, neuronal expression of PACAP mRNA in adult rat spinal cord appeared limited to neurons of the IML. By using a refined in situ hybridization protocol, we now detect PACAP mRNA expression in neurons primarily in laminae I and II, but also in deeper laminae of the spinal cord dorsal horn and around the central canal. In addition, PACAP mRNA expression is observed in a few neurons in the ventral horn. PACAP expression in the ventral horn is increased in a population of large neurons, most likely motor neurons, both after distal and proximal sciatic nerve transection. The proposed role of PACAP in nociception is strengthened by our findings of PACAP mRNA-expressing neurons in the superficial laminae of the dorsal horn. Furthermore, increased expression of PACAP in ventral horn neurons, in response to nerve transection, suggests a role for PACAP in repair/regeneration of motor neurons.  相似文献   

13.
We analyzed the distribution and light-microscopic features of the NADPH diaphorase-containing structures in the lizard hippocampus, likely to correspond to nitric oxide. We also studied co-localization of NADPH diaphorase with the neurotransmitter GABA, the calcium-binding protein parvalbumin, and the neuropeptide somatostatin, in order to examine whether putative nitric oxide-synthesizing neurons represent a different subpopulation of GABA cells, on which the authors recently reported in lizards. We also studied co-localization of NADPH diaphorase with parvalbumin or somatostatin in mice to ascertain whether the characteristics of this population in reptiles parallel the situation in mammals. Most of the positive NADPH diaphorase neurons were stained in a Golgi-like manner and were in the plexiform layers of the lizard hippocampus with morphologies ranging from bipolar to multipolar. Co-localization with GABA was 100%, and NADPH diaphorase-positive neurons in the lizard hippocampus did not contain parvalbumin or somatostatin. The results indicate that putative nitric oxide-synthesizing neurons represent a distinct subpopulation of GABA interneurons in the lizard hippocampus. Two different types of fibers were described in the plexiform layers: one type bearing thick varicosities, and the other thinner ones. We discuss the possibility that at least part of the positive fibers arise from a hypothalamic aminergic nucleus containing the third ventricle, the periventricular hypothalamic organ. Most radial glia were stained almost completely and formed typical end-feet both at the pia and around capillaries. The results of this study confirm that the capacity for synthesizing nitric oxide is linked to a determined set of neuronal markers depending on the specific brain region, and they provide new resemblances between hippocampal regions in different classes of vertebrates. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Lu Y  Westlund KN 《Brain research》2001,889(1-2):118-130
The present study demonstrates sites of expression for Fos protein in the brainstem and lumbosacral spinal cord of rats subjected to mustard oil irritation of the colon. The protective effect of baclofen, a selective GABA(B) receptor agonist, on the induced Fos protein increases was determined. Mustard oil injected into the lumen of the colon produces an acute site-specific inflammation. Immunocytochemical localization of Fos protein in neuronal nuclei was evident after 1 h, was greatest at 2 h and was still evident but declining at 8 h. In the spinal cord the majority of Fos labeled neurons were localized in the superficial laminae of lumbar (L6) cord with more found in the sacral (S1) cord. Some labeled neurons were also found in the deeper spinal laminae, intermediolateral nucleus and around lamina X. Brainstem sites expressing Fos included the nucleus of the solitary tract in the medulla, parabrachial, locus coeruleus, pontine and caudal dorsal raphe nuclei and periaqueductal gray. Weak Fos protein labeling existed in a few cells in vehicle control animals. Systemic administration of the GABA(B) receptor agonist, baclofen (10 mg/kg, i.p.), significantly reduced Fos expression in the spinal cord after mustard oil treatment but significantly increased the relative number of nuclei labeled in the nucleus of the solitary tract. Baclofen also significantly decreases dorsal horn CGRP immunoreactivity relative to the increased levels seen after inflammation of the colon. The SP content increases observed after inflammation of the colon were not altered by baclofen. These data suggest that: (1) neurons in regions important for nociceptive transmission, descending inhibitory control and autonomic control are activated by noxious stimulation of the colon, and (2) baclofen specifically reduces Fos expression in the superficial dorsal horn of the spinal cord induced by nociceptive afferent input.  相似文献   

15.
The primary objective of this study was to determine the pattern of motor neuron loss in thoracic spinal cord from amyotrophic lateral sclerosis (ALS) patients. A prerequisite to this objective was to examine control human spinal cord with the techniques to be used for ALS specimens. Combined choline acetyltransferase (ChAT) immunocytochemistry and NADPH diaphorase histochemistry (a marker for nitric oxide synthase) revealed a staining pattern very similar to that seen in other mammals. Stained cell groups were present in the superficial dorsal horn (labeled only by diaphorase), the deep dorsal horn (double-labeled), the intermediate region (double-labeled), around the central canal (mostly double-labeled), autonomic motor neurons (AMNs; either double-labeled or ChATpositive only), and somatic motor neurons (SMNs; ChAT-positive only). These similarities indicated that most cell types previously described in other mammals are present in human spinal cord. However, the percentage of AMNs that were double-labeled was much higher in humans (94%) than in rodents (approximately 66%) or in nonmammalian vertebrates (essentially 0%). In ALS, extensive loss of SMNs is known to occur in cervical and lumbar enlargements, and similarly, our specimens revealed a degeneration of nearly all SMNs in thoracic spinal cord. In contrast, the average number of AMNs in ALS specimens was not significantly different from that in controls, directly confirming clinical observations suggesting that AMNs do not degenerate in ALS. Most importantly, the percentage of AMNs that were diaphorase-negative was not decreased in ALS, indicating that AMN resistance in this degenerative neurological disorder probably is independent of nitric oxide synthase expression.  相似文献   

16.
A pre-embedding immunohistochemical method to detect Met-enkephalin was combined with postembedding immunohistochemistry with GABA and glycine antisera, in order to determine whether or not Met-enkephalin coexisted with either of these inhibitory transmitters in neuronal cell bodies within the superficial dorsal horn of the rat. The distribution of immunostaining with the three antisera was similar to that which has been described previously. Of 74 enkephalin-immunoreactive neurones in laminae II and III, 51 were immunoreactive with the GABA antiserum and 23 were not. All of the neurones which were not GABA-immunoreactive were located in lamina II. None of the enkephalin-immunoreactive cells showed glycine-like immunoreactivity. These results suggest that enkephalin is present both in GABAergic neurones and in neurones which do not contain GABA within the rat superficial dorsal horn. It is likely that the population of neurones immunoreactive with both enkephalin and GABA antisera includes lamina II islet cells and that the population which were enkephalin-immunoreactive but not GABA-immunoreactive includes stalked cells. In addition, this latter group may correspond to those cells which possess both enkephalin- and substance P-like immunoreactivity and which have been described previously in this area  相似文献   

17.
The distribution of gamma-amino-butyric acid containing neurons in the Mouse spinal cord has been studied at both the light and electron microscope levels using antibodies against GABA and revelation by the Fab-peroxidase technique. At the light microscope level immunoreactive profiles of perikarya and neuronal processes were particularly abundant in the superficial laminae (I-IV) of the dorsal horn. Scattered soma profiles were found in the other layers and more particularly in the lamina X where Liquor contacting immuno-reactive neurons could be detected. GABAergic cell bodies were very sparse in the ventral horn. Electron microscopic observations confirmed the light microscope results: terminals constituted synaptic symmetrical contacts that provide a morphological basis for inhibition in the dorsal horn and for post-synaptic inhibition of motoneurons in the ventral horn.  相似文献   

18.
It is hypothesized that terminals containing gamma-aminobutyric acid (GABA) participate in presynaptic inhibition of primary afferents. To date, few convincing GABA-immunoreactive (GABA-IR) axo-axonic synapses have been demonstrated in support of this theory. The goal of this study is to document the relationship between GABA-IR profiles and central terminals in glomerular complexes in lumbar cord of the monkey (Macaca fascicularis). In addition, the relationship between GABA-IR profiles and other neural elements are analyzed in order to better understand the processing of sensory input in the spinal cord. GABA-IR cell bodies were present in Lissauer's tract (LT) and in all laminae in the spinal gray matter except lamina IX. GABA-IR fibers and terminals were heavily concentrated in LT; laminae I, II, and III; and present in moderate concentration in the deeper laminae of the dorsal horn, ventral horn (especially in association with presumed motor neurons), and lamina X. Electron microscopic analysis confined to LT and laminae I, II, and III demonstrated GABA-IR cell bodies, dendrites, and myelinated and unmyelinated fibers. GABA-IR cell bodies received sparse synaptic input, some of which was immunoreactive for GABA. The majority of the synaptic input to GABA-IR neurons occurred at the dendritic level. Furthermore, the presence of numerous vesicle-containing GABA-IR dendrites making synaptic interactions indicated that GABA-IR dendrites also provided a major site of output. Two consistent arrangements were observed in laminae I-III concerning vesicle-containing GABA-IR dendrites: 1) they were often postsynaptic to central terminals and 2) they participated in reciprocal synapses. The majority of GABA-IR axon terminals observed contained round clear vesicles and varying numbers of dense core vesicles. Only on rare occasions were GABA-IR terminals with flattened vesicles observed. GABA-IR terminals were not observed as presynaptic elements in axo-axonic synapses; however, on some occasions, GABA-IR profiles presumed to be axon terminals were observed postsynaptic to large glomerular type terminals. Our findings suggest that a frequent synaptic arrangement exists in which primary afferent terminals relay sensory information into a GABAergic system for further processing. Furthermore, GABA-IR dendrites appear to be the major source of input and output for this inhibitory system. The implications of this GABAergic neurocircuitry are discussed in relation to the processing of sensory input in the superficial dorsal horn and in terms of mechanisms of primary afferent depolarization (PAD).  相似文献   

19.
The current study was designed to determine if the monoaminergic descending inhibitory system and the glycinergic and GABAergic inhibitory systems were activated in the spinal cord in the presence of peripheral mononeuropathy produced by loose ligatures around the common sciatic nerve. The time course of withdrawal latencies to thermal stimuli were assayed in lesioned and sham-operated rats. The levels of monoamines (serotonin; 5-HT, noradrenaline, and dopamine), glycine and γ-aminobutyric acid (GABA) in the dorsal half of the spinal cord were measured using HPLC with electrochemical detection. Furthermore, on day 7 after nerve ligation, intrathecal methysergide, yohimbine, strychnine or bicuculline was administered in order to investigate the roles of these inhibitory neuromodulators in this pathological pain state. The levels of 5-HT and noradrenaline significantly increased in both ipsi- and contralateral sides of the dorsal half of the lumbar spinal cord in the lesioned, but not sham-operated animals. The levels of glycine and GABA in the ipsilateral dorsal half of the spinal cord increased significantly and were significantly higher than in the contralateral side. Intrathecal antagonists of 5-HT, noradrenaline, glycine and GABA produced enhancement of the magnitude of hyperalgesia on the lesioned hindpaw. We also examined the effects of four daily single treatments with intrathecal MK-801 beginning 15 min prior to nerve ligation on the development of thermal hyperalgesia and on the contents of the neuromodulators in the ligation model. MK-801 treatment effectively abolished the increases in 5-HT, noradrenahne, glycine and GABA levels as well as preventing the development of hyperalgesia. The results of the present study suggest that the pathological pain state activates or increases the activity of these inhibitory systems.  相似文献   

20.
Distribution of nitric oxide synthase in intracardiac ganglion cells located in human, monkey and canine right atria was histologically investigated using the reduced nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase method and acetylcholinesterase histochemistry. In the intracardiac ganglion, many large neurons exhibited both positive reactions, whereas some of the NADPH diaphorase-positive small neuronal cells were shown with negative acetylcholinesterase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号