首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Complex hemodynamics in cerebral arteriovenous malformations (AVM) are thought to play a key role in their pathophysiology. We applied 4D flow magnetic resonance imaging (MRI) for the detailed evaluation of AVM function at baseline and to investigate the impact of staged embolization on AVM hemodynamics in a patient with a Spetzler‐Martin grade III AVM. The patient underwent three embolization procedures resulting in >50% nidal casting and obliteration of several arteriovenous fistulae. 4D flow MRI demonstrated highly complex 3D hemodynamics at baseline and revealed intricate arterial feeding, a large vascularized nidus with high variability in regional blood flow velocities, and clearly visible venous drainage with high flow velocities above 50 cm/s. 3D blood flow visualization and quantification during follow‐up illustrated the systemic impact of focal embolization on cerebral hemodynamics resulting in compaction of the AVM, redistribution of blood flow velocities, and altered peak flow velocities and blood flow in multiple vascular territories. 4D flow MRI may offer a useful noninvasive tool to help to identify subtleties and nuances of the quantitative hemodynamic alterations in AVM vascular architecture as a supplement to established imaging modalities. J. Magn. Reson. Imaging 2013;38:946–950 . © 2013 Wiley Periodicals, Inc .  相似文献   

9.
10.
11.
Despite the recent technical developments, surgery on the thoracic aorta remains challenging and is associated with significant mortality and morbidity. Decisions about when and if to operate are based on a balance between surgical risk and the hazard of aortic rupture. These decisions are sometimes difficult in elective cases of thoracic aortic diseases, including aneurysms and dissections. Abnormal wall stress derived from flow alterations influences disease progression. Therefore, a better understanding of the complex hemodynamic environment inside the aortic lumen will facilitate patient-specific risk assessments of complications, which enable clinicians to provide timely prophylactic interventions. Time-resolved 3D phase-contrast (4D flow) MRI has many advantages for the in vivo assessment of flow dynamics. Recent developments in 4D flow imaging techniques has led to significant advances in our understanding of physiological flow dynamics in healthy subjects and patients with thoracic aortic diseases. In this clinically focused review of thoracic aortic diseases, we demonstrate the clinical advances acquired with 4D flow MRI from published studies. We provide a systematic overview of key evidences and considerations regarding normal thoracic aortas, thoracic aortic aneurysms, aortic dissections, and thoracic aortas with prosthetic graft replacement.  相似文献   

12.
13.
14.
15.
16.
4D flow MRI allows time-resolved 3D velocity-encoded phase-contrast imaging for 3D visualization and quantification of aortic and intracardiac flow. Radiologists should be familiar with the principles of 4D flow MRI and methods for evaluating blood flow qualitatively and quantitatively. The most substantial benefits of 4D flow MRI are that it enables the simultaneous comprehensive assessment of different vessels, and that retrospective analysis can be achieved in all vessels in any direction in the field of view, which is especially beneficial for patients with complicated congenital heart disease (CHD). For aortic valvular diseases, new parameters such as wall shear stress and energy loss may provide new prognostic values for 4D flow MRI. In this review, we introduce the clinical applications of 4D flow MRI for the visualization of blood flow and quantification of hemodynamic metrics in the setting of aortic valvular disease and CHD, including intracardiac shunt and coronary artery anomaly.  相似文献   

17.
18.
19.
    
Maximum diameter measurements are used to assess the rupture risk of abdominal aortic aneurysms (AAAs); however, these are not precise enough to predict all ruptures. Four-dimensional (4D) flow MRI-derived parameters provide additional information by visualizing hemodynamics in AAAs but merit further investigation before they are clinically applicable.  相似文献   

20.
Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号