首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of several lymphokines by freshly isolated CD4+ T cells has been analyzed at the single-cell level, after stimulation with staphylococcal enterotoxin B (SEB). High frequencies of cells producing interleukin-2 (IL-2) and interferon-γ (IFN-γ) were induced, but very low frequencies of CD4+ T cells produced IL-4, IL-5 or IL-10 in response to SEB. Exogenously added IL-4 markedly altered the lymphokine profile induced during primary SEB stimulation. IFN-γ production was reduced, while a high fraction of cells contained IL-10 and IL-4 after activation in the presence of IL-4. We further demonstrate that IL-4 and IL-10 or IFN-y production was selectively induced in resting, high-density CD4+ T cells during primary stimulation, by SEB + IL-4 or SEB. Under conditions where both IL-10 and IFN-γ were produced, most cells contained only one of the two lymphokines.  相似文献   

2.
HRF20 (CD59) is one of the membrane-associated complement regulatory proteins. The characteristic function of CD59 is to prevent membrane attack complex (MAC) formation on the cell surface and to protect the cell from complement-mediated cell lysis. We examined the expression of CD59 antigen on T cell subpopulations in patients with acute infectious mononucleosis (IM) and analysed the relationship between the amount of CD59 expression and activation-induced cell death of mature T cells with apoptosis. Decreased expression of CD59 on CD8+ T cells, especially on CD45RO+ and HLA-DR+ activated T cells, was marked in acute IM patients. In contrast, activated CD4+ T cells from IM patients expressed as much CD59 antigen as CD4+ T cells from healthy volunteers. After incubation-induced cell death, viable CD8+ T cells showed normal amounts of CD59 antigen on their surface. CD59dim CD8+ T cells were more susceptible to apoptosis than CD59bright CD8+ T cells. These findings suggest that decreased expression of CD59 on CD8+ T cells may discriminate the susceptibility of activated CD8+ T cells to activation-induced cell death in IM.  相似文献   

3.
Autophagy is an intracellular degradation system that plays an important role in T‐cell survival. However, the precise mechanism linking autophagy and cell death in primary human T cells is unclear because methods for monitoring autophagy in small numbers of primary human cells remain controversial. We established a novel method for assessing autophagy in activated human T cells using a retroviral GFP–LC3 expression system. We found that autophagy was induced after TCR stimulation and that autophagy‐defective naïve CD4+ T cells were susceptible to apoptosis through the intrinsic apoptotic pathway. Enhanced apoptosis of autophagy‐defective T cells resulted from accumulation of ROS due to impaired mitophagy. We also demonstrated that effector memory CD4+ T cells had lower autophagic activity than naïve CD4+ T cells, which contributed to their enhanced apoptosis due to increased ROS. Moreover, blocking autophagy increased intracellular mitochondrial volume and ROS levels in activated T cells. These results suggest a protective role of autophagy as an anti‐oxidant system in activated human T cells. The combination of an autophagy blocker and a mitochondrial electron transport chain inhibitor has a synergistic effect on T‐cell death, which could be a novel strategy for induction of T‐cell apoptosis.  相似文献   

4.
The effect that multiple percutaneous exposures to Schistosoma larvae has on the development of early CD4+ lymphocyte reactivity is unclear, yet it is important in the context of humans living in areas where schistosomiasis is endemic. In a murine model of multiple infections, we show that exposure of mice to repeated doses (4×) of Schistosoma mansoni cercariae, compared to a single dose (1×), results in CD4+ T cell hyporesponsiveness within the skin-draining lymph nodes (sdLN), manifested as reduced CD4+ cell proliferation and cytokine production. FoxP3+ CD4+ regulatory T cells were present in similar numbers in the sdLN of 4× and 1× mice and thus are unlikely to have a role in effecting hyporesponsiveness. Moreover, anergy of the CD4+ cell population from 4× mice was slight, as proliferation was only partly circumvented through the in vitro addition of exogenous interleukin-2 (IL-2), and the in vivo blockade of the regulatory molecule PD1 had a minimal effect on restoring responsiveness. In contrast, IL-10 was observed to be critical in mediating hyporesponsiveness, as CD4+ cells from the sdLN of 4× mice deficient for IL-10 were readily able to proliferate, unlike those from 4× wild-type cohorts. CD4+ cells from the sdLN of 4× mice exhibited higher levels of apoptosis and cell death, but in the absence of IL-10, there was significantly less cell death. Combined, our data show that IL-10 is a key factor in the development of CD4+ T cell hyporesponsiveness after repeated parasite exposure involving CD4+ cell apoptosis.  相似文献   

5.
Clonal deletion represents an important mechanism for the establishment of tolerance, by the elimination of autoreactive T cells. Deletion is accomplished by programmed cell death, termed apoptosis, induced by mobilization of the T cell receptor (TCR) on both thymocytes and mature T cells. The mechanism which drives T cells towards cell death or cell proliferation after TCR mobilization remains unclear. We show here that the mobilization of the CD3/TCR complex of both CD4+ and CD8+ single-positive medullary human thymocytes and human mature activated T cells, in the absence of accessory cells, leads to an activation-induced cell death process by apoptosis. In both cases, apoptosis was associated with interferon (IFN)-γ gene expression and secretion in the absence of interleukin (IL)-2 gene expression; and the addition of anti-IFN-γ antibody prevented cell death. Apoptosis could also be prevented by cyclosporin A (CsA) treatment and could be re-induced by the addition of IFN-γ to CsA-treated cells. Addition of IL-2 had two different effects, it prevented apoptosis and also allowed proliferation in response to CD3 monoclonal antibody. Addition of IL-1, which induces IL-2 gene expression and secretion or addition of accessory cells, had the same preventive effect. These results suggest that the uncoupling of IFN-γ and IL-2 gene expression following CD3/TCR mobilization initiates apoptosis of human T cells at several different stages during development and activation. We propose that co-signals provided by accessory cells allow a coupling of IL-2 gene and IFN-γ gene expression, and that an essential role for IL-2 secretion in T cell activation involves the inhibition of a death program induced by IFN-γ secretion.  相似文献   

6.
7.
We sought to investigate the expression of Fas and FasL on T cell surface and caspase 8 involvement in T cell apoptosis promoted by serum IL-10 in systemic lupus erythematosus(SLE) patients.Cells and sera were obtained from 35 SLE patients.Apoptosis of T cells in patients with SLE was increased and associated with the SLE disease activity index(SLEDAI).Elevated expression of Fas and FasL on T cell surface contributed to increased apoptosis of T cells.Increased IL-10 in the sera of SLE patients was capable of inducing Fas and FasL expression on CD4~+T cell surface,promoting apoptosis of this cell subset.Decreased IL-10 serum levels and low expression of Fas were found in 5 patients of the first follow-up group after 2-month treatment.In another group with one-year treatment,the SLEDAI declined to inactive scores.Serum IL-10 was decreased significantly,and expression of Fas and FasL on T cells was also reduced.Declined apoptosis was predominant only in CD4~+T cell subset.When sera with high level of IL-10 were used to culture PBMCs from healthy controls,activated caspase 8 was elevated in CD3~+T,CD4~+T and CD8~+T cells.The study showed that serum IL-10 induced apoptosis of T cell subsets via the caspase8 pathway initiated by Fas signaling.Increased apoptosis of T cells contributes to autoantigen burden,which is pathogenic in the development of SLE.  相似文献   

8.
Human CD4+CD25highFOXP3+ T regulatory cells (Treg) can suppress responder T cell (RC) functions by various mechanisms. In co-cultures of Treg and autologous activated RC, both cell subsets up-regulate the expression of granzymes and perforin, which might contribute to Treg-mediated suppression. Here, we investigate the sensitivity and resistance of Treg and RC to granzyme/perforin-mediated death. CD4+CD25neg RC were single cell-sorted from the peripheral blood of 25 cancer patients and 15 normal controls. These RC were carboxyfluorescein diacetate succinimidyl ester (CFSE) labeled and co-cultured with autologous CD4+CD25highFOXP3+ Treg?±?150 or ±1,000 IU/mL of interleukin-2 (IL-2) to evaluate suppression of RC proliferation. In addition, survival of the cells co-cultured for 24 h and 5 days was measured using a flow-based cytotoxicity assay. Freshly isolated Treg and RC expressed granzyme A (GrA), granzyme B (GrB), and perforin. Percentages of positive cells were higher in cancer patients than controls (p?<?0.01) and increased upon OKT3 and IL-2 stimulation. Treg, co-cultured with RC at 150 IU/mL of IL-2, no longer expressed cytotoxins and became susceptible to RC-mediated, granzyme/perforin-dependent death. However, in co-cultures with 1,000 IU/mL of IL-2, Treg became resistant to apoptosis and induced GrB-dependent, perforin-independent death of RC. When the GrB inhibitor I or GrB-specific and GrA-specific small inhibitory ribonucleic acids were used to block the granzyme pathway in Treg, RC death, and Treg-mediated suppression of RC, proliferation were significantly inhibited. Human CD4+CD25high Treg and CD4+CD25neg RC reciprocally regulate death/growth arrest by differentially utilizing the granzyme–perforin pathway depending on IL-2 concentrations.  相似文献   

9.
10.
We examined the CD8+ T cell response to lymphocytic choriomeningitis virus (LCMV) in mice doubly transgenic for an LCMV-specific TCR and for either bcl-xL or bcl-2. Clonal down-sizing of the anti-viral CD8+ T cell response and the generation of T cell memory was not influenced by constitutive expression of these anti-apoptotic proteins in T cells. Expression of Bcl-xL or Bcl-2 did, however, prevent LCMV peptide-induced peripheral deletion of mature CD8+ T cells in vivo and apoptosis of activated LCMV-specific effector T cells in vitro. The CD8+ T cells “rescued” by Bcl-xL or Bcl-2 from peptide antigen-induced cell death were anergic and this could not be reversed by addition of IL-2 in vitro or by adoptive transfer into antigen-free recipient mice followed by LCMV infection in vivo. Taken together, we show here that 1) Bcl-xL or Bcl-2 are functionally equivalent in their ability to modulate CD8+ T cell survival in vivo, 2) distinct apoptosis signaling pathways exist in CD8+ T cells, one that can be inhibited by Bcl-2 or Bcl-xL and one that cannot be blocked, and 3) apoptosis of CD8+ effector T cells during the declining phase of an immune response is not prevented by constitutive expression of the anti-apoptotic proteins Bcl-xL and Bcl-2.  相似文献   

11.
An optimal stimulation of CD4+ cells in an immune response requires not only signals transduced via the TcR/CD3 complex, but also costimulatory signals delivered as a consequence of interactions between T-cell surface-associated costimulatory receptors and their counterparts on antigen-presenting cells ‘APC). The intercellular adhesion molecule-1 ‘ICAM-1, CD54) efficiently costimulates proliferation of resting, but not antigen-specific, T cells. In contrast, CD28 and CD2 support interleukin ‘IL)-2 synthesis and proliferation of antigen-specific T cells more efficiently than those of resting T cells. The molecular basis for this differential costimulation of T cells is poorly understood. Cypress-specific T-cell clones ‘TCC) were generated from four allergic subjects during in vivo seasonal exposure to the allergen. Purified cypress extract was produced directly from fresh collected pollen and incubated with the patients' mononuclear cells. Repeated allergen stimulation was performed in T-cell cultures supplemented with purified extract and autologous APC. The limiting-dilution technique was then adopted to generate allergen-specific TCC, which were also characterized by their cytokine secretion pattern as ThO ‘IL-4 plus interferon-gamma) or Th2 ‘IL-4). Costimulation-induced proliferation or apoptosis was measured by propidium iodide cytofluorometric assay. By cross-linking cypress-specific CD4+ and CD8+ T-cell clones with either anti-CD3 or anti-CD2, anti-CD28, and anti-CD54 monoclonal antibodies, we demonstrated that CD4+ clones ‘with ThO- or Th2-type cytokine production pattern) undergo programmed cell death only after anti-CD3 stimulation, whereas costimulation with either anti-CD54 or anti-CD28 protects target cells from apoptosis. The costimulation-induced protection from apoptotic death was associated with a significant rise in IL-4 secretion in both Th0 and Th2-type clones. In contrast, cypress-specific Th0 CD8+ clones were more susceptible to stimulation-induced apoptosis via either anti-CD3 or anti-CD2, alone or in combination with anti-CD54 or anti-CD28, thus displaying only slight but nonsignificant modifications in the pattern of IL-4 secretion. The death-promoting costimulatory effects were not observed with highly purified normal resting CD4+ or CD8+ lymphocytes. Taken together, these results suggest that TcR engagement by an allergen in the context of functionally active APC induces activation-dependent cell death of some, perhaps less specific, cells, and this may be an important homeostatic mechanism through which functional expansion of allergen-specific T cells is regulated during an ongoing immune response.  相似文献   

12.
In the current study, we investigated the effect of growth of FasL+ tumors in vivo on the functions of peripheral lymphoid organs and the liver. Injection of FasL+ LSA tumor cells into syngeneic C57BL/6 wild-type mice but not C57BL/6 lpr/lpr (Fas-deficient) mice caused apoptosis in splenocytes. Spleen cells expressing CD3, CD4, CD8, CD19, Mac-3, and CD44 were all susceptible to tumor-induced apoptosis. Also, activated T cells were more sensitive to apoptosis induced by LSA tumor cell lysate when compared to naïve T cells. In contrast, anti-Fas Abs (Jo2) induced apoptosis in only activated but not naïve T cells. When the LSA tumor-bearing mice were injected with a superantigen (SEA), these mice showed a significant decrease in the expansion of SEA-reactive Vβ3+ and Vβ11+ T cells. When injected into syngeneic mice, the FasL+ LSA tumor cells caused hepatotoxicity, as indicated by an increase in serum aspartate aminotransferase (AST) levels. Interestingly, Fas-deficient C57BL/6 lpr/lpr mice also showed significant AST levels in the serum following LSA tumor growth. Moreover, hepatocytes isolated from C57BL/6 wild-type and C57BL/6 lpr/lpr mice were equally susceptible to apoptosis induced by LSA tumor cell lysate in vitro. Using cDNA array, LSA tumor cells were found to express several cytokine genes including IL-2, IL-7, IL-11, IL-13, IL-16, lymphotoxin β, and tumor necrosis factor β. Together, these data suggested that, in mice bearing FasL+ LSA tumor, the immunotoxicity is FasL-based, whereas the hepatotoxicity, at least in part, may be FasL-independent.  相似文献   

13.
The p53 tumor suppressor gene has been shown to be involved in programmed cell death, apoptosis, in murine immature thymocytes after treatment with ionizing radiation. Ionizing radiation also induces apoptosis in peripheral mature lymphocytes. In this work, we investigated the p53 participation in radiation-induced apoptosis in human peripheral blood lymphocytes (PBL) subpopulations. Exposure to γ-irradiation resulted in an appreciable induction of apoptotic cell death in TcR-α/β+ (CD4+ and CD8+) T cells, TcR-γ/δ+ T cells, B cells and natural killer (NK) cells, as assessed by DNA fragmentation as well as the morphological characteristics. Importantly, it was found that there was a marked difference among PBL subpopulations as regards the induction of p53 protein by γ-irradiation. Similar to previous observations for murine thymocytes, p53 induction in TcR-α/β+ T cells and B cells after γ-irradiation was evident by Western blot analysis. Radiation-induced apoptosis in TcR-α/β+ T cells and B cells was efficiently inhibited by cycloheximide, indicating the requirement of de novo protein synthesis, including p53 protein, for radiation-induced apoptosis in both subpopulations. In marked contrast, no identifiable levels of p53 protein were induced in either TcR-γ/δ+ T or NK cells after γ-irradiation. In addition, it was demonstrated that radiation-induced cell death in TcR-γ/δ+ T and NK cells could be prevented by interleukin-2, but not by cycloheximide. These results imply that radiation-induced lymphocytic apoptosis can be mediated by p53-dependent or -independent mechanisms.  相似文献   

14.
The etiology of cancer is unclear. Recent studies indicate that some cytokines, such as interleukin (IL)-17, and regulatory T cells are involved in the development of cancer. This study aims to detect a subset of T cell, IL17+Foxp3+ T cell, in the pathogenesis of esophageal cancer (Eca). Twelve patients with squamous Eca were recruited in this study. The surgically removed Eca tissue was collected. Cells isolated from Eca tissue were analyzed by flow cytometry. The results showed that 2–10% Eca tissue-derived CD4+ T cells expressed Foxp3; only 0.2–0.8% non-ca tissue-derived CD4+ T cells expressed Foxp3. Further analysis showed that 3–15% Eca-isolated CD4+ T cells were also IL-17 positive whereas only 0.4–1.5% non-ca tissue-isolated CD4+ T cells were IL-17 positive. We also found that about 4.8–11.2% Foxp3+ IL-17+ T cells in isolated CD4+ T cells from Eca tissue that were significantly less than in non-ca tissue derived CD4+ T cells. Less than 1% Foxp3+ IL-17+ T cells in isolated CD4+ T cells in both Eca patients and healthy controls. Treatment with hypoxia markedly increased the expression of IL-6 in peripheral CD68+ cells. Coculturing CD68+ cells and Foxp3+ T cells under hypoxic environment resulted in abundant expression of IL-17 in Foxp3+ T cells that could be blocked by pretreatment with either anti-IL-17 or anti-transforming growth factor beta antibodies. We conclude that IL-17+Foxp3+ T cells may contribute to the development of Eca.  相似文献   

15.
Glucocorticoid hormones (GCH) regulate, through the apoptotic process, the negative selection of immature T cells in the thymus. Because apoptosis seems to occur also in the maintenance of peripheral tolerance, we have investigated whether GCH may induce apoptosis in human mature lymphocytes. Peripheral blood lymphocytes (PBL) or peripheral CD4+ and CD8+ T cell subsets were cultured in the presence of phytohaemaglutinin (PHA) or PHA and prednisone (PDN) at 10−3-10−12M concentrations for 72, 96 and 120h. Cell cycle and membrane antigen expression were evaluated by flow cytometry and DNA degradation was detected by agarose gel electrophoresis. PDN blocks PBL growth in the G1 phase of cell cycle and inhibits both IL-2 receptor (IL-2R) expression and IL-2 secretion. Apoptosis is clearly increased by PDN in PHA-activated human PBL, and the apoptotic effect of PDN is stronger on CD8+ than on CD4+ T lymphocytes. All these effects are dose- and time-dependent. The addition of exogenous IL-2 did not rescue lymphocytes from PDN-increased apoptosis. These results show that PDN increases apoptosis in mature activated human peripheral blood lymphocytes, suggesting a possible role of GCH in the maintenance of immune tolerance at post-thymic level.  相似文献   

16.
OX40 (CD134), an activation-induced costimulatory molecule, is mainly expressed on CD4+ T cells. Several reports, including previous reports from our laboratory, suggest that OX40-mediated signaling plays an important role in the development of graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (Allo HSCT). Here, we show that peripheral blood CD4+OX40+ T cells are a unique cell subset as they possess the homing receptors of lymph nodes, and some of them have an exceptional capacity to produce high levels of interleukin-2 (IL-2) upon the stimulation through T cell receptors. Stimulation with IL-7 acts selectively on CD4+OX40+ T cells not only to induce antigen-independent growth but also to increase the frequency of cells with IL-2-producing potential. Simultaneous, but not sequential, ligation of the T cell receptor and OX40 induces CD4+OX40+ T cells to produce far more IL-2, which causes them to proliferate abundantly and differentiate readily into Th1- or Th2-biased effector memory T cells, especially in Allo HSCT recipients. Although not all the CD4+OX40+ T cells had IL-2-producing capacity, Allo HSCT recipients with chronic GVHD (cGVHD) had a significantly higher frequency of IL-2-producing OX40+ cells in their peripheral blood CD4+ T cell subset than Allo HSCT recipients without cGVHD. Collectively, CD4+OX40+ T cells with IL-2-producing potential are expected to be privileged for growth and differentiation in lymph nodes upon antigen presentation, suggesting that they might be involved in the process of inducing or maintaining cGVHD.  相似文献   

17.
Transforming growth factor-beta 1 (TGF-ß1) is an immuno-modulatory cytokine which has been shown to modulate the activity of T and B cells. We show here that human TGF-ß1 inhibited stationary cultures of IL-2 dependent CD4+ bovine lymphoblastoid T cells (BLTC) by down-regulating their IL-2 receptor (IL-2R) expression, arresting cells in the G0/G1 compartment of the cell cycle, and inducing these cells to undergo apoptosis. These events were reversed by the addition of a minimal concentration of IL-2 (2U/ml). In the presence of exogenous IL-2, TGF-ß1 was found to augment the proliferative response of BLTC through up-regulation of IL-2R expression, allow progression of normal cell cycle, and significantly prevent apoptosis. Our data clearly show that IL-2 and TGF-ß1, when present alone, have contrasting effects on BLTC. TGF-ß1 down regulates events that are associated with IL-2 mediated signal. But when present together, IL-2 and TGF-ß1 upregulate activation signals and proliferation of rapidly dividing CD4+ T cells.  相似文献   

18.
Mice with homologous disruption of the gene coding for either the p35 subunit or the p40 subunit of interleukin-12 (IL-12) and derived from a strain genetically resistant to infection with Leishmania major have been used to study further the role of this cytokine in resistance to infection and the differentiation of functional CD4+ T cell subsets in vivo. Wild-type 129/Sv/Ev mice are resistant to infection with L. major showing only small lesions which resolve spontaneously within a few weeks and develop a type 1 CD4+ T cell response. In contrast, mice lacking bioactive IL-12 (IL-12p35?/? and IL-12p40?/?) developed large, progressing lesions. Whereas resistant mice were able to mount a delayed-type hypersensitivity (DTH) response to Leishmania antigen, susceptible BALB/c mice as well as IL-12-deficient 129/Sv/Ev mice did not show any DTH reaction. To characterize the functional phenotype of CD4+ T cells triggered in infected wild-type mice and IL-12-deficient mice, the expression of mRNA for interferon-γ (IFN-γ) and interleukin-4 (IL-4) in purified CD4+ lymph node cells was analyzed. Wild-type 129/Sv/Ev mice showed high levels of mRNA for IFN-γ and low levels of mRNA for IL-4 which is indicative of a Th1 response. In contrast, IL-12- deficient mice and susceptible BALB/c mice developed a strong Th2 response with high levels of IL-4 mRNA and low levels of IFN-γ mRNA in CD4+ T cells. Similarly, lymph node cells from infected wild-type 129 mice produced predominantly IFN-γ in response to stimulation with Leishmania antigen in vitro whereas lymph node cells from IL-12-deficient mice and susceptible BALB/c mice produced preferentially IL-4. Taken together, these results confirm in vivo the importance of IL-12 in induction of Th1 responses and protective immunity against L. major.  相似文献   

19.
Despite a normal development of all major lymphoid subsets, with time, interleukin-2 (IL-2)-deficient mice develop a fatal immunopathology. The disease phenotype is characterized by lymphoadenopathy, splenomegaly, T cell infiltration of various organs, overproduction of a number of cytokines and autoantibody formation. Phenotypically, CD4+ and CD8+ T cells exhibit features characteristic of antigenically experienced cells. The accumulation of cells with a memory phenotype together with the previous suggestion of an involvement of IL-2 in the termination phase of immune responses prompted us to study the fate of superantigen-reactive T cells in IL-2-deficient mice in comparison to their IL-2-producing littermates. We show that expansion in vivo of CD4+ and, to a lesser extent, CD8+ T cells reactive to the superantigens staphylococcal enterotoxin A and B (SEA and SEB) proceeds normally in the absence of IL-2, but that fewer CD4+ cells are subsequently deleted. The residual superantigenreactive cells fail to become anergic as measured by proliferation in vitro in response to the same superantigen. T cell blasts generated in vitro from lymph node cells of IL-2-deficient mice by superantigen stimulation in the absence of exogenous IL-2 also fail to become anergic. In contrast to cells from IL-2-producing littermates, they do not exhibit Fas-induced apoptosis when cultured on anti-Fas antibody-coated plates, although Fas expression by IL-2-deficient cells is normal or even elevated compared to the IL-2-producing control cells. The data suggest that activation of T cells in the absence of IL-2 fails to generate a signal which is necessary to activate the apoptotic pathway and thus leads to an accumulation of antigen-experienced cells and the chronic inflammatory responses observed in IL-2-deficient mice.  相似文献   

20.
T cell receptor (TCR) triggering via superantigens induces decreased proliferative responses and increased apoptosis in T cells from HIV-infected patients compared with controls. Our aim was to delineate the role of intrinsic T cell defects, of APC dysfunction and of cytokines and costimulatory signal dysregulation in the deficient responses of CD4+and CD8+ T cells from HIV+ subjects to the superantigen Staphylococcus enterotoxin A (SEA). Proliferation and IL-2Rα up-regulation on SEA-stimulated CD4+and CD8+T cells in whole blood were reduced in HIV+ subjects with CD4 counts < 500, compared with controls. Neither addition of IL-2, IL-12 or phorbol myristate acetate (PMA) nor neutralization of endogenous IL-10, tumour necrosis factor-alpha (TNF-α), TNF-β or transforming growth factor-beta (TGF-β) could restore the decreased activation by SEA. Possible intrinsic T cell defects were studied by presenting SEA on HLA-DR-transfected Chinese hamster ovary (CHO) cells, co-expressing LFA3 and/or CD80, to purified T cells. In this system CD8+T cells from most HIV+ patients were hyporesponsive with regard to IL-2 production, IL-2Rα up-regulation and proliferation, whereas clearly reduced responses were only shown in CD4+T cells from AIDS patients. Similarly, apoptosis was increased in CD8+T cells from all patients, but only in CD4+T cells from AIDS patients. During HIV infection, the responses to TCR triggering through SEA are deficient in both T cell subsets. The intrinsic defect appears earlier during disease progression in purified CD8+T than in CD4+T cells, it occurs in conjunction with both CD2 and CD28 costimulation, and it is correlated with increased levels of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号