首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
In this present contribution, an attempt has been taken to design and analyze the performance of elephant herding optimization (EHO) based controller for load frequency control (LFC) applications of interconnected power system. The studied system is a two‐area nonreheat thermal interconnected system which is widely used in literature. A proportional‐integral‐differential controller is utilized for LFC of the studied system. EHO technique is applied to obtain the tuned set of controller parameters. The objectives considered for design of the controller are the minimization of settling times and integral‐time‐multiplied‐absolute‐error of frequency deviations (FDs) and tie‐line power deviation (TPD). The design objectives are integrated together to form a function with single objective by assigning equal weights after normalization. Several test cases of diverse set of disturbances are taken into account to test the performance of the proposed controller and the obtained results are compared with other controllers designed with differential evolution, gray wolf optimization, particle swarm optimization, teacher‐learner‐based optimization, and whale optimization algorithm. Furthermore, the time‐domain simulations of FDs and TPD are illustrated to support the tabulated results. In addition, comparative statistical analysis is presented to validate the robust behavior of the proposed controller.  相似文献   

2.
This article proposes a novel control methodology employing a fractional-active-disturbance-rejection-controller for the combined operation of load frequency control and automatic voltage regulator of a hybrid power system. A two area hybrid power system with diverse energy sources like solar-thermal, conventional-thermal and wind sources equipped with appropriate system nonlinearities is investigated. In order to ascertain the role of modern-day electric-vehicle (EV), the hybrid power system is incorporated with EVs in both the areas. To establish an effective frequency, voltage and tie line power control of the hybrid power system, a second order fractional-active-disturbance-rejection-controller with fractional-extended state observer is modeled as secondary controller. Magnetotactic-bacteria-optimization (MBO) technique is applied to obtain optimal values of the controller gains and the hybrid system parameters. The robustness of the controller gains is tested under different system parameter changes from their nominal values. In addition, the effect of incorporating a power system stabilizer on the hybrid power system is evaluated. Further, the impact of integrating renewable sources and EVs in the hybrid power system is explored. Moreover, the stability of the hybrid power system is monitored with the inclusion of FACTS device. The developed controller operates encouragingly with reference to system stability, rapidity and accuracy in comparison to testified control strategies available in the literature. The robustness test under load-perturbation, solar-insolation, wind input variations also proves the efficiency of MBO optimized second order fractional-active-disturbance-rejection-controller gains.  相似文献   

3.
Controlling a thermal power plant optimally during load‐cycling operation is a very challenging control problem. The control complexity is enhanced further by the possibility of simultaneous occurrence of sensor malfunctions and a plethora of system disturbances. This paper proposes and evaluates the effectiveness of a sensor validation and reconstruction approach using principal component analysis (PCA) in conjunction with a physical plant model. For optimal control under severe operating conditions in the presence of possible sensor malfunctions, a predictive control strategy is devised by appropriate fusion of the PCA‐based sensor validation and reconstruction approach and a constrained model predictive control (MPC) technique. As a case study, the control strategy is applied for thermal power plant control in the presence of a single sensor malfunction. In particular, it is applied to investigate the effectiveness and relative advantage of applying rate constraints on main steam temperature and heat‐exchanger tube‐wall temperature, so that faster load cycling operation is achieved without causing excessive thermal stresses in heat‐exchanger tubes. In order to account for unstable and non‐minimum phase boiler–turbine dynamics, the MPC technique applied is an infinite horizon non‐linear physical model‐based state‐space MPC strategy, which guarantees asymptotic stability and feasibility in the presence of output and state constraints. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
This study extensively addresses the application of optimal control approach to the automatic generation control (AGC) of electrical power systems. Proportional‐integral structured optimal controllers are designed using full‐state feedback control strategy employing performance index minimization criterion. Some traditional single/multiarea and restructured multiarea power system models from the literature are explored deliberately in the present study. The dynamic performance of optimal controllers is observed superior in comparison to integral/proportional‐integral controllers tuned using some recently published modern heuristic optimization techniques. It is observed that optimal controllers show better system results in terms of minimum value of settling time, peak overshoot/undershoot, various performance indices, and oscillations corresponding to change in area frequencies and tie‐line powers along with maximum value of minimum damping ratio in comparison to other controllers. The results are displayed in the form of tables for ease of comparison. Sensitivity analysis affirms the robustness of the optimal feedback controller gains to wide variations in some system parameters from their nominal values.  相似文献   

5.
An efficient robust reliability method for non‐fragile robust control design of dynamic system with bounded parametric uncertainties is presented systematically, in which the uncertainties existing in the controlled plant and controller realization are taken into account simultaneously in an integrated framework. Reliability‐based design optimization of non‐fragile robust control for parametric uncertain systems is carried out by optimizing the H2 and H performances of the closed‐loop system, with the constraints on robust reliabilities. The non‐fragile robust controller obtained by the presented method may possess a coordinated optimum performance satisfying the precondition that the system is robustly reliable with respect to the uncertainties existing in controlled plant and controller. Moreover, the robustness bounds of uncertain parameters can be provided. The presented formulations are within the framework of linear matrix inequality and thus can be carried out conveniently. It is demonstrated by a numerical example that the presented method is effective and feasible. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号