首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we explore topographical changes in proteoglycan distribution from femoral condylar cartilage in early osteoarthritis, acquired from both the lateral and medial condyles of anterior cruciate ligament transected (ACLT) and contralateral (CNTRL) rabbit knee joints, at 4 weeks post operation. Four sites across the cartilage surface in a parasagittal plane were defined across tissue sections taken from femoral condyles, and proteoglycan (PG) content was quantified using digital densitometry. The greatest depth‐wise change in PG content due to an ACLT (compared to the CNTRL group) was observed anteriorly (site C) from the most weight‐bearing location within the lateral compartment. In the medial compartment, the greatest change was observed in the most weight‐bearing location (site B). The depth‐wise changes in PG content were observed up to 48% and 28% depth from the tissue surface at these aforementioned sites, respectively (p < 0.05). The smallest depth‐wise change in PG content was observed posteriorly (site A) from the most weight‐bearing location within both femoral condyles (up to 20% and up to 5% depth from the tissue surface at lateral and medial compartments, respectively). This study gives further insight into how early cartilage deterioration progresses across the parasagittal plane of the femoral condyle. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:1278–1286, 2015.  相似文献   

2.
The structural integrity and mechanical environment of the articular cartilage matrix directly affect chondrocyte deformations. Rabbit models of early osteoarthritis at 9 weeks following anterior cruciate ligament transection (ACLT) have been shown to alter the deformation behavior of superficial zone chondrocytes in mechanically loaded articular cartilage. However, it is not fully understood whether these changes in cell mechanics are caused by changes in structural macromolecules in the extracellular matrix. Therefore, the purpose of this study was to characterize the proteoglycan content, collagen content, and collagen orientation at 9 weeks post ACLT using microscopic techniques, and relate these changes to the altered cell mechanics observed upon mechanical loading of cartilage. At 9 weeks following ACLT, collagen orientation was significantly (p < 0.05) altered and proteoglycan content was significantly (p < 0.05) reduced in the superficial zone cartilage matrix. These structural changes either in the extracellular or pericellular matrix (ECM and PCM) were also correlated significantly (p < 0.05) with chondrocyte width and height changes, thereby suggesting that chondrocyte deformation response to mechanical compression in early OA changes primarily because of alterations in matrix structure. However, compared to the normal group, proteoglycan content in the PCM from the ACLT group decreased less than that in the surrounding ECM. Therefore, PCM could play a key role to protect excessive chondrocyte deformations in the ACLT group. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:342–350, 2018.  相似文献   

3.
This study aimed to establish the baseline characteristics in humeral and femoral cartilage in rabbit, using quantitative magnetic resonance imaging (MRI) relaxation times (T2, T1ρ, and T1) at 9.75 and 70–82 µm pixel resolutions, and quantitative polarized light microscopy (PLM) measures (retardation, angle) at 1.0 and 4.0 µm pixel resolutions. Five intact (i.e., unopened) shoulder joints (the scapula and humeral heads) and three femoral heads of the hip joints from five healthy rabbits were imaged in MRI at 70–82 µm resolution. Thirteen cartilage-bone specimens were harvested from these joints and imaged in µMRI at 9.75 µm resolution. Subsequently, quantitative PLM study of these specimens enabled the examination of the fibril orientation and organization in both intact joints and individual specimens. Quantitative MRI relaxation data and PLM fibril structural data show distinct features in tissue properties at different depths of cartilage, different in individual histological zones. The thicknesses of the histological zones in µMRI and PLM were successfully obtained. This is the first correlated and quantitative MRI and PLM study of rabbit cartilage at sub-10 µm resolutions, which benefits future investigation of osteoarthritis using the rabbit model. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1052-1062, 2020  相似文献   

4.
5.
Inferior anterior cruciate ligament (ACL) structural properties may inadequately restrain tibiofemoral joint motion following surgery, contributing to the increased risk of post‐traumatic osteoarthritis. Using both a direct measure of ACL linear stiffness and an in vivo magnetic resonance imaging (MRI) T2*‐based prediction model, we hypothesized that cartilage damage and ACL stiffness would increase over time, and that an inverse relationship between cartilage damage and ACL stiffness would emerge at a later stage of healing. After either 6, 12, or 24 weeks (w) of healing after ACL repair, ACL linear stiffness was determined from the force–displacement relationship during tensile testing ex vivo and predicted in vivo from the MRI T2*‐based multiple linear regression model in 24 Yucatan minipigs. Tibiofemoral cartilage was graded postmortem. There was no relationship between cartilage damage and ACL stiffness at 6 w (R2 = 0.04; p = 0.65), 12 w (R2 = 0.02; p = 0.77), or when the data from all animals were pooled (R2 = 0.02; p = 0.47). A significant inverse relationship between cartilage damage and ACL stiffness based on both ex vivo measurement (R2 = 0.90; p < 0.001) and in vivo MRI prediction (R2 = 0.78; p = 0.004) of ACL stiffness emerged at 24 w. This result suggests that 90% of the variability in gross cartilage changes is associated with the repaired ACL linear stiffness at 6 months of healing. Clinical Significance: Techniques that provide a higher stiffness to the repaired ACL may be required to mitigate the post‐traumatic osteoarthritis commonly seen after ACL injury, and MRI T2* can be used as a noninvasive estimation of ligament stiffness. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2249–2257, 2019  相似文献   

6.
Osteoarthritis (OA) is prevalent after anterior cruciate ligament (ACL) injury, but mechanismsunderlying its development are poorly understood. The purpose of this study was to determine if gait biomechanics and daily physical activity (PA) associate with cartilage T2 relaxation times, a marker of collagen organization and water content, 1 month after ACL injury. Twenty-seven participants (15–35 years old) without chondral lesions completed magnetic resonance imaging, three-dimensional gait analysis, and 1 week of PA accelerometry. Interlimb differences and ratios were calculated for gait biomechanics and T2 relaxation times, respectively. Multiple linear regression models adjusted for age, sex, and concomitant meniscus injury were used to determine the association between gait biomechanics and PA with T2 relaxation times, respectively. Altered knee adduction moment (KAM) impulse, less knee flexion excursion (kEXC) and higher daily step counts accounted for 35.8%–65.8% of T2 relaxation time variation in the weightbearing and posterior cartilage of the medial and lateral compartment (all p ≤ .011). KAM impulse was the strongest factor for T2 relaxation times in all models (all p ≤ .001). Lower KAM impulse associated with longer T2 relaxation times in the injured medial compartment (β = ?.720 to ?.901) and shorter T2 relaxation in the lateral compartment (β = .713 to .956). At 1 month after ACL injury, altered KAM impulse, less kEXC, and higher PA associated with longer T2 relaxation times, which may indicate poorer cartilage health. Statement of Clinical Significance: Gait biomechanics and daily PA are modifiable targets that may improve cartilage health acutely after ACL injury and slow progression to OA.  相似文献   

7.
[目的]研究降钙素(calcitonin, CT)对骨性关节炎关节软骨退变和软骨下骨骨代谢的影响.[方法]30只3个月龄雌性日本大耳白兔随机分为三组,其中两组行右膝关节前交叉韧带切断术(anterior cruciate ligament transaction,ACLT),分为ACLT+CT组和ACLT+NS组,第3组为Sham组.ACLT+CT给予每日1次皮下注射降钙素5 IU/(kg·d),持续8周,ACLT+NS组给予同样剂量生理盐水.术后8周后处死所有动物.取股骨髁制成切片行MMP-13和Ⅱ型胶原免疫组化染色.取胫骨近端制成硬组织切片行骨形态计量学检测.体外实验中,取兔膝关节软骨,经消化、培养,将第3代软骨细胞分三组:向IL-1β组加入人重组IL-1β(10 ng/ml). IL-1β+CT组加入人重组IL-1β (10 ng/ml)2 d后,再向培养液中加入CT(50 ng/ml).正常组不加任何诱导剂和干扰剂培养.然后行MMP-13、Ⅱ型胶原免疫组化检测和Realtime RT-PCR法检测.[结果]Sham组和ACLT+CT组软骨下骨骨小梁相对体积和厚度等均显著高于ACLT+NS组.Sham组和ACLT+CT组的Ⅱ型胶原的光密度值均显著高于ACLT+NS组,而MMP-13的光密度值显著低于ACLT+NS组(P<0.05).正常组和IL-1β+CT组的Ⅱ型胶原光密度值均显著高于IL-1β组而MMP-13的光密度值都显著低于IL-1β组(P<0.05).在正常组和IL-1β+CT组中Ⅱ型胶原的mRNA含量均显著高于IL-1β组而MMP-13的mRNA含量均显著低于IL-1β组(P<0.05).[结论]降钙素5 IU/(kg·d)皮下注射能够增加ACLT兔膝关节软骨Ⅱ型胶原的分泌和抑制MMP-13的表达,并可能通过调节软骨下骨的骨代谢和微结构来保护关节软骨; CT(50 ng/ml)能增加体外培养的含有IL-1β(10 ng/ml)的软骨细胞中Ⅱ型胶原的含量和抑制MMP-13分泌.  相似文献   

8.
The aims of this study were to investigate the influence of subchondral bone fragility (SBF) on the progression of the knee osteoarthritis by using a novel rat model, and to examine the preventive effect of parathyroid hormone (PTH) on cartilage degeneration. First, 40 rats were assigned to the following four groups: Sham, SBF, Medial meniscal tear (MMT), and MMT + SBF groups. In SBF and MMT + SBF groups, we induced SBF by microdrilling the subchondral bone. Second, 10 additional rats were randomly assigned to the following two groups: MMT + SBF + saline and MMT + SBF + PTH groups. Osteoarthritic changes in the articular cartilage and subchondral bone were evaluated using safranin‐O/fast green staining, matrix metalloproteinase‐13 (MMP‐13), and type X collagen immunohistochemistry, toluidine blue staining, and micro‐CT scanning. The combination of SBF and meniscal tear increased the number of mast cells in the subchondral bone, and led to the abnormal subchondral bone microarchitecture, such as abnormally decreased trabecular number and increased trabecular thickness, compared with meniscal tear alone. Moreover, SBF with meniscal tear enhanced articular cartilage degeneration and increased the expression of MMP‐13 and type X collagen, compared with meniscal tear alone. The administration of PTH decreased the number of mast cells in the subchondral bone and improved the microstructural parameters of the subchondral bone, and delayed the progression of articular cartilage degeneration. These results suggest that SBF is one of the factors underlying the osteoarthritis development, especially in knees with traumatic osteoarthritis, and that the administration of PTH is a potential therapeutic treatment for preventing OA progression. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1959–1968, 2018.
  相似文献   

9.
Joint instability and cartilage trauma have been previously studied and identified as key mediators in the development of posttraumatic osteoarthritis (PTOA). The purpose of this study was to use an in vivo model to compare the effect of joint instability, caused by the rupture of the anterior cruciate ligament (ACL), versus cartilage compression. In this study, mice were subjected to cyclical axial loads of twelve Newtons (N) for 240 cycles or until the ACL ruptured. One and eight weeks after this procedure, knees were sectioned coronally and evaluated for osteoarthritis by histology. Using a scoring scale established by [Pritzker K, Gay S, Jimenez S, et al. (2006): Osteoarthritis Cartilage 14:13–29], the articular cartilage across each surface was scored and combined to produce a total degeneration score. The ACL‐ruptured group had a significantly greater total degeneration score than either control or compression treated joints at 1 and 8 weeks. Additionally, only sections from ACL‐ruptured knees consistently showed synovitis after 1 week and osteophyte formation after 8 weeks. Thus, it appears using that ACL rupture consistently creates a severe osteoarthritis phenotype, while axial cartilage compression alone does not appear to be an appropriate method of inducing PTOA in vivo. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:318–323, 2014.  相似文献   

10.
11.
Injuries to the anterior cruciate ligament (ACL) frequently lead to early‐onset osteoarthritis. Despite advancement in surgical techniques, ACL reconstruction has a limited ability to prevent these degenerative changes. While previous studies have investigated knee function after ACL reconstruction, in vivo investigations of the effects of graft placement on in vivo joint function and cartilage health are limited. This review presents a series of studies that used novel imaging and 3D modeling techniques to determine the in vivo placement of the ACL graft on the femur using two different ACL reconstruction techniques. These techniques resulted in two distinct graft placement groups: one where the ACL was placed anatomically near the center of the native ACL footprint and another where the graft was placed anteroproximally on the femur, centered outside the ACL footprint. We quantified the effects of graft placement on graft deformation during in vivo loading and how these variables affected knee motion. Finally, we quantified whether femoral placement of the graft affected cartilage thickness. Our results demonstrate that achieving anatomic graft placement on the femur is critical to restoring native ACL function and normal knee kinematics. Knees with grafts that more closely restored normal ACL function, and thus knee motion, experienced less focal cartilage thinning than did those that experienced abnormal knee motion. These results suggest that achieving anatomic graft placement is a critical factor in restoring normal knee motion and potentially slowing the development of degenerative changes after ACL reconstruction. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1160–1170, 2017.
  相似文献   

12.
No disease‐modifying osteoarthritis (OA) drugs are available to prevent posttraumatic osteoarthritis (PTOA). Mitochondria (MT) mediate the pathogenesis of many degenerative diseases, and recent evidence indicates that MT dysfunction is a peracute (within minutes to hours) response of cartilage to mechanical injury. The goal of this study was to investigate cardiolipin‐targeted mitoprotection as a new strategy to prevent chondrocyte death and cartilage degeneration after injury. Cartilage was harvested from bovine knee joints and subjected to a single, rapid impact injury (24.0 ±1.4 MPa, 53.8 ± 5.3 GPa/s). Explants were then treated with a mitoprotective peptide, SS‐31 (1µM), immediately post‐impact, or at 1, 6, or 12 h after injury, and then cultured for up to 7 days. Chondrocyte viability and apoptosis were quantified in situ using confocal microscopy. Cell membrane damage (lactate dehydrogenase activity) and cartilage matrix degradation (glycosaminoglycan loss) were quantified in cartilage‐conditioned media. SS‐31 treatment at all time points after impact resulted in chondrocyte viability similar to that of un‐injured controls. This effect was sustained for up to a week in culture. Further, SS‐31 prevented impact‐induced chondrocyte apoptosis, cell membrane damage, and cartilage matrix degeneration. Clinical Significance: This study is the first investigation of cardiolipin‐targeted mitoprotective therapy in cartilage. These results suggest that even when treatment is delayed by up to 12 h after injury, mitoprotection may be a useful strategy in the prevention of PTOA. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2147–2156, 2018.
  相似文献   

13.
The purpose of the current study was to investigate the feasibility of the application of defect‐size femoral implants in a rabbit model of established cartilage defects and compare this treatment to microfracturing. In 31 New Zealand White rabbits, a medial femoral condyle defect was created in each knee. After 4 weeks, 3 animals were killed for defect baseline values. In the other 28 rabbits, knees were sham‐operated, treated with microfracturing, or treated by placing an oxidized zirconium (OxZr) or cobalt‐chromium (CoCr) implant (?? articulating surface 3.5 mm; fixating pin of 9.1 mm length). These animals were sacrificed 4 weeks after treatment. Joints were evaluated macroscopically. Implant osseointegration was measured by automated histomorphometry, and cartilage repair was scored microscopically. Cartilage quality was analyzed macroscopically and microscopically. Bone–implant contact was 63.2% ± 3.2% for CoCr and 62.5% ± 3.2% for OxZr. Cartilage defects did not show complete healing, nor during subsequent sham‐surgery or microfracturing. For all treatments, considerable cartilage damage in the articulating medial tibia, and degeneration of lateral tibial and femoral cartilage was observed (p < 0.05). Both CoCr and OxZr implant‐treated defects showed an increase of cartilage degeneration compared to microfracturing and sham‐operated defects (p < 0.05). Although only a single short‐term follow‐up period was investigated in this study, caution is warranted using small metal implants as a treatment for established localized cartilage defects because, even after 4 weeks in this model, the metal implants caused considerable degeneration of the articulating surface. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:84–90, 2009  相似文献   

14.
The goal of this study was to develop an aggressive running regimen for modeling osteoarthritis (OA) in rats. Twelve Wistar rats were randomly placed into either a running group or a non‐running group to serve as the control. The running rats used a motorized treadmill to run either 30 km in 3 weeks or 55 km in 6 weeks. Each week, the prints of hind paws were obtained when rats were made to walk through a tunnel. The resulting prints were digitalized for analyses of stride length and step angle. The histology of the knees was examined at 3 and 6 weeks and the OA pathology in the knees was quantified by Mankin's score. Osteoarthritic pathology developed in the knees of the running rats, including decreased proteoglycan content, uneven type II collagen distribution in the cartilage matrix, increased MMP‐13 expression, expanded calcified cartilage zone, and clefts and defects in articular cartilage. The pathology worsened from running for 3 to 6 weeks. Gait analysis revealed an inverse correlation between paw angle and the grades of OA pathology. In conclusion, excessive running induces joint degeneration and a unique gait pattern in rats. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1604–1610, 2012  相似文献   

15.
Chondral lesions lead to degenerative changes in the surrounding cartilage tissue, increasing the risk of developing post‐traumatic osteoarthritis (PTOA). This study aimed to investigate the feasibility of quantitative magnetic resonance imaging (qMRI) for evaluation of articular cartilage in PTOA. Articular explants containing surgically induced and repaired chondral lesions were obtained from the stifle joints of seven Shetland ponies (14 samples). Three age‐matched nonoperated ponies served as controls (six samples). The samples were imaged at 9.4 T. The measured qMRI parameters included T1, T2, continuous‐wave T (CWT), adiabatic T (AdT), and T (AdT) and relaxation along a fictitious field (TRAFF). For reference, cartilage equilibrium and dynamic moduli, proteoglycan content and collagen fiber orientation were determined. Mean values and profiles from full‐thickness cartilage regions of interest, at increasing distances from the lesions, were used to compare experimental against control and to correlate qMRI with the references. Significant alterations were detected by qMRI parameters, including prolonged T1, CWT, and AdT in the regions adjacent to the lesions. The changes were confirmed by the reference methods. CWT was more strongly associated with the reference measurements and prolonged in the affected regions at lower spin‐locking amplitudes. Moderate to strong correlations were found between all qMRI parameters and the reference parameters (ρ = ?0.531 to ?0.757). T1, low spin‐lock amplitude CWT, and AdT were most responsive to changes in visually intact cartilage adjacent to the lesions. In the context of PTOA, these findings highlight the potential of T1, CWT, and AdT in evaluation of compositional and structural changes in cartilage.  相似文献   

16.
OBJECTIVE: To characterize the rabbit anterior cruciate ligament transection (ACLT) model of osteoarthritis (OA) at various stages of disease using high-resolution 3-D medical imaging systems, which, in turn, will facilitate future longitudinal studies evaluating disease progression and response to therapy in live animals. METHODS: Degenerative changes in femorotibial cartilage, volumetric bone mineral density (vBMD), bone volume fraction (BV/TV), and osteophyte volume were characterized ex vivo using 4-T magnetic resonance imaging (MRI) and micro-computed tomography (micro-CT) at 4, 8, and 12 weeks post-ACLT. These changes were subsequently correlated to macroscopic joint evaluation. RESULTS: Macroscopic assessment demonstrated progressive cartilage degeneration post-surgery, which was significantly correlated to MRI evaluation (r=0.82, P<0.0001). Linear regression analysis indicated that vBMD and BV/TV are linearly related such that as vBMD increases, BV/TV increases (P<0.0001). Micro-CT revealed bone loss at 4 and 8 weeks post-ACLT, but recovery to control values at 12 weeks post-ACLT. Volumetric BMD was not strongly correlated with macroscopic assessment of articular cartilage degeneration (r=-0.35, P<0.0001). Quantitative measurement of osteophyte volume demonstrated a statistically significant difference (with respect to control groups) at both 8 and 12 weeks post-ACLT, but not at 4 weeks post-ACLT. CONCLUSIONS: The rabbit ACLT model of OA demonstrates progressive cartilage degeneration and intermediate bone changes at 4, 8, and 12 weeks post-surgery. Cartilage and bone lesions were characterized ex vivo using 4-T MRI and micro-CT, and MRI assessment of cartilage degeneration was correlated to macroscopic grading.  相似文献   

17.
The purpose of this study was to determine the effect of one intra‐articular injection of hyaluronan on chondrocyte death and metabolism in injured cartilage. Twenty‐three 6‐month‐old rabbits received partial‐thickness articular cartilage defects created on each medial femoral condyle. In order to examine the effect on articular cartilage surrounding iatrogenic cartilage lesions, which can occur during arthroscopic procedures, Study 1 was performed: in 14 rabbits both knees were immediately rinsed with 0.9% NaCl. Experimental knees were treated with hyaluronan. Six rabbits were sacrificed at 2 days; eight rabbits 3 months postoperatively. Histomorphometric analysis was used for studying cell death in cartilage next to the defect. In order to examine the effect on longer lasting lesions, more reflecting the clinical situation, Study 2 was performed: after 6 months knee joints of nine rabbits were (i) irrigated with 0.9% NaCl, (ii) treated with hyaluronan after irrigation with 0.9% NaCl, or (iii) sham‐treated. After 7 days patellas were used to study the chondrocyte metabolism by measuring the [35S]sulfate incorporation. Study 1: Two days postoperatively, in hyaluronan‐treated cartilage the percentage of dead cells was 6.7%, which was significantly lower compared to 16.2% in saline‐treated cartilage. After 3 months the percentages of dead cells in both groups were statistically similar. Study 2: Hyaluronan treatment resulted in significantly higher [35S]sulfate incorporation compared to knees irrigated with 0.9% NaCl. These results suggest a potential role for hyaluronan in preventing cell death following articular cartilage injury. One injection of hyaluronan improved cartilage metabolism in knees with 6‐month‐old cartilage defects. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:624–630, 2008  相似文献   

18.
For evaluation of new approaches to drug delivery into cartilage, the choice of an animal model is critically important. Since cartilage thickness varies with animal size, different levels of drug uptake, transport and retention should be expected. Simple intra‐articular injection can require very high drug doses to achieve a concentration gradient high enough for drug diffusion into cartilage. New approaches involve nanoparticle delivery of functionalized drugs directly into cartilage; however, diffusion‐binding kinetics proceeds as the square of cartilage thickness. In this study, we demonstrate the necessity of using larger animals for sustained intra‐cartilage delivery and retention, exemplified by intra‐articular injection of Avidin (drug‐carrier) into rabbits and compared to rats in vivo. Penetration and retention of Avidin within cartilage is greatly enhanced by electrostatic interactions. Medial tibial cartilage was the thickest of rabbit cartilages, which generated the longest intra‐cartilage half‐life of Avidin (τ1/2 = 154 h). In contrast, Avidin half‐life in thinner rat cartilage was 5–6 times shorter (τ1/2 ~ 29 h). While a weak correlation (R2 = 0.43) was found between Avidin half‐lives and rabbit tissue GAG concentrations, this correlation improved dramatically (R2 = 0.96) when normalized to the square of cartilage thickness, consistent with the importance of cartilage thickness to evaluation of drug delivery and retention. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:660–667, 2015.  相似文献   

19.
The aim of this study was to determine how alendronate (ALN) alters cartilage degeneration and periarticular bone quality in a rabbit anterior cruciate ligament transection (ACLT) model of osteoarthritis (OA). Thirty rabbits underwent an ACLT on the left knee and a sham operation on the right knee. Fifteen rabbits received weekly subcutaneous injections of ALN (0.14 mg/kg) and 15 rabbits (the control [cont] group) received saline. Animal knees were divided into four groups: cont/sham, cont/ACLT, ALN/sham, and ALN/ACLT. Histological, radiological, and immunohistochemical indices were evaluated for each group. Bone volume ratios by micro‐computed tomography showed that ALN prevented periarticular bone loss. Histologically, the cont/ACLT group had significantly worse cartilage damage than the cont/sham group 12 weeks after the surgery. However, the ALN/ACLT group had mild cartilage degeneration compared with that of the ALN/sham group. Immunohistochemical analysis showed that ALN suppressed the expression of matrix metalloproteinase‐13, interleukin‐1β, type‐X collagen, vascular endothelial growth factor, and receptor activator of nuclear factor κB ligand in OA cartilage. ALN had a chondroprotective effect in an experimental rabbit model of OA. © 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29: 1572–1577, 2011  相似文献   

20.
Recent advances in the development of new drugs to halt or even reverse the progression of Osteoarthritis at an early‐stage requires new tools to detect early degeneration of articular cartilage. We investigated the ability of an electromechanical probe and an automated indentation technique to characterize entire human articular surfaces for rapid non‐destructive discrimination between early degenerated and healthy articular cartilage. Human cadaveric asymptomatic articular surfaces (four pairs of distal femurs and four pairs of tibial plateaus) were used. They were assessed ex vivo: macroscopically, electromechanically, (maps of the electromechanical quantitative parameter, QP, reflecting streaming potentials), mechanically (maps of the instantaneous modulus, IM), and through cartilage thickness. Osteochondral cores were also harvested from healthy and degenerated regions for histological assessment, biochemical analyses, and unconfined compression tests. The macroscopic visual assessment delimited three distinct regions on each articular surface: Region I was macroscopically degenerated, region II was macroscopically normal but adjacent to regions I and III was the remaining normal articular surface. Thus, each extracted core was assigned to one of the three regions. A mixed effect model revealed that only the QP (p < 0.0001) and IM (p < 0.0001) were able to statistically discriminate the three regions. Effect size was higher for QP and IM than other assessments, indicating greater sensitivity to distinguish early degeneration of cartilage. When considering the mapping feature of the QP and IM techniques, it also revealed bilateral symmetry in a moderately similar distribution pattern between bilateral joints. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:858–867, 2017.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号