首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whole-cell recordings of rat nucleus tractus solitarii (NTS) neurons were performed on a slice preparation. We investigated possible postnatal changes in firing activities and currents induced by N -methyl- d -aspartate (NMDA) application. A total of 42 neurons were selected and fell into the following age groups: 0-5 days ( n = 15), 10-15 days ( n = 9) and 30-60 days (adult, n = 18). During this period, input resistance and spike duration decreased by-˜40%. At all ages, bath application of NMDA elicited a bursting firing activity when the membrane potential was held between -60 and -75 mV. However, in the youngest cells the rhythmic bursting activity was irregular and was characterized by a progressive firing inactivation during a burst. In a tetrodotoxin-containing saline, NMDA-induced oscillations of membrane potential were retained in all age groups. The membrane current-voltage relationship of the NMDA-induced inward current (INMDA) was characterized by a region of negative slope conductance which was similar in all age groups. Thus the voltage-dependent block of INMDA is present in NTS neurons from birth, allowing NTS neurons to display membrane potential oscillations. However, postnatal maturation of repolarizing conductances, as suggested by changes in spike characteristics, could render the oscillatory activity more stable than at birth.  相似文献   

2.
Hypothalamic magnocellular dorsal nucleus neurons were recorded from adult guinea pig brain slices with the whole-cell patch-clamp technique to determine the effects of N-methyl-D-aspartate (NMDA) applied in the bath or by iontophoresis. In a majority of cells (59 of 77, 76.6%), rhythmic bursting discharges were evoked by specific activation of NMDA receptors when the membrane was more negative than -60 mV. This endogenous rhythmic activity was resistant to tetrodotoxin. It was suppressed by removal of extracellular Mg2+, indicating the involvement of the voltage-dependent block of the NMDA channel by Mg2+. Application of thapsigargin showed that rhythmic activity did not depend on the release of Ca2+ from reticulum stores. Blockers of Ca2+ conductances Ni2+ and nifedipine had no effects on the bursts. Their repolarization did not involve the activation of a strophantidin- or ouabain-sensitive pump, but partly depended on an apamine-sensitive Ca2+-dependent K+current. In a small subset of cells (9 of 69, 13%), specific activation of NMDA receptors induced another type of bursting activity which consisted of repetitive low-threshold spikes sustaining bursts of action potentials. Rhythmic low-threshold spikes subsisted in the presence of tetrodotoxin but were suppressed by Ni2+. Increasing the amount of NMDA brought about a switch from the rhythmic low-threshold spike burst firing to the rhythmic bursting activity observed for the majority of cells. The present data show for the first time that NMDA receptor activation can induce two independent rhythmic bursting behaviours in the same neuron, probably depending on the strength of the glutamatergic drive.  相似文献   

3.
Na+-selective, double-barrelled microelectrodes were used to measure intracellular Na+ activity (aiNa) and membrane potential (Em) in neuropile glial cells of isolated segmental ganglia in the leech Hirudo medicinalis. Bath application of glutamate (10(-3) M) resulted in membrane depolarizations of about 5 mV and a concomitant increase of aiNa by between 2 and 10 mM. Kainate (10(-4) M) elicited depolarizations of up to 40 mV amplitude followed by a prominent after hyperpolarization. During kainate, aiNa increased by 7 to 25 mM. In contrast to glutamate, an initial decrease of aiNa was detected during the action of kainate. N-methyl-D-aspartate (NMDA, 10(-5)-10(-3) M) had no effect of Em and aiNa. The results indicate that leech glial cells have a kainate-preferring non-NMDA glutamate receptor.  相似文献   

4.
We used whole-cell patch recordings in current clamp to investigate the ionic dependence of burst firing induced by N-methyl-d-aspartate (NMDA) in neurons of the subthalamic nucleus (STN) in slices of rat brain. NMDA (20 microm) converted single-spike firing to burst firing in 87% of STN neurons tested. NMDA-induced bursting was blocked by AP5 (50 microm), and was not mimicked by the non-NMDA receptor agonist AMPA (0.6 microm). Tetrodotoxin (1 microm) converted bursts to oscillations of membrane potential, which were most robust when oscillations ranged between -50 and -70 mV. The NMDA bursts were blocked by an elevated extracellular concentration of Mg(2+), but superfusate containing no added Mg(2+) either reduced or increased burst firing, depending upon the amount of intracellular current injection. Block of K(+) conductances by apamin and tetraethylammonium prolonged burst duration, but iberiotoxin had no effect. NMDA-induced burst firing and membrane oscillations were completely blocked by superfusate containing no added Ca(2+), and they were significantly reduced when patch pipettes contained BAPTA. Selective antagonists for T-type (mibefradil, 10 microm), L-type (nifedipine, 3 microm), and N-type (omega-conotoxin GVIA, 1 micro m) Ca(2+) channels had no effect on NMDA burst firing. Superfusate containing a low concentration of Na(+) (20 mm) completely abolished NMDA-induced burst firing. Flufenamic acid (10 microm), which blocks current mediated by Ca(2+)-activated nonselective cation channels (I(CAN)), reversibly abolished NMDA-depended bursting. These results are consistent with the hypothesis that NMDA-induced burst firing in STN neurons requires activation of either an I(CAN) or a Na(+)-Ca(2+) exchanger.  相似文献   

5.
The effects of the GABAA agonist, isoguvacine, on NMDA-induced burst firing of substantia nigra dopaminergic neurons were studied with intracellular and whole cell recordings in vitro. NMDA application caused the neurons to fire in rhythmic bursts. Although the NMDA-induced bursty firing pattern was insensitive to hyperpolarization by current injection, it was reversibly abolished by the selective GABAA agonist, isoguvacine. The block of the rhythmic burst pattern by isoguvacine application occurred regardless of whether the chloride reversal potential was hyperpolarizing (ECl-=-70 mV) or depolarizing (ECl-=-40 mV). In either case, the input resistance of the dopaminergic neurons was dramatically decreased by application of isoguvacine. It is concluded that GABAA receptor activation by isoguvacine disrupts NMDA receptor-mediated burst firing by increasing the input conductance and thereby shunting the effects of NMDA acting at a distally located generator of rhythmic burst firing.  相似文献   

6.
Intracellular recordings were made from rat abducens motoneurons in vivo during local extracellular micro-ionophoretic application of N-methyl-d-aspartate (NMDA) and NMDA receptor antagonists. Typical NMDA responses, at a resting potential of -60 mV, consisted of a slow depolarization with an apparent increase in membrane resistance, bursts of action potentials followed by stable repetitive firing. Ionophoretic applications of aminophosphonovalerate (APV), kynurenate or MK801 reduced or blocked the NMDA-induced responses. The NMDA responses were voltage-dependent. NMDA responses induced by short (< 30 s) NMDA application pulses were blocked by hyperpolarizing the neuron. Long duration (> 30 s) NMDA applications induced rhythmic plateau potentials in hyperpolarized abducens motoneurons. The rhythmic depolarizations (15 - 30 mV) were modulated in both frequency and duration by current injection. They were abolished by further hyperpolarization or replaced by stable repetitive firing when hyperpolarization was removed. Our data show that NMDA receptors are present in rat abducens motoneurons and may be involved in the induction of rhythmic activities. The voltage-dependent blockade of somatic NMDA receptor-associated ion channels by cell hyperpolarization may be important for these oscillations. It is suggested that the rhythmic behaviour is due to the activation of dendritic NMDA receptors.  相似文献   

7.
Whole-cell recordings of lumbar motoneurons in the intact neonatal rat spinal cord in vitro were undertaken to examine the effects of Kmethyl-D-aspartate (NMDA) receptor activation on membrane behaviour. Bath application of NMDA induced rhythmic voltage oscillations of 5.9 ± 2.1 mV (SD) at a frequency of 4.4 ± 1.5 Hz. Amplitude, but not frequency, of the voltage oscillations was membrane potential-dependent. Voltage oscillations could recruit action potentials and/or plateau potentials with or without superimposed bursting. Blockade of synaptic transmission with tetrodotoxin (TTX) sometimes resulted in a loss of oscillatory activity which could then be restored by increasing the NMDA concentration. After application of TTX, the trajectory of NMDA-induced oscillations was similar to the trajectory induced in the presence of intact synaptic networks, although the mean oscillation duration was longer and the oscillation frequency was slower (1.8 ± 1.1 Hz). Current ramps delivered after bath application of NMDA demonstrated bistable membrane properties which may underlie the plateau potentials. Injection of intracellular current pulses could initiate, entrain and terminate individual plateau potentials. The results suggest that membrane depolarization produced by oscillations may activate other intrinsic conductances which generate plateau potentials, thereby providing the neuron with enhanced voltage sensitivity, compared to that produced by NMDA receptor activation alone. These oscillatory events may have a role in the regulation of motor output in a variety of rhythmic behaviours including locomotion.  相似文献   

8.
9.
In the in vitro slice preparation of upper thoracic cord of the cat, noradrenaline, at concentrations of 10-50 microM, induced rhythmic bursting in 30% of sympathetic preganglionic neurons of the intermediolateral nucleus. The bursting frequencies were between 0.2 and 1.0 Hz at membrane potentials between -45 and -65 mV. The bursting rhythm could be reset by short intracellular current pulses. In the presence of tetrodotoxin noradrenaline produced a rhythmic oscillation in membrane potential in the same frequency range as the bursting. The frequency of oscillation was voltage dependent. Neuronal input resistance decreased at the oscillation peak and the oscillation was abolished by cobalt or low calcium.  相似文献   

10.
A large, extracellular negative DC shift, termed epileptic depolarization, could be elicited during zero magnesium-induced epileptic activity in the rat hippocampal slice. In 10 mM glucose medium, epileptic depolarization was elicited by high-frequency synaptic stimulation. During epileptic depolarization synaptic responses were abolished, but recovered in 10.4 +/- 2.1 min. In low glucose (2 mM) medium, epileptic depolarization either occurred spontaneously or could be elicited by high frequency synaptic stimulation, and no recovery of synaptic responses was observed for at least 30 min. This long-term synaptic failure was blocked by the competitive NMDA antagonists, 3-[+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonate (CPP, 100 microM) and D-2-amino-7-phosphonoheptanoate (D-AP7, 100 microM) when added at the peak of epileptic depolarization, but not 5 min afterwards. Intracellular analysis showed that this extracellular DC shift was correlated with a membrane depolarization which approached 0 mV. With 10 mM glucose medium, the membrane potential returned to resting level in 6.3 +/- 1.9 min. In 2 mM glucose medium, neurons remained depolarized and no recovery was observed. This persistent depolarization could account for the loss of synaptic function recorded extracellularly. Application of 100 microM CPP blocked persistent depolarization and allowed for the recovery of the membrane potential. Epileptic depolarization was also observed during picrotoxin-induced epileptic activity. Both anoxic depolarization during experimental ischemia and epileptic depolarization can trigger long-term synaptic failure and persistent depolarization. Epileptic depolarization and anoxic depolarization may be triggers which can lead to neuronal failure in diseases associated with neuronal degeneration.  相似文献   

11.
Changes in potential between the pial and cut surfaces of rat olfactory cortex slices evoked by N-methyl-D-aspartate (NMDA), quisqualate, kainate, L-glutamate and L-aspartate and also by gamma-aminobutyric acid (GABA) have been monitored using extracellular electrodes. All agonists produced a pial-negative potential response when superfused onto the pial surface, GABA, L-aspartate and L-glutamate being less potent than the others. Repeated applications of NMDA, but not of the other agonists, led to a progressive reduction in response to approximately 30% of the initial depolarization. The responses to NMDA (100 microM) were selectively abolished by (+/-)2-amino-5-phosphonopentanoic acid (APP; 100 microM) while depolarizations evoked by L-glutamate and L-aspartate (both at 10 mM) were only antagonized by 21 +/- 2 (n = 12) and 36 +/- 3 (n = 12) percent respectively (means +/- S.E.M.). gamma-D-Glutamylglycine (gamma-DGG; 1 mM) and (+/-)cis-2,3-piperidine dicarboxylate (cis-PDA; 2 and 5 mM), in addition to antagonizing responses to NMDA, also partially blocked quisqualate- and kainate-evoked depolarizations. When a mixture of APP (100 microM), gamma-DGG (1 mM) and cis-PDA (5 mM) was applied to preparations, although NMDA receptors were completely blocked and responses to both quisqualate and kainate antagonized by approximately 80%, L-glutamate and L-aspartate evoked depolarizations were only reduced by 51 +/- 7 (n = 4) and 49 +/- 4 (n = 4) percent respectively (means +/- S.E.M.). The results are discussed in terms of the contributions made by NMDA, quisqualate and kainate receptors to the composite responses evoked by L-aspartate and L-glutamate.  相似文献   

12.
The electrophysiological effects produced by different concentrations of kainic acid (KA) were studied by utilizing intracellular recordings from neostriatal slices. In most of the recorded cells (81%), concentrations of KA ranging between 10 and 300 nM produced reversible and dose-dependent membrane depolarizations. Higher concentrations of this agonist caused larger depolarizations and changes of the membrane properties of the recorded neurons not reversible during the time of recording. In a smaller percentage (19%) of the recorded cells, 10-100 nM KA did not produce significant membrane depolarizations; in these neurons, the depolarizations produced by higher concentrations of KA were small and reversible. The 2 populations of neurons showed similar electrophysiological properties and did not reveal differential sensitivity to quisqualic acid (QUIS; 10-30 microM) or to NMDA (10-30 microM). Tetrodotoxin (TTX; 1 microM) did not reduce the depolarizations produced by KA and by NMDA. Low-calcium, cobalt-containing solutions abolished the effects produced by NMDA, but not the KA-induced depolarizations. Kynurenic acid (500 microM) significantly antagonized the depolarizations produced by KA and reduced the changes of the membrane properties caused by high doses of this agonist. In several neurons, KA induced bicuculline-sensitive synaptic depolarizing potentials. Our findings suggest the presence of 2 subpopulations of neostriatal neurons showing differential postsynaptic sensitivity to KA. The differential sensitivity of neostriatal neurons to KA might influence the responses of these cells to glutamatergic cortical inputs and the degenerative changes observed in neostriatal neurons in some pathological conditions.  相似文献   

13.
Responses evoked byl-cysteine-sulphinate (l-CSA) andl-aspartate (l-Asp) were recorded with intracellular electrodes from caudate neurons in halothane anesthetized cats.l-CSA andl-Asp were applied microiontophoretically to caudate cells and their effects on membrane and action potentials, as well as on cortically evoked synaptic potentials were evaluated.l-CSA andl-Asp induced depolarizations accompanied by regular firing resembling kainate (KA)- or quisqualate (QUIS)-induced excitation patterns (type 1) in 82% and 72% of the recorded neurons, respectively, and a mixed pattern consisting of aN-methyl-d-aspartate (NMDA)-like excitation (type 2) followed by a regular type 1 pattern in the remaining cells. In about a quarter of the cells the effects ofl-CSA andl-Asp, but not those of KA or QUIS, were partially antagonized by 2-amino-7-phosphonoheptanoate (AP-7), a specific NMDA receptor antagonist. Kynurenate, a broad spectrum excitatory amino acid antagonist, blocked responses elicited by eitherl-CSA or QUIS. The actions ofl-CSA andl-Asp on the firing pattern and membrane potential of cat caudate neurons in situ provide evidence in favor of their mixed agonist nature with respect to NMDA and non-NMDA excitatory amino acid receptors.  相似文献   

14.
The pharmacological properties of the interaction between the excitatory amino acid (EAA) analogs kainate and N-methyl-D-aspartate (NMDA) have been examined on the isolated rat retinal ganglion cell preparation. In addition, we have studied the effects on this interaction of 2 noncompetitive NMDA antagonists, the dissociative anesthetic phencyclidine (PCP) and the anticonvulsant MK-801. Electrophysiological measurements were performed with the whole-cell patch-clamp technique on cultured ganglion cells that had been back-labeled with a fluorescent dye. Whereas only 69% of the cells showed responses to NMDA (in the absence of extracellular Mg2+), every ganglion cell responded to kainate under the same conditions. When a given cell was voltage-clamped at -60 mV, the large inward currents elicited by 125 microM kainate generally exceeded the responses evoked by 200 microM NMDA, when present, by 1 or 2 orders of magnitude. There was a poor correlation between the magnitudes of the currents produced by both agonists for the population of cells tested. Furthermore, NMDA proved to be an antagonist for the kainate receptor binding site. Without influencing the kainate-activated currents, PCP (75 microM) and MK-801 (20 microM) completely and reversibly blocked the responses evoked by NMDA (200 microM), independent of the membrane holding potential. The degree of block produced by a submaximal concentration of either antagonist was accentuated by increasing the concentration of NMDA. The independence of NMDA and kainate currents was examined. In the presence of NMDA and PCP (or MK-801), kainate-induced responses were comparable in amplitude to those generated by the application of kainate and NMDA together. Thus, kainate continued to produce an increase in membrane conductance at a time when NMDA-activated currents were blocked by either antagonist. The NMDA antagonism of kainate-induced currents was shown to be constant and independent of PCP or MK-801. Our results suggest that the 2 EAA analogs might not share a common ionophore, but rather activate separate receptor-ion channel complexes in rat retinal ganglion cell membranes.  相似文献   

15.
Responses evoked by L-cysteine-sulphinate (L-CSA) and L-aspartate (L-Asp) were recorded with intracellular electrodes from caudate neurons in halothane anesthetized cats. L-CSA and L-Asp were applied microiontophoretically to caudate cells and their effects on membrane and action potentials, as well as on cortically evoked synaptic potentials were evaluated. L-CSA and L-Asp induced depolarizations accompanied by regular firing resembling kainate (KA)- or quisqualate (QUIS)-induced excitation patterns (type 1) in 82% and 72% of the recorded neurons, respectively, and a mixed pattern consisting of a N-methyl-D-aspartate (NMDA)-like excitation (type 2) followed by a regular type 1 pattern in the remaining cells. In about a quarter of the cells the effects of L-CSA and L-Asp, but not those of KA or QUIS, were partially antagonized by 2-amino-7-phosphonoheptanoate (AP-7), a specific NMDA receptor antagonist. Kynurenate, a broad spectrum excitatory amino acid antagonist, blocked responses elicited by either L-CSA or QUIS. The actions of L-CSA and L-Asp on the firing pattern and membrane potential of cat caudate neurons in situ provide evidence in favor of their mixed agonist nature with respect to NMDA and non-NMDA excitatory amino acid receptors.  相似文献   

16.
NMDA-receptors on Purkinje cell dendrites in guinea pig cerebellar slices   总被引:1,自引:0,他引:1  
The Mg2+-dependent depolarizing action of N-methyl-D-aspartate (NMDA) was intrasomatically investigated, in comparison with quisqualate (QA), in Purkinje cells in cerebellar slices from adult guinea pigs. NMDA applied iontophoretically to the proximal dendritic region (about 100 micron from the Purkinje cell soma) induced depolarizations and spike firings in about the half of the Purkinje cells tested in nominal Mg2+-free medium (contaminated with 4-11 microM Mg2+), and 1 mM Mg2+ almost completely blocked this NMDA action. Application of NMDA onto the distal dendritic region (about 200 micron from the soma) caused no depolarization at all even in the Mg2+-free medium. QA applied onto either the proximal or distal dendritic region consistently showed Mg2+-independent depolarizations. The amplitude of NMDA-induced depolarization in the Mg2+-free medium was non-linearly related to the membrane potential, i.e. smaller at a hyperpolarized potential level. 2-Amino-5-phosphonovalerate blocked the NMDA action partially but more selectively than the QA action, while the reverse was the case for glutamic acid diethylester. These results suggest that the Mg2+-dependent, NMDA-sensitive receptor, which is distinct from the QA receptor and probably similar to the well-known NMDA receptor, is present on the proximal dendrite of the cerebellar Purkinje cell of the guinea pig.  相似文献   

17.
Intracellular recordings and current and single-electrode voltage-clamp techniques were used to study the membrane responses of CA1 pyramidal neurons to bath application of l-homocysteic acid (l-HC) in the rat hippocampal slice preparation. In control artificial cerebrospinal fluid (ACSF), l-HC (25 - 250 microM) depolarized the membrane and induced a burst-like firing pattern. Both the membrane depolarization and the burst firing were blocked by the N-methyl-d-aspartic acid (NMDA) receptor antagonists d-(-)-2-amino-5-phosphonovaleric acid (AP-5, 50 microM), d-(-)-2-amino-7-phosphonoheptanoic acid (AP-7, 50 microM) and (+/-)-3-(2-carboxy-piperazin-4-yl)-propyl-1-phosphonic acid (CPP, 20 microM). In ACSF containing tetrodotoxin (1 microM), l-HC (100 - 300 microM) induced at resting membrane potential a depolarization which was associated with a small increase in input conductance. These effects were unaffected by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 - 20 microM) but were fully blocked by AP-5, AP-7 (50 microM) and CPP (10 - 20 microM). In voltage-clamp experiments, l-HC induced slow inward currents which were voltage-dependent between - 70 and - 30 mV and reversed polarity near 0 mV. The l-HC-induced inward current was unaffected by CNQX (10 - 20 microM) but was strongly reduced by AP-5 or AP-7 (50 microM). The l-HC-induced inward current was temperature-dependent. Between - 60 and - 70 mV, its amplitude increased by 320% when the temperature was lowered from 33 to 22 degrees C. The l-HC-induced current was also potentiated by the specific l-HC uptake blocker beta-p-chlorophenylglutamate (Chlorpheg, 0.5 - 2 mM). These data suggest that l-HC preferentially activates NMDA receptors in CA1 hippocampal neurons.  相似文献   

18.
19.
The membrane properties and morphological features of interneurons in the supratrigeminal area (SupV) were studied in rat brain slices using whole-cell patch clamp recording techniques. We classified three morphological types of neurons as fusiform, pyramidal, and multipolar and four physiological types of neurons according to their discharge pattern in response to a 1-sec depolarizing current pulse from -80 mV. Single-spike neurons responded with a single spike, phasic neurons showed an initial burst of spikes and were silent during the remainder of the stimulus, delayed-firing (DF) neurons exhibited a slow depolarization and delay to initial spike onset, and tonic (T) neurons showed maintained a discharge throughout the stimulus pulse. In a subpopulation of neurons (10%), membrane depolarization to around -44 mV produced a rhythmic burst discharge (RB) that was associated with voltage-dependent subthreshold membrane oscillations. Both these phenomena were blocked by the sodium channel blocker riluzole at a concentration that did not affect the fast transient spike. Low doses of 4-AP, which blocks low-threshold K+ currents, transformed bursting into low-frequency tonic discharge. In contrast, bursting occurred with exposure to cadium, a calcium-channel blocker. This suggests that persistent sodium currents and low-threshold K+ currents have a role in intrinsic burst generation. Importantly, RB cells were most often associated with multipolar neurons that exhibited either a DF or a T discharge. Thus, the SupV contains a variety of physiological cell types with unique morphologies and discharge characteristics. Intrinsic bursting neurons form a unique group in this region. .  相似文献   

20.
The development of intrinsic, N-methyl-D-aspartate (NMDA) receptor-mediated voltage oscillations and their dependence on co-activation of 5-hydroxytryptamine (5HT) receptors was explored in motor neurons of late embryonic and early larval Xenopus laevis. Under tetrodotoxin, 100 μM NMDA elicited a membrane depolarization of around 20 mV, but did not lead to voltage oscillations. However, following the addition of 2–5 μM 5HT, oscillations were observed in 12% of embryonic and 70% of larval motor neurons. The voltage oscillations depended upon co-activation of NMDA and 5HT receptors since they were curtailed by selectively blocking NMDA receptors with D-2-amino-5-phosphonovaleric acid (APV) or by excluding Mg2+ from the experimental saline. 5HT applied in the absence of NMDA also failed to elicit oscillations. Oscillations could be induced by the non-selective 5HT1a receptor agonist, 5-carboxamidotryptamine (5CT) and both 5HT- and 5CT-induced oscillations were abolished by pindobind-5HT1, a selective 5HT1a receptor antagonist. To test whether 5HT enables voltage oscillations by modulating the voltage-dependent block of NMDA channels by Mg2+, membrane conductance was monitored under tetrodotoxin. Although 5HT caused membrane hyperpolarization of 4–8 mV, there was little detectable change in conductance. NMDA application caused an approximate 20 mV depolarization and an ‘apparent’ decrease in conductance, presumably due to the conductance pulse bringing the membrane into a voltage region where Mg2+ blocks the NMDA ionophore. 5HT further decreased conductance, which we propose is due to its enhancement of the voltage-dependent Mg2+ block. When the membrane potential was depolarized by ~20 mV via depolarizing current injection (to mimic the NMDA-induced depolarization), 5HT increased rather than decreased membrane conductance. Furthermore, 5HT did not affect the increase in membrane conductance following NMDA applications in zero Mg2+ saline. The results suggest that intrinsic, NMDA receptor-mediated voltage oscillations develop in a brief period after hatching, and that they depend upon the co-activation of 5HT and NMDA receptors. The enabling function of 5HT may involve the facilitation of the voltage-dependent block of the NMDA ionophore by Mg2+ through activation of receptors with 5HT1a-like pharmacology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号