首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the effect of vagus nerve stimulation (VNS) on infarct volume and neurological recovery up to 3 weeks following transient focal cerebral ischemia. Transient ischemia was produced by filament occlusion of the proximal middle cerebral artery (MCA) in rats. The right vagus nerve was stimulated starting 30 min after MCA occlusion and consisted of 30-sec pulse trains (20 Hz) delivered to the animal's right vagus nerve every 5 min for a total period of 60 min (n = 10). All the procedures were duplicated, but no stimulus was delivered, in a control group (n = 10). Neurological evaluations were performed in all animals at 24 hr, 48 hr, 1 week, 2 weeks, and 3 weeks after MCA occlusion; animals were euthanized; and neuronal damage was evaluated in hematoxylin-eosin-stained sections. The ischemic lesion volume was smaller in the VNS-treated animals in comparison with the nonstimulated group (P < 0.02). Although the functional score in both treated and untreated groups improved over the 3-week observation period (P < 0.001), there was still a statistically significant improvement reszulting from VNS treatment compared with control animals (P < 0.05). Cerebral blood flow changes in the MCA territory during ischemia did not differ between the VNS-treated animals (31.9% ± 10.4% of baseline) and control animals (29.9% ± 9.1%; P = 0.6). Stimulation of the vagus nerve for only a brief period early in ischemia provides neuroprotection in transient ischemia, with neuroprotection persisting for at least 3 weeks.  相似文献   

2.
Dimethyloxalylglycine (DMOG) is an inhibitor of prolyl-4-hydroxylase domain (PHD) enzymes that regulate the stability of hypoxia-inducible factor (HIF). We investigated the effect of DMOG on the outcome after permanent and transient middle cerebral artery occlusion (p/tMCAO) in the rat. Before and after pMCAO, rats were treated with 40 mg/kg, 200 mg/kg DMOG, or vehicle, and with 40 mg/kg or vehicle after tMCAO. Serial magnetic resonance imaging (MRI) was performed to assess infarct evolution and regional cerebral blood flow (rCBF). Both doses significantly reduced infarct volumes, but only 40 mg/kg improved the behavior after 24 hours of pMCAO. Animals receiving 40 mg/kg were more likely to maintain rCBF values above 30% from the contralateral hemisphere within 24 hours of pMCAO. DMOG after tMCAO significantly reduced the infarct volumes and improved behavior at 24 hours and 8 days and also improved the rCBF after 24 hours. A consistent and significant upregulation of both mRNA and protein levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) was associated with the observed neuroprotection, although this was not consistently related to HIF-1α levels at 24 hours and 8 days. Thus, DMOG afforded neuroprotection both at 24 hours after pMCAO and at 24 hours and 8 days after tMCAO. This effect was associated with an increase of VEGF and eNOS and was mediated by improved rCBF after DMOG treatment.  相似文献   

3.
4.
Recent studies have shown that administration of granulocyte colony-stimulating factor (G-CSF) is neuroprotective. However, the precise mechanisms of the neuroprotective effect of G-CSF are not entirely known. We carried out 90-min transient middle cerebral occlusion (tMCAO) of rats. The rats were injected with vehicle or G-CSF (50 mug/kg) immediately after reperfusion and sacrificed 8, 24, or 72 hr later. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was carried out using brain sections of 72 hr, and immunohistochemistry was carried out with those of 8, 24, and 72 hr. TTC-staining showed a significant reduction of infarct volume in the G-CSF-treated group (**P < 0.01). Immunohistochemistry showed a significant decrease of the number of cells expressing tumor necrosis factor-alpha (TNF-alpha) at 8-72 hr, transforming growth factor-beta (TGF-beta) and inducible nitric oxide synthase (iNOS) at 24 and 72 hr after tMCAO in the peri-ischemic area (*P < 0.05 each). Our data suggest that the suppression of inflammatory cytokines and iNOS expression may be one mechanism of neuroprotection by G-CSF.  相似文献   

5.
Stem cells have been proposed as a new form of cell-based therapy in a variety of disorders, including acute and degenerative brain diseases. Endogenous neural stem cells (eNSC) reside in the subventricular zone and in the subgranular zone of the hippocampus. eNSC are capable of self-renewal and differentiation into functional glia and neurons. Unfortunately, spontaneous brain regeneration is inefficient for clinically significant improvement following brain injury. However, eNSC responses may be augmented considerably by perturbing the pathways governing cell proliferation, migration and differentiation by application of exogenous growth factors. Importantly, current evidence suggests that such perturbations may lead to better functional outcome after stroke. This article summarizes the progress made in this field.  相似文献   

6.
Temporal pattern of C1q deposition after transient focal cerebral ischemia   总被引:1,自引:0,他引:1  
Recent studies have focused on elucidating the contribution of individual complement proteins to post-ischemic cellular injury. As the timing of complement activation and deposition after cerebral ischemia is not well understood, our study investigates the temporal pattern of C1q accumulation after experimental murine stroke. Brains were harvested from mice subjected to transient focal cerebral ischemia at 3, 6, 12, and 24 hr post reperfusion. Western blotting and light microscopy were employed to determine the temporal course of C1q protein accumulation and correlate this sequence with infarct evolution observed with TTC staining. Confocal microscopy was utilized to further characterize the cellular localization and characteristics of C1q deposition. Western Blot analysis showed that C1q protein begins to accumulate in the ischemic hemisphere between 3 and 6 hr post-ischemia. Light microscopy confirmed these findings, showing concurrent C1q protein staining of neurons. Confocal microscopy demonstrated co-localization of C1q protein with neuronal cell bodies as well as necrotic cellular debris. These experiments demonstrate the accumulation of C1q protein on neurons during the period of greatest infarct evolution. This data provides information regarding the optimal time window during which a potentially neuroprotective anti-C1q strategy is most likely to achieve therapeutic success.  相似文献   

7.
We have shown that high-concentration albumin therapy is markedly neuroprotective in focal cerebral ischemia. The present study was conducted to ascertain the degree to which hemodynamic alterations are responsible for this therapeutic effect. Normothermic, physiologically regulated male Sprague–Dawley rats received a 2-h period of middle cerebral artery occlusion (MCAo) by insertion of an intraluminal suture coated with poly-l-lysine. Albumin (25% human serum albumin solution) or vehicle (0.9% sodium chloride) was administered intravenously at a dose of 1% of body weight immediately after suture withdrawal following 2-h MCAo. Local cerebral blood flow (LCBF) was measured autoradiographically with after 1 h of recirculation. Novel image-processing methods were used to compare average LCBF data sets against previously obtained infarction-frequency data on a pixel-by-pixel basis. Albumin therapy reduced mean hematocrit by 42% but produced no other systemic alterations. Pixel-based histopathological analysis revealed large, consistent cortical and subcortical infarcts in saline-treated rats with MCAo; albumin therapy reduced mean cortical infarct volume by 85%. Within regions showing albumin-associated neuroprotection, numbers of pixels having LCBF in the upper ischemic-core flow range (0.12–0.24 ml g−1 min−1) were reduced by 8.6-fold by albumin therapy when compared to saline-treated rats; and numbers of pixels with LCBF in the lower penumbral flow range (0.24–0.36 ml g−1 min−1) were reduced by 3.1-fold in albumin-treated rats (p=0.04 by repeated-measures analysis of variance). Analysis of the [albumin–saline] 3-dimensional difference-image data set revealed a circumferential zone of statistically significant albumin-associated LCBF increase within the posterior portion of the ischemic hemisphere, surrounding the core-region of prior ischemia. Thus, high-concentration albumin therapy improves local perfusion to regions of critical LCBF reduction. The spatial extent of this LCBF effect, however, appears too small to account fully for the marked neuroprotective efficacy of this therapy. We suggest that other, non-hemodynamic mechanisms may also be contributory.  相似文献   

8.
Glibenclamide is neuroprotective against cerebral ischemia in rats. We studied whether glibenclamide enhances long-term brain repair and improves behavioral recovery after stroke. Adult male Wistar rats were subjected to transient middle cerebral artery occlusion (MCAO) for 90 minutes. A low dose of glibenclamide (total 0.6 μg) was administered intravenously 6, 12, and 24 hours after reperfusion. We assessed behavioral outcome during a 30-day follow-up and animals were perfused for histological evaluation. In vitro specific binding of glibenclamide to microglia increased after pro-inflammatory stimuli. In vivo glibenclamide was associated with increased migration of doublecortin-positive cells in the striatum toward the ischemic lesion 72 hours after MCAO, and reactive microglia expressed sulfonylurea receptor 1 (SUR1) and Kir6.2 in the medial striatum. One month after MCAO, glibenclamide was also associated with increased number of NeuN-positive and 5-bromo-2-deoxyuridine-positive neurons in the cortex and hippocampus, and enhanced angiogenesis in the hippocampus. Consequently, glibenclamide-treated MCAO rats showed improved performance in the limb-placing test on postoperative days 22 to 29, and in the cylinder and water-maze test on postoperative day 29. Therefore, acute blockade of SUR1 by glibenclamide enhanced long-term brain repair in MCAO rats, which was associated with improved behavioral outcome.  相似文献   

9.
Second Institute of New Drug Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan In order to elucidate the role of adenosine in brain ischemia, the possible protective effects of adenosine on ischemic brain injury were investigated in a rat model of brain ischemia both in vitro and in vivo. Exogenous adenosine dose-dependently rescued cortical neuronal cells from injury after glucose deprivation in vitro. Adenosine (1 mM) also significantly reduced hypoglycemia/hypoxia-induced glutamate release from the hippocampal slice. In a rat model of transient middle cerebral artery occlusion (MCAO), extracellular adenosine concentration was increased immediately after occlusion, and then returned to the baseline by 30 min after reperfusion. Adenosine infusion through a microdialysis probe into the ipsilateral striatum (1 mM adenosine, 2 microl min(-1), total 4.5 h from the occlusion to 3 h after reperfusion) showed a significant improvement in the neurological outcome, and about 25% reduction of infarct volume, although the effect did not reach statistical significance, compared with the vehicle-treated group at 20 h after 90 min of MCAO. These results demonstrated the neuroprotective effect of adenosine against ischemic brain injury both in vitro and in vivo, suggesting the possible therapeutic application of adenosine regulating agents, which inhibit adenosine uptake or metabolism to enhance or maintain extracellular endogenous adenosine levels, for stroke treatment.  相似文献   

10.
《Neurological research》2013,35(10):1064-1067
Abstract

Objectives: The present study investigated the effects of tetrahydrobiopterin (BH4) on cerebral infarction after transient focal ischemia in rats.

Methods: Focal ischemia (1·5 hours) was created in male Sprague-Dawley rats (250-280 g) by middle cerebral artery occlusion. Some rats were treated with 20 mg/kg tetrahydrobiopterin by intraperitoneal injection 30 minutes before reperfusion. At 2, 6, and 12 hours of reperfusion, the brains were harvested for the nitric oxide synthase (NOS) activity and nitric oxide (NO) level assays. At 12 hours of reperfusion, the brains were harvested for infarct size measurement.

Results: NOS activity and NO level were all augmented after reperfusion. BH4 treatment significantly further increased NOS activity and NO level. Cerebral infarct size was significantly bigger in BH4 treatment group compared to that in no treatment group.

Conclusions: The data indicate that BH4 enhances cerebral infarction after transient focal ischemia in rats, through NOS and NO pathway.  相似文献   

11.
Hyperbaric oxygen (HBO) has been shown to preserve the integrity of the blood-brain barrier after cerebral ischemia. However, the underlying molecular mechanisms are currently unknown. We examined the effect of HBO on postischemic expression of the basal laminar component laminin-5 and on plasma matrix metalloproteinase-9 (MMP) levels. Wistar rats underwent occlusion of the middle cerebral artery (MCAO) for 2 h. With a delay of 45 min after filament introduction, animals breathed either 100% O2 at 1.0 atmosphere absolute (ata; NBO) or at 3.0 ata (HBO) for 1 h in an HBO chamber. Laminin-5 expression was quantified on immunohistochemical sections after 24 h of reperfusion. Plasma MMP-9 levels were measured using gelatin zymography before MCAO as well as 0, 6 and 24 h after reperfusion. Immunohistochemistry 24 h after ischemia revealed a decrease of vascular laminin-5 staining in the ischemic striatum to 43 +/- 26% of the contralateral hemisphere in the NBO group which was significantly attenuated to 73 +/- 31% in the HBO group. Densitometric analysis of zymography bands yielded significantly larger plasma MMP-9 levels in the NBO group compared to the HBO group 24 h after ischemia. In conclusion, HBO therapy attenuates ischemic degradation of cerebral microvascular laminin-5 and blocks postischemic plasma MMP-9 upregulation.  相似文献   

12.
13.
The effect of induced hypertension treatment on cerebral ischemia is still controversial. We investigated the preferred blood pressure manipulation level and pressor agent required to reduce cerebral ischemic injury following transient forebrain ischemia induced by bilateral occlusion of the common carotid arteries in anesthetized gerbils. Following 60-min cerebral ischemia, we evaluated the preferred blood pressure manipulation level and pressor agent required to treat cerebral ischemic injury after reperfusion by examining the effects of different levels of mean arterial blood pressure (MABP), increased with phenylephrine or angiotensin II or decreased by blood withdrawal, on cerebral blood flow (CBF), survival ratio, cerebral edema, and brain energy metabolism following transient forebrain ischemia in gerbils. Mild phenylephrine-induced hypertension treatment (21+/-4 mmHg) during post-cerebral ischemia-reperfusion improved the survival ratio and reduced cerebral edema, which was also associated with an increase in local CBF and a recovery of brain energy metabolism. However, intense phenylephrine-induced hypertension, angiotensin II-induced hypertension, or hypotension worsen the survival rate and produced extra cerebral edema, that were also associated with deterioration of brain energy metabolism. These results demonstrate that a mild induced hypertension with phenylephrine (21+/-4 mmHg above the baseline level) results in reduction of the cerebral edema and improves the survival ratio and brain energy metabolism. Furthermore, angiotensin II may have neurotoxic effect to use as the pressor agent for induced hypertension after cerebral ischemia.  相似文献   

14.
The combination of low-dose ethanol and caffeine (caffeinol) protects cortical areas of the brain from damage produced by distal focal ischemia in rats. There are no data, however, as to whether caffeinol influences injury in subcortical brain regions. Rats were anesthetized with halothane and subjected to 2 h of MCAo by poly-l-lysine-coated intraluminal suture. Caffeinol [a combination of ethanol, 0.33 g/kg, and caffeine, 10 mg/kg (n=5)] or vehicle (0.9% NaCl; n=7) was administered by i.v. infusion over a 2.5-h period beginning 15 min after reperfusion. Neurological status was evaluated daily, and histopathology was quantified at 3 days. Caffeinol therapy significantly improved the neurological score, reduced the total infarct volume (by 52%) and cortical infarct areas at multiple coronal levels, but subcortical infarction and brain swelling were not affected.  相似文献   

15.
Addition of a small peptide called ISG15 is known as ISGylation, which is an ubiquitin (ub)-like posttranslational modification. We currently show that focal ischemia induced by transient middle cerebral artery occlusion (MCAO) in adult mice significantly induces cortical protein ISGylation between 6 and 24 hours reperfusion. With two-dimensional western blotting, 45 proteins were observed to be significantly increased in ISGylation (by 1.8- to 9.7-fold) after focal ischemia compared with sham control. Immunochemistry showed that ISGylated proteins are localized in neurons within the ipsilateral striatum and in astroglia within the peri-infarct cortex of ischemic mice. When subjected to transient MCAO, ISG15−/− mice showed increased mortality, exacerbated infarction, and worsened neurologic recovery than did wild-type controls. In addition, mice lacking UBE1L (ub-activating enzyme E1-like protein, the first enzyme of the ISGylation cycle) also showed bigger infarcts when subjected to transient MCAO. Regional cerebral blood flow or other physiologic parameters were not significantly different in both knockouts compared with wild-type controls. These studies indicate that increased protein ISGylation might be an endogenous neuroprotective adaptation to minimize poststroke brain damage.  相似文献   

16.
The involvement of matrix metalloproteinases (MMPs) in cerebral ischemia-induced apoptosis was investigated in a model of transient focal cerebral ischemia in rats treated intracerebroventricularly (i.c.v.) with 4-((3-(4-phenoxylphenoxy)propylsulfonyl)methyl)-tetrahydropyran-4-carboxylic acid N-hydroxy amide, a broad spectrum non-peptidic hydroxamic acid MMP inhibitor, and in MMP-9-deficient mice. Our results showed that MMP inhibition reduced DNA fragmentation by 51% (P < 0.001) and cerebral infarct by 60% (P < 0.05) after ischemia. This protection was concomitant with a 29% reduction of cytochrome c release into the cytosol (P < 0.005) and a 54% reduction of calpain-related alpha-spectrin degradation (P < 0.05), as well as with an 84% increase in the immunoreactive signal of the native form of poly(ADP) ribose polymerase (P < 0.01). By contrast, specific targeting of the mmp9 gene in mice did reduce cerebral damage by 34% (P < 0.05) but did not modify the apoptotic response after cerebral ischemia. However, i.c.v. injection of MMP-9-deficient mice with the same broad-spectrum inhibitor used in rats significantly reduced DNA degradation by 32% (P < 0.05) and contributed even further to the protection of the ischemic brain. Together, our pharmacological and genetic results indicate that MMPs other than MMP-9 are actively involved in cerebral ischemia-induced apoptosis.  相似文献   

17.
18.
目的 探讨低氧预处理对大鼠脑缺血再灌注损伤的保护作用。方法 将SD大鼠分为 3组 ,即假手术组、缺血再灌注组、缺氧预处理 +缺血再灌注组。连续吸入 8%O2 +92 %N2 3h作缺氧预处理 ,12h后再经插线左大脑中动脉栓塞 (MCAO)制作缺血再灌注模型 ,到相应时间点后观察缺氧预处理对MCAO大鼠的行为、脑含水量、血脑屏障通透性和脑梗死体积的影响。结果与缺血再灌注组相比 ,缺氧预处理组大鼠的行为明显改善 ,脑伊文思蓝 (EB)含量、脑含水量 (P <0 0 5 ) ,脑梗死体积缩小。结论 低氧预处理降低缺血再灌注脑组织血脑屏障通透性 ,抑制脑水肿 ,缩小梗死体积 ,对缺血再灌注损伤具有保护作用  相似文献   

19.
BACKGROUND AND PURPOSE: The relation between time-dependent changes in cerebral blood flow and the appearance of infarction after focal cerebral ischemia is still a matter for debate. The aim of this study was to measure perfusion after simultaneous occlusions of the left middle cerebral artery and ipsilateral common carotid artery in rats and correlate it with the timing and distribution of histological changes. METHODS: We studied histological and cerebral blood flow changes 5 minutes and 4, 24, and 48 hours after the onset of focal ischemia. Blood flow was determined autoradiographically using [14C]iodoantipyrine. A coronal template subdivided into regions of interest was applied to the autoradiographs and the histological data. RESULTS: In some regions of the nonoccluded hemisphere, cerebral blood flow 5 minutes after occlusion fell below 50% of normal. Many ischemic structures showed stable blood flow for 48 hours after occlusion, confirming that in this model reperfusion is minimal. Infarction occurred eventually in all areas in which blood flow at 5 minutes fell below 10% of that in control rats, but infarction appeared earlier in regions in which blood flow at 5 minutes was below 5% of that in control rats. When blood flow at 5 minutes rose above 12% of that in control rats, the occurrence of infarction became unpredictable. CONCLUSIONS: Despite the general dependence of infarction on perfusion levels, blood flow was not a reliable indicator of those regions committed to infarction.  相似文献   

20.
Growth factors possess neuroprotective and neurotrophic properties in vitro, but few have been extensively studied in vivo after stroke. In the present study, we investigated the potential functional benefits of granulocyte colony-stimulating factor (G-CSF) administration after focal cerebral ischemia. Male mice underwent 60-minute middle cerebral artery occlusion (MCAO) and received G-CSF (50 microg/kg, subcutaneously) or vehicle (saline) at the onset of reperfusion. Granulocyte colony-stimulating factor-treated mice killed at 48 hours after MCAO revealed a >45% reduction (P<0.05) in lesion volume. In terms of body weight recovery, and in tests of motor (grid test and rotarod) and cognitive ability (water maze), MCAO significantly worsened the outcome in vehicle-treated mice as compared with shams (P<0.05). However, G-CSF treatment was beneficial as, compared with vehicle, this significantly improved weight recovery and motor ability. This effect was most apparent on the water maze where G-CSF-treated mice were indistinguishable from shams in terms of acquiring the task. These results indicate long-term beneficial effects of a single dose of G-CSF administered on reperfusion, and illustrate the need to further investigate the mechanisms of G-CSF action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号