Methods: Nicotinic acetylcholine receptor membranes were purified from the electric organ of Torpedo nobiliana. Agonist-induced desensitization was characterized from the time-dependent increase in fluorescence intensity that results from the binding of the fluorescent acetylcholine analog, Dns-C6 -Cho, to the nAcChoR.
Results: Mixing Dns-C6 -Cho with nAcChoR-rich membranes results in an increase in fluorescence that is characterized by four rate processes. Concentrations of isoflurane and butanol, which range from subclinical to toxic increase the rates of the third and fourth components of fluorescence, corresponding to fast and slow desensitization, respectively. At concentrations that are twice their EC sub 50 s for anesthesia, isoflurane, butanol, chloroform, methanol, and cyclopentane-methanol increase the apparent rates of fast and slow desensitization by an average of 92 plus/minus 22% and 108 plus/minus 22%, respectively. 相似文献
Methods: Nicotinic acetylcholine receptors were obtained from the electroplax organ of Torpedo nobiliana. The apparent rate of acetylcholine-induced desensitization in the presence and absence of normal alcohols was measured using stopped-flow fluorescence.
Results: Normal alcohols as long as octanol (the longest studied) increased the apparent rate of desensitization induced by low concentrations of acetylcholine, shifting the agonist concentration-response curve for desensitization to the left. Ethanol, butanol, and, to a lesser extent, hexanol increased the maximal rate of desensitization induced by high, saturating concentrations of agonist. Beyond hexanol, heptanol and octanol had no effect on this maximal apparent rate of desensitization, even at concentrations that approach those that directly induce desensitization in the absence of agonist. 相似文献
Method: This study investigated neuronal nAchRs in PC12 cells and acutely dissociated rat medial habenula (MHb) neurons. Whole cell currents elicited by 30 [mu]m nicotine were recorded in the absence and presence of the halogenated agents. The minimum alveolar concentrations (MACs) for F6 and F8 were predicted from Meyer-Overton correlation.
Results: All halogenated compounds inhibited the nicotine-induced current in a concentration-dependent manner in PC12 cells. In MHb neurons, while isoflurane and F6 significantly inhibited the nicotine-induced peak current, F8 failed to inhibit it. The peak currents in the presence of isoflurane at 1.7 MAC, of F6 at 2.4 MAC, and of F8 at 2.2 MAC were 12, 31, and 97% of control, respectively. 相似文献
Methods: The patch-clamp technique was used to record acetylcholine-activated currents from the embryonic type of the nicotinic acetylcholine receptor in the outside-out mode. A piezo-driven liquid filament switch was used for the ultrafast application of acetylcholine alone or in combination with isoflurane or sevoflurane. In addition, the patches were preexposed to either anesthetic, preceding the activation with acetylcholine.
Results: The current elicited by acetylcholine was reduced reversibly and in a concentration-dependent manner by both anesthetics, which were equally effective. Preexposure of the patches to isoflurane or sevoflurane showed an additional inhibition that was present at micromolar concentrations. The time courses of current decay could be fitted by single exponentials for isoflurane. At higher concentrations of sevoflurane, the current decay became biexponential. In contrast to isoflurane, sevoflurane increased the time constants of desensitization when applied in low concentrations. 相似文献
Methods: Synaptosomes (pinched-off nerve terminals) from adult rat cerebral cortex were used to determine the effects of F3 and F6 on 4-aminopyridine- or veratridine-evoked (Na+ channel-dependent) glutamate release (using an enzyme-coupled spectrofluorimetric assay) and increases in intracellular Ca2+ ([Ca2+]i) (using ion-specific spectrofluorimetry). Effects of F3 and F6 on Na+ currents were evaluated directly in rat lumbar dorsal root ganglion neurons by whole-cell patch-clamp recording.
Results: F3 inhibited glutamate release evoked by 4-aminopyridine (inhibitory concentration of 50% [IC50] = 0.77 mM [~ 0.8 minimum alveolar concentration (MAC)] or veratridine (IC50 = 0.42 mM [~ 0.4 MAC]), and veratridine-evoked increases in [Ca2+]i (IC50= 0.5 mM [~ 0.5 MAC]) in synaptosomes; F6 had no significant effects up to 0.05 mM (approximately twice the predicted MAC). F3 caused reversible membrane potential-independent inhibition of peak Na+ currents (70 +/- 9% block at 0.6 mM [~ 0.6 MAC]), and a hyperpolarizing shift in the voltage-dependence of steady state inactivation in dorsal root ganglion neurons (-21 +/- 9.3 mV at 0.6 mM). F6 inhibited peak Na+ currents to a lesser extent (16 +/- 2% block at 0.018 mM [predicted MAC]) and had minimal effects on steady state inactivation. 相似文献
Methods: [alpha]2[beta]4, [alpha]3[beta]4, and [alpha]4[beta]2 hnAChRs were expressed in Xenopus oocytes, and effects of volatile anesthetics isoflurane and F3 (1-chloro-1,2,2-triflurocyclobutane, 1A) and nonimmobilizers F6 (1,2-dichlorohexafluorocyclobutane, 2N) and F8 (2,3-dichlorooctafluorobutane) on the peak acetylcholine-gated currents were studied using the two-electrode voltage-clamp technique.
Results: Isoflurane and F3 inhibited all the hnAChRs tested in a concentration-dependent manner. Isoflurane at a concentration corresponding to 1 minimum alveolar concentration (MAC) inhibited 83, 69, and 71% of ACh-induced currents in [alpha]2[beta]4, [alpha]3[beta]4, and [alpha]4[beta]2 hnAChRs, respectively, and 1 MAC of F3 inhibited 64, 44, and 61% of currents gated in those receptors. F6 (8-34[mu]M) did not cause any changes in currents gated by any of the receptors tested. F8 (4-18[mu]M) did not alter the currents gated in either [alpha]3[beta]4 or [alpha]4[beta]2 receptors, but caused a small potentiation of [alpha]2[beta]4 hnAChRs without a concentration-response relation. 相似文献
Methods: Steady-state and stopped-flow fluorescence spectroscopy was used to characterize halothane quenching of nicotinic acetylcholine receptor (nAcChoR)-rich membrane intrinsic fluorescence and the rate of isoflurane-induced nAcChoR desensitization.
Results: At equilibrium, halothane quenched only 54 +/- 1.4% of all tryptophan fluorescence. Diethyl ether failed to reduce fluorescence quenching by halothane, suggesting that it does not bind to the same protein sites as halothane. Stopped-flow fluorescence traces defined two kinetic components of quenching: a fast component that occurred in less than 1 ms followed by a slower biphasic fluorescence decay. Protein unfolding with sodium dodecyl sulfate reduced halothane's Stern-Volmer quenching constant, eliminated the biphasic decay, and rendered fluorescence accessible to quenching by halothane within 1 ms. Functional studies indicate that anesthetic-induced desensitization of nAcChoR occurs in less than 2 ms. 相似文献
Methods: Neuronal [alpha]4[beta]2, neuronal [alpha]7 and muscle [alpha][beta][gamma][delta] nAChRs were expressed in Xenopus oocytes. Peak acetylcholine-activated currents were measured at -70 mV using the two-electrode voltage clamp technique. Racemic thiopental and its two optical isomers were applied with and without preincubation and at high and low concentrations of acetylcholine.
Results: Inhibition of all three nAChRs was enhanced by preincubation with thiopental, a protocol that mimics the pharmacologic situation in vivo. Using this protocol, inhibition was further enhanced by high concentrations of acetylcholine, with IC50 = 18 +/- 2, 34 +/- 4, and 20 +/- 2 [mu]m (mean +/- SEM) thiopental for the neuronal [alpha]4[beta]2, neuronal [alpha]7 and muscle [alpha][beta][gamma][delta] nAChRs, respectively, with Hill coefficients near unity. Neither the neuronal [alpha]7 nor the muscle [alpha][beta][gamma][delta] nAChR differentiated between the optical isomers of thiopental. However, R (+)-thiopental was significantly more effective than the S (-) isomer at inhibiting the neuronal [alpha]4[beta]2 nAChR; interestingly, this is diametrically opposite to their stereoselectivity for general anesthesia. 相似文献
Methods: Whole cell currents were recorded in PC12 cells without treatment of nerve growth factor, using conventional whole cell patch clamp technique. Nicotine or adenosine tri-phosphate (ATP) 30 micro Meter was applied for 4-5 s in the absence or presence of thiopental 3-300 micro Meter.
Results: Nicotine induced the rapidly decaying inward current at -60 mV, which exhibited the characteristics of the neuronal nAchR-mediated current. Thiopental inhibited the nicotine-induced inward current and accelerated the current decay in a dose-dependent manner, resulting in the greater effects on the steady current than the peak current. IC50s for the peak and steady current were 56.7 and 7.4 micro Meter, when the anesthetic was coapplied with nicotine. Thiopental's inhibition was not associated with a change in the reversal potential and was voltage-independent at membrane potential of -30 to -70 mV. Most of thiopental's effects seemed to require channel opening. In contrast to the nicotine-induced current, thiopental had little effect on the current elicited by ATP. 相似文献
Methods: Vascular smooth muscle transmembrane potentials were measured in situ with glass microelectrodes in neurally intact, small (200-300 m OD) mesenteric arteries and veins of rats before, during, and after inhaled halothane, isoflurane, or sevoflurane (0.5 or 1.0 minimum alveolar concentration [MAC]). Such transmembrane potentials and their anesthetically induced changes were compared, respectively, with those measured in similar vessel preparations after local sympathetic neural denervation with 6-hydroxydopamine.
Results: In neurally intact vessels, transmembrane potentials (in millivolts, mean +/- SD) before inhalation of the anesthetic agent were -39 +/- 2.8 (artery) and -43 +/- 4.6 (vein). At 1.0 MAC, halothane, isoflurane, and sevoflurane induced respective hyperpolarizations (in millivolts, mean +/- SD) of 9 +/- 3.1, 6 +/- 2.7, and 9 +/- 4.0 in arteries and 6 +/- 4.4, 2.8 +/- 3.0, and 8.7 +/- 5.6 in veins. Sympathetic denervation significantly attenuated these hyperpolarizations (except for venous response to isoflurane). At 0.5 MAC, transmembrane potential responses to all three volatile anesthetic agents were small and not consistently significant in either the intact or denervated vessels. 相似文献
Methods: Experiments were performed in mice lacking exon 2 of the [mu]OR gene ([mu]OR-/-) and their wild-type littermates ([mu]OR+/+). The influence of saline, morphine, naloxone, and sevoflurane on respiration was measured using a whole body plethysmographic method during air breathing and elevations in inspired carbon dioxide concentration. The influence of morphine and naloxone on anesthetic potency of sevoflurane was determined by tail clamp test.
Results: Relative to wild-type mice, [mu]OR-deficient mice displayed approximately 15% higher resting breathing frequencies resulting in greater resting ventilation levels. The slope of the ventilation-carbon dioxide response did not differ between genotypes. In [mu]OR+/+ but not [mu]OR-/- mice, a reduction in resting ventilation and slope, relative to placebo, was observed after 100 mg/kg morphine. Naloxone increased resting ventilation and slope in both genotypes. Sevoflurane at 1% inspired concentration induced similar reductions in resting ventilation and slope in the two genotypes. Anesthetic potency was 20% lower in mutant relevant to wild-type mice. Naloxone and morphine caused an increase and decrease, respectively, in anesthetic potency in [mu]OR+/+ mice only. 相似文献
Methods: Human embryonic kidney 293 cells were transiently transfected with rat complementary DNAs of [alpha]1[beta]2, [alpha]1[beta]2[gamma]2L, [alpha]1[beta]2[gamma]2S, [alpha]5[beta]3, or [alpha]5[beta]3[gamma]2S subunits. Using rapid application and whole cell patch clamp techniques, cells were exposed to 10- and 2,000-ms pulses of [gamma]-aminobutyric acid (1 mm) in the presence or absence of isoflurane (0.25, 0.5, 1.0 mm). Anesthetic effects on decay kinetics, peak amplitude, net charge transfer and rise time were measured. Statistical significance was assessed using the Student t test or one-way analysis of variance followed by the Tukey post hoc test.
Results: Under control conditions, incorporation of a [gamma]2 subunit conferred faster deactivation kinetics and reduced desensitization. Isoflurane slowed deactivation, enhanced desensitization, and reduced peak current amplitude in [alpha][beta] receptors. Coexpression with a [gamma]2 subunit caused these effects of isoflurane to be substantially reduced or abolished. Although the two [gamma]2 splice variants imparted qualitatively similar macroscopic kinetic properties, there were significant quantitative differences between effects of isoflurane on deactivation and peak current amplitude in [gamma]2S- versus [gamma]2L-containing receptors. The net charge transfer resulting from brief pulses of [gamma]-aminobutyric acid was decreased by isoflurane in [alpha][beta] but increased in [alpha][beta][gamma] receptors. 相似文献