首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Objective

Wnt signaling pathway proteins are involved in embryonic development of cartilage and bone, and, interestingly, developmental processes appear to be recapitulated in osteoarthritic (OA) cartilage. The present study was undertaken to characterize the expression pattern of Wnt and Fz genes during experimental OA and to determine the function of selected genes in experimental and human OA.

Methods

Longitudinal expression analysis was performed in 2 models of OA. Levels of messenger RNA for genes from the Wnt/β‐catenin pathway were determined in synovium and cartilage, and the results were validated using immunohistochemistry. Effects of selected genes were assessed in vitro using recombinant protein, and in vivo by adenoviral overexpression.

Results

Wnt‐induced signaling protein 1 (WISP‐1) expression was strongly increased in the synovium and cartilage of mice with experimental OA. Wnt‐16 and Wnt‐2B were also markedly up‐regulated during the course of disease. Interestingly, increased WISP‐1 expression was also found in human OA cartilage and synovium. Stimulation of macrophages and chondrocytes with recombinant WISP‐1 resulted in interleukin‐1–independent induction of several matrix metalloproteinases (MMPs) and aggrecanase. Adenoviral overexpression of WISP‐1 in murine knee joints induced MMP and aggrecanase expression and resulted in cartilage damage.

Conclusion

This study included a comprehensive characterization of Wnt and Frizzled gene expression in experimental and human OA articular joint tissue. The data demonstrate, for the first time, that WISP‐1 expression is a feature of experimental and human OA and that WISP‐1 regulates chondrocyte and macrophage MMP and aggrecanase expression and is capable of inducing articular cartilage damage in models of OA.
  相似文献   

2.

Objective

Fibroblast growth factor (FGF) family members are involved in the regulation of articular cartilage homeostasis. The aim of this study was to investigate the function of FGF receptor 1 (FGFR‐1) in the development of osteoarthritis (OA) and its underlying mechanisms.

Methods

FGFR‐1 was deleted from the articular chondrocytes of adult mice in a cartilage‐specific and tamoxifen‐inducible manner. Two OA models (aging‐associated spontaneous OA, and destabilization‐induced OA), as well as an antigen‐induced arthritis (AIA) model, were established and tested in Fgfr1‐deficient and wild‐type (WT) mice. Alterations in cartilage structure and the loss of proteoglycan were assessed in the knee joints of mice of either genotype, using these 3 arthritis models. Primary chondrocytes were isolated and the expression of key regulatory molecules was assessed quantitatively. In addition, the effect of an FGFR‐1 inhibitor on human articular chondrocytes was examined.

Results

The gross morphologic features of Fgfr1‐deficient mice were comparable with those of WT mice at both the postnatal and adult stages. The articular cartilage of 12‐month‐old Fgfr1‐deficient mice displayed greater aggrecan staining compared to 12‐month‐old WT mice. Fgfr1 deficiency conferred resistance to the proteoglycan loss induced by AIA and attenuated the development of cartilage destruction after surgically induced destabilization of the knee joint. The chondroprotective effect of FGFR‐1 inhibition was largely associated with decreased expression of matrix metalloproteinase 13 (MMP‐13) and up‐regulation of FGFR‐3 in mouse and human articular chondrocytes.

Conclusion

Disruption of FGFR‐1 in adult mouse articular chondrocytes inhibits the progression of cartilage degeneration. Down‐regulation of MMP‐13 expression and up‐regulation of FGFR‐3 levels may contribute to the phenotypic changes observed in Fgfr1‐deficient mice.
  相似文献   

3.

Objective

To investigate the in vivo effect of an imbalance between metalloproteinases and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), in mouse articular cartilage.

Methods

Hind joints of Timp3−/− and wild‐type mice were examined by routine staining and by immunohistochemical analysis using antibodies specific for type X collagen and for the neoepitopes produced on proteolytic cleavage of aggrecan (… VDIPEN and … NVTEGE) and type II collagen. The neoepitope generated on cleavage of type II collagen by collagenases was quantitated in sera by enzyme‐linked immunosorbent assay.

Results

Articular cartilage from Timp3‐knockout animals (ages ≥6 months) showed reduced Safranin O staining and an increase in …VDIPEN content compared with cartilage from heterozygous and wild‐type animals. There was also a slight increase in … NVTEGE content in articular cartilage and menisci of Timp3−/− animals. Chondrocytes showed strong pericellular staining for type II collagen cleavage neoepitopes, particularly in the superficial layer, in knockout mice. Also, there was more type X collagen expression in the superficial zone of articular cartilage, especially around clusters of proliferating chondrocytes, in the knockout mice. More type II collagen cleavage product was found in the serum of Timp3−/− mice compared with wild‐type animals. This increase was significant in 15‐month‐old animals.

Conclusion

These results indicate that TIMP‐3 deficiency results in mild cartilage degradation similar to changes seen in patients with osteoarthritis, suggesting that an imbalance between metalloproteinases and TIMP‐3 may play a pathophysiologic role in the development of this disease.
  相似文献   

4.

Objective

To examine the role of the phosphoinositide‐dependent serine/threonine protein kinase Akt1 in chondrocytes during endochondral ossification.

Methods

Skeletal phenotypes of homozygous Akt1‐deficient (Akt1−/−) mice and their wild‐type littermates were compared in radiologic and histologic analyses. An experimental osteoarthritis (OA) model was created by surgically inducing instability in the knee joints of mice. For functional analyses, we used primary costal and articular chondrocytes from neonatal mice and mouse chondrogenic ATDC5 cells with retroviral overexpression of constitutively active Akt1 or small interfering RNA (siRNA) for Akt1.

Results

Among the Akt isoforms (Akt1, Akt2, and Akt3), Akt1 was the most highly expressed in chondrocytes, and the total level of Akt protein was decreased in Akt1−/− chondrocytes, indicating a dominant role of Akt1. Akt1−/− mice exhibited dwarfism with normal proliferative and hypertrophic zones but suppressed cartilage calcification in the growth plate compared with their wild‐type littermates. In mice with surgically induced OA, calcified osteophyte formation, but not cartilage degradation, was prevented in the Akt1−/− joints. Calcification was significantly suppressed in cultures of Akt1−/− chondrocytes or ATDC5 cells overexpressing siRNA for Akt1 and was enhanced in ATDC5 cells overexpressing constitutively active Akt1. Neither proliferation nor hypertrophic differentiation was affected by the gain or loss of function of Akt1. The expression of ANK and nucleotide pyrophosphatase/phosphodiesterase 1, which accumulate pyrophosphate, a crucial calcification inhibitor, was enhanced by Akt1 deficiency or siRNA for Akt1 and was suppressed by constitutively active Akt1.

Conclusion

Our findings indicate that Akt1 in chondrocytes controls cartilage calcification by inhibiting pyrophosphate during endochondral ossification in skeletal growth and during osteophyte formation in OA.
  相似文献   

5.
6.

Objective

Several studies have shown that cathepsin K (CTK) is overexpressed in osteoarthritic (OA) cartilage and subchondral bone. However, it has not been well established whether CTK expression is harmful or beneficial. We undertook this study to investigate the direct involvement of CTK in OA development using Ctsk‐knockout (Ctsk−/−) mice in a joint instability–induced model of OA.

Methods

We analyzed the natural course of the phenotype of 25‐week‐old Ctsk−/− mice. OA development was evaluated with a modified Mankin histologic score up to 8 weeks after surgery was performed to destabilize the knee in Ctsk−/− and Ctsk+/+ mice. Histologic analysis was used to evaluate expression of CTK, matrix metalloproteinase 13 (MMP‐13), ADAMTS‐5, and tartrate‐resistant acid phosphatase (TRAP) proteins in chondrocytes, synovial cells, and osteoclasts. Bone architecture was analyzed by histomorphometry.

Results

Bone mineral content and bone volume were higher in Ctsk−/− mice at 25 weeks, whereas OA did not develop spontaneously in either Ctsk−/− or Ctsk+/+ mice. In a model of destabilization‐induced OA, OA progression was significantly delayed in Ctsk−/− mice. CTK was overexpressed in chondrocytes and synovial cells of knee joints developing OA in Ctsk+/+ mice. MMP‐13 and ADAMTS‐5 were less strongly expressed in chondrocytes of Ctsk−/− mice, and MMP‐13 was less strongly expressed in synovial cells. TRAP‐positive osteoclasts were overexpressed in Ctsk−/− mice.

Conclusion

These results indicate that CTK plays crucial direct roles in the early to intermediate stage of OA development. CTK‐positive chondrocytes and synovial cells may be a possible target to prevent disease progression in OA.
  相似文献   

7.

Objective

To determine whether aggrecanase (ADAMTS) activities in articular cartilage can directly lead to the release of hyaluronan (HA) and hyaladherins (aggrecan G1 domain and link proteins), as may occur ex vivo during stimulation of cartilage explants with interleukin‐1 (IL‐1) or retinoic acid or in vivo in synovial joints during aging and joint pathology.

Methods

Bovine articular cartilage discs (live or freeze‐killed) were cultured in the presence of IL‐1 or were incubated in digestion buffer containing recombinant human ADAMTS‐4 (rHuADAMTS‐4; aggrecanase 1) or rHuADAMTS‐5 (aggrecanase 2). Culture media, digestion supernatants, and tissue extracts were assayed for sulfated glycosaminoglycan (sGAG) content and analyzed by Western blotting to detect aggrecanase‐generated G1 domain (using neoepitope monoclonal antibody AGG‐C1/anti‐NITEGE373) and link proteins (using monoclonal antibody 8‐A‐4), as well as by quantitative enzyme‐linked immunosorbent assays to detect aggrecanase‐generated G1 domain (G1‐NITEGE373) and HA.

Results

IL‐1 treatment of live cartilage explants induced a time‐dependent release of sGAG, aggrecanase‐generated G1 domain (G1‐NITEGE373), and HA into the culture media. Exposure of live or freeze‐killed articular cartilage discs to rHuADAMTS‐4 or rHuADAMTS‐5 resulted in a dose‐ and time‐dependent release of sGAG and hyaluronan from the tissue, accompanied by a concomitant release of functionally intact hyaladherins (aggrecan G1‐NITEGE373 and link proteins).

Conclusion

Coincident with aggrecanolysis, aggrecanase activities in articular cartilage may actuate the release of HA and associated hyaladherins, thereby further compromising the integrity of the cartilage matrix during degenerative joint diseases such as osteoarthritis.
  相似文献   

8.

Objective

Chondrocytes, the sole cell type in articular cartilage, maintain the extracellular matrix (ECM) through a homeostatic balance of anabolic and catabolic activities that are influenced by genetic factors, soluble mediators, and biophysical factors such as mechanical stress. Chondrocytes are encapsulated by a narrow tissue region termed the “pericellular matrix” (PCM), which in normal cartilage is defined by the exclusive presence of type VI collagen. Because the PCM completely surrounds each cell, it has been hypothesized that it serves as a filter or transducer for biochemical and/or biomechanical signals from the cartilage ECM. The present study was undertaken to investigate whether lack of type VI collagen may affect the development and biomechanical function of the PCM and alter the mechanical environment of chondrocytes during joint loading.

Methods

Col6a1−/− mice, which lack type VI collagen in their organs, were generated for use in these studies. At ages 1, 3, 6, and 11 months, bone mineral density (BMD) was measured, and osteoarthritic (OA) and developmental changes in the femoral head were evaluated histomorphometrically. Mechanical properties of articular cartilage from the hip joints of 1‐month‐old Col6a1−/−, Col6a1+/−, and Col6a1+/+ mice were assessed using an electromechanical test system, and mechanical properties of the PCM were measured using the micropipette aspiration technique.

Results

In Col6a1−/− and Col6a1+/− mice the PCM was structurally intact, but exhibited significantly reduced mechanical properties as compared with wild‐type controls. With age, Col6a1−/− mice showed accelerated development of OA joint degeneration, as well as other musculoskeletal abnormalities such as delayed secondary ossification and reduced BMD.

Conclusion

These findings suggest that type VI collagen has an important role in regulating the physiology of the synovial joint and provide indirect evidence that alterations in the mechanical environment of chondrocytes, due to either loss of PCM properties or Col6a1−/−‐derived joint laxity, can lead to progression of OA.
  相似文献   

9.

Objective

To examine the pathogenetic mechanisms of osteoarthritis (OA)–like changes in Col9a1−/− mice, which are deficient in type IX collagen.

Methods

Knee joints and temporomandibular joints (TMJs) from Col9a1−/− mice and their wild‐type (Col9a1+/+) littermates were examined by light microscopy. Immunohistochemical staining was performed to examine the expression of matrix metalloproteinase 3 (MMP‐3) and MMP‐13, degraded type II collagen, and the discoidin domain receptor 2 (DDR‐2) in knee joints. Cartilage mechanics were also evaluated for compressive properties by microindentation testing of the tibial plateau and for tensile properties by osmotic loading of the femoral condyle.

Results

Histologic analysis showed age‐dependent OA‐like changes in the knee and TMJs of Col9a1−/− mice starting at the age of 3 months. At the age of 6 months, enhanced proteoglycan degradation was observed in the articular cartilage of the knee and TMJs of the mutant mice. The expression of MMP‐13 and DDR‐2 protein and the amount of degraded type II collagen were higher in the knee joints of Col9a1−/− mice than in their wild‐type littermates at the age of 6 months. Changes in cartilage mechanics were observed in the femoral and tibial plateaus of Col9a1−/− mice at 6 months, including a decrease in the compressive modulus and uniaxial modulus. At 3 and 6 months of age, tibial cartilage in Col9a1−/− mice was found to be more permeable to fluid flow, with an associated compromise in the fluid pressurization mechanism of load support. All of these changes occurred only at medial sites.

Conclusion

Lack of type IX collagen in Col9a1−/− mice results in age‐dependent OA‐like changes in the knee joints and TMJs.
  相似文献   

10.

Objective

Ligands and antagonists of the WNT pathway are linked to osteoporosis and osteoarthritis. In particular, polymorphisms in the FRZB gene, a secreted WNT antagonist, have been associated with osteoarthritis. The aim of this study was to examine cartilage and bone in Frzb−/− mice.

Methods

The Frzb gene in mice was inactivated using a Cre/loxP strategy. Three models of osteoarthritis were used: collagenase, papain, and methylated bovine serum albumin induced. Bone biology was studied using density measurements and microfocal computed tomography. Bone stiffness and mechanical loading–induced bone adaptation were studied by compression of the ulnae.

Results

Targeted deletion of the Frzb gene in mice increased articular cartilage loss during arthritis triggered by instability, enzymatic injury, or inflammation. Cartilage damage in Frzb−/− mice was associated with increased WNT signaling and matrix metalloproteinase 3 (MMP‐3) expression and activity. Frzb−/− mice had increased cortical bone thickness and density, resulting in stiffer bones, as demonstrated by stress–strain relationship analyses. Moreover, Frzb−/− mice had an increased periosteal anabolic response to mechanical loading as compared with wild‐type mice.

Conclusion

The genetic association between osteoarthritis and FRZB polymorphisms is corroborated by increased cartilage proteoglycan loss in 3 different models of arthritis in Frzb−/− mice. Loss of Frzb may contribute to cartilage damage by increasing the expression and activity of MMPs, in a WNT‐dependent and WNT‐independent manner. FRZB deficiency also resulted in thicker cortical bone, with increased stiffness and higher cortical appositional bone formation after loading. This may contribute to the development of osteoarthritis by producing increased strain on the articular cartilage during normal locomotion but may protect against osteoporotic fractures.
  相似文献   

11.

Objective

Autoimmune regulator (Aire) promotes the ectopic expression of tissue‐restricted antigens in medullary thymic epithelial cells (mTECs), leading to negative selection of autoreactive T cells. This study was undertaken to determine whether loss of central tolerance renders Aire‐deficient (Aire−/−) mice more susceptible to the induction of autoimmune arthritis.

Methods

Medullary TECs were isolated from Aire−/− and wild‐type C57BL/6 mice for gene expression analysis. Collagen‐induced arthritis (CIA) was elicited by injection of chick type II collagen (CII) in adjuvant. Cellular and humoral immune responses to CII were evaluated. Chimeric mice were created by reconstituting lymphocyte‐deficient mice with either Aire−/− or wild‐type CD4 T cells and wild‐type B cells.

Results

Wild‐type, but not Aire−/−, mTECs expressed the CII gene Col2a1. Aire−/− mice developed more rapid and severe CIA, showing elevated serum anti‐CII IgG levels, with earlier switching to arthritogenic IgG subclasses. No evidence was found of enhanced T cell responsiveness to CII in Aire−/− mice; however, Aire−/− CD4 T cells were more efficient at stimulating wild‐type B cells to produce anti‐CII IgG following immunization of chimeric mice with CII.

Conclusion

Our findings indicate that Aire‐dependent expression of CII occurs in mTECs, implying that there is central tolerance to self antigens found in articular cartilage. Reduced central tolerance to CII in Aire−/− mice manifests as increased CD4 T cell help to B cells for cross‐reactive autoantibody production and enhanced CIA. Aire and central tolerance help prevent cross‐reactive autoimmune responses to CII initiated by environmental stimuli and limit spontaneous autoimmunity.
  相似文献   

12.

Objective

To investigate whether the reduction of discoidin domain receptor 2 (DDR‐2), a cell membrane tyrosine kinase receptor for native type II collagen, attenuates the progression of articular cartilage degeneration in mouse models of osteoarthritis (OA).

Methods

Double‐heterozygous (type XI collagen–deficient [Col11a1+/−] and Ddr2‐deficient [Ddr2+/−]) mutant mice were generated. Knee joints of Ddr2+/− mice were subjected to microsurgical destabilization of the medial meniscus. Conditions of the articular cartilage from the knee joints of the double‐heterozygous mutant and surgically treated mice were examined by histology, evaluated using a modified Mankin scoring system, and characterized by immunohistochemistry.

Results

The rate of progressive degeneration in knee joints was dramatically reduced in the double‐heterozygous mutant mice compared with that in the type XI collagen–deficient mice. The progression in the double‐heterozygous mutant mice was delayed by ∼6 months. Following surgical destabilization of the medial meniscus, the progressive degeneration toward OA was dramatically delayed in the Ddr2+/− mice compared with that in their wild‐type littermates. The articular cartilage damage present in the knee joints of the mice was directly correlated with the expression profiles of DDR‐2 and matrix metalloproteinase 13.

Conclusion

Reduction of DDR‐2 expression attenuates the articular cartilage degeneration of knee joints induced either by type XI collagen deficiency or by surgical destabilization of the medial meniscus.
  相似文献   

13.

Objective

To determine whether elevated serum lipid levels resulting from feeding animals a high‐fat diet can affect the inflammatory process in C57BL/6 (B6) wild‐type (WT) and B6 ApoE−/− mouse models of collagen‐induced arthritis (CIA).

Methods

Male B6 WT or ApoE−/− mice were fed either a normal chow diet or a high‐fat diet. CIA was induced in mice at 12 weeks of age using type II chicken collagen, Freund's complete adjuvant, and, on occasion, a lipopolysaccharide boost. Expression levels of autoantibodies and cytokines were measured using enzyme‐linked immunosorbent assay and multiplex assay, respectively.

Results

Whereas B6 WT mice developed severe articular inflammation after collagen immunization, ApoE−/− mice developed no clinical or histologic evidence of disease regardless of whether they had been fed a high‐fat diet or a normal chow diet. The fact that arthritis was not present in ApoE−/− mice did not result from inadequate production of serum IgG2a collagen antibodies, since levels observed in ApoE−/− mice were similar to those observed in arthritic B6 WT control mice. Critically, development of atherosclerosis in ApoE−/− mice was not affected by the CIA protocol.

Conclusion

Our findings suggest that ApoE−/− mice are resistant to the development of CIA. Intriguingly, induction of host autoimmunity in the absence of articular inflammation had no effect on atherosclerosis progression, suggesting that articular inflammatory load may be a critical risk factor in vascular pathology.
  相似文献   

14.

Objective

To determine expression patterns of apoptotic and matrix‐degrading genes during aging and development of osteoarthritis (OA), using a rabbit model of induced OA.

Methods

Six mature and 6 aged rabbits underwent anterior cruciate ligament transection and were killed 4 and 8 weeks after surgery, respectively, to create early‐grade and advanced‐grade OA. RNA from articular cartilage and menisci was examined for expression of the genes caspase 8, Fas, Fas ligand, p53, aggrecanase, matrix metalloproteinase 1 (MMP‐1), and MMP‐3. A second cohort of animals that had undergone no intervention in the joint was also killed. Parametric data were analyzed with analysis of variance and Student's t‐tests, while nonparametric data were assessed with the Mann‐Whitney U test.

Results

Expression levels of Fas, caspase 8, FasL, and MMP‐1 were significantly higher (>100%) in aged cartilage compared with mature cartilage (P < 0.05). After induction of OA, expression of apoptotic genes in aged rabbits remained high, while significant up‐regulation of Fas and caspase 8 (nearly 150% increase) was observed in mature rabbits (P < 0.05). No significant up‐regulation of these genes was observed in the menisci of aged or mature rabbits prior to or after induction of OA. Development of OA occurred more rapidly in aged cartilage compared with mature cartilage (P < 0.05).

Conclusion

Differential expression of apoptotic and matrix‐degrading genes occurs in aged compared with mature cartilage, both at baseline and during development of OA. This may be responsible for faster degradation of aged cartilage and its predisposition for developing OA.
  相似文献   

15.

Objective

Sclerostin plays a major role in regulating skeletal bone mass, but its effects in articular cartilage are not known. The purpose of this study was to determine whether genetic loss or pharmacologic inhibition of sclerostin has an impact on knee joint articular cartilage.

Methods

Expression of sclerostin was determined in articular cartilage and bone tissue obtained from mice, rats, and human subjects, including patients with knee osteoarthritis (OA). Mice with genetic knockout (KO) of sclerostin and pharmacologic inhibition of sclerostin with a sclerostin‐neutralizing monoclonal antibody (Scl‐Ab) in aged male rats and ovariectomized (OVX) female rats were used to study the effects of sclerostin on pathologic processes in the knee joint. The rat medial meniscus tear (MMT) model of OA was used to investigate the pharmacologic efficacy of systemic Scl‐Ab or intraarticular (IA) delivery of a sclerostin antibody–Fab (Scl‐Fab) fragment.

Results

Sclerostin expression was detected in rodent and human articular chondrocytes. No difference was observed in the magnitude or distribution of sclerostin expression between normal and OA cartilage or bone. Sclerostin‐KO mice showed no difference in histopathologic features of the knee joint compared to age‐matched wild‐type mice. Pharmacologic treatment of intact aged male rats or OVX female rats with Scl‐Ab had no effect on morphologic characteristics of the articular cartilage. In the rat MMT model, pharmacologic treatment of animals with either systemic Scl‐Ab or IA injection of Scl‐Fab had no effect on lesion development or severity.

Conclusion

Genetic absence of sclerostin does not alter the normal development of age‐dependent OA in mice, and pharmacologic inhibition of sclerostin with Scl‐Ab has no impact on articular cartilage remodeling in rats with posttraumatic OA.
  相似文献   

16.
17.

Objective

To map aggrecan cleavage by matrix metalloproteinases (MMPs) and aggrecanases in normal murine tibial articular cartilage (CBA strain) and in the development of spontaneous osteoarthritis (OA) in the STR/ort mouse and to assess the influence of sex hormone status on these conditions in gonadectomized STR/ort mice.

Methods

The distributions of neoepitopes of aggrecan generated by MMP (VDIPEN) and aggrecanase (NITEGE) cleavage were investigated by immunohistochemistry.

Results

VDIPEN neoepitope was detected mainly in the pericellular matrix of deep‐zone chondrocytes in normal tibial cartilage from STR/ort and CBA mice. In early OA, VDIPEN immunostaining also localized to the pericellular matrix of chondrocytes at the site of the lesion. With increasing severity of OA lesions, VDIPEN immunostaining was also detected in the interterritorial matrix, close to the site of the lesion. In contrast, NITEGE mapped most strongly to the pericellular matrix of upper‐zone chondrocytes in normal tibial cartilage. As with VDIPEN, NITEGE was strongly expressed in the pericellular matrix at the site of early OA lesions. With advancing OA, NITEGE colocalized with VDIPEN in both the pericellular and interterritorial matrices of chondrocytes adjacent to OA lesions and in those of the deep zones. Hormone status did not appear to influence the development of OA or the distribution of aggrecan neoepitopes in STR/ort mice.

Conclusion

MMP‐ and aggrecanase‐generated neoepitopes map predominantly to different regions in normal murine tibial cartilage. However, both groups of enzymes generate increased amounts of neoepitopes in pericellular and interterritorial matrix adjacent to histopathologic lesions of OA. Aggrecan degradation and the development of OA appear to be independent of sex hormone status in this model.
  相似文献   

18.

Objective

Hypoxia‐inducible factor 2α (HIF‐2α) (encoded by Epas1) causes osteoarthritic (OA) cartilage destruction by regulating the expression of catabolic factor genes. We undertook this study to explore the role of interleukin‐6 (IL‐6) in HIF‐2α–mediated OA cartilage destruction in mice.

Methods

The expression of HIF‐2α, IL‐6, and catabolic factors was determined at the messenger RNA and protein levels in primary culture mouse chondrocytes, human OA cartilage, and mouse experimental OA cartilage. Experimental OA in wild‐type, HIF‐2α–knockdown (Epas1+/−), and Il6–/– mice was caused by intraarticular injection of Epas1 adenovirus or destabilization of the medial meniscus. The role of IL‐6 was determined by treating with recombinant IL‐6 protein or by injecting HIF‐2α adenovirus (AdEpas1) intraarticularly in mice with or without IL‐6–neutralizing antibody.

Results

We found that Il6 is a direct target gene of HIF‐2α in articular chondrocytes. Both Epas1 and Il6 were up‐regulated in human and mouse OA cartilage, whereas HIF‐2α knockdown in mice led to inhibition of both Il6 expression and cartilage destruction. Treatment with IL‐6 enhanced Mmp3 and Mmp13 expression; conversely, Il6 knockdown inhibited HIF‐2α–induced up‐regulation of Mmp3 and Mmp13. Injection of IL‐6 protein into mouse knee joints triggered OA cartilage destruction, whereas IL‐6 neutralization led to blocking of HIF‐2α–induced cartilage destruction with concomitant modulation of Mmp3 and Mmp13 expression. Moreover, Il6 knockout resulted in inhibition of AdEpas1‐induced and destabilization of the medial meniscus–induced cartilage destruction as well as inhibition of Mmp3 and Mmp13 expression.

Conclusion

Our findings indicate that IL‐6 acts as a crucial mediator of HIF‐2α–induced experimental OA cartilage destruction in mice via regulation of Mmp3 and Mmp13 levels.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号