首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary We have analyzed the expression and function of the intron-encoded bI4 maturase when frame-shift mutations in the upstream exon alter the translational process. By constructing secondary cis-acting mutations within the b14 intron, we observed (1) that the bI4 maturase is still translated in the presence of the upstream mutation, albeit in very low amounts, and (2) that the limited amounts of bI4 maturase made under these conditions is no longer able to promote the splicing process of the aI4 intron. These observations, which further strengthen the maturase model, strongly suggest that bI4 maturase acts sequentially on the bI4 intron and then on the aI4 intron.  相似文献   

3.
Summary We have studied the role of the product of the nuclear gene PET157 in mitochondrial pre-mRNA splicing. Cytoduction experiments show that a mitochondrial genome deleted for the three introns bI3, aI5 and aI6 is able to suppress the pet157-1 mutation: the strain recovers respiratory competency indicating that the product of the PET157 gene is only required for mitochondrial premRNA splicing. Characterization of the high molecular weight pre-mRNAs which accumulate in the pet157 mutant demonstrate that the product of the PET157 gene is required for the excision of two group I introns bI3 and aI6 (corresponding to aI5) located in the cob-box and coxI genes respectively. Furthermore, the pet157 mutant strain accumulates the bI3 maturase in the form of a polypeptide of 50K (p50) previously observed in mitochondrial mutants defective in the excision of bI3. We have shown by restriction analysis and allelism tests that the pet157-1 mutation is allelic to the nuclear mrs1 mutation, previously described as specifically blocking the excision of bI3. Finally, revertants obtained by the deletion of bI3 or aI6 from the mitochondrial DNA were isolated from the MRS1 disrupted allele, confirming the involvment of the product of the MRS1/PET157 gene in the excision of the two introns bI3 and aI6.  相似文献   

4.
5.
6.
 The DNA sequences of cytochrome oxidase (subunits 1, 2 and 3) genes of the cellular slime mold Dictyostelium discoideum mitochondria were determined. The genes for subunits 1 and 2 have a single continuous ORF (COX1/2) which contains four group-I introns. The insertion sites of the two group-I introns (DdOX1/2.2 and DdOX1/2.3) coincide with those of fungal and algal group-I introns, as well as a liverwort group-I intron, in the cytochrome oxidase subunit 1. Interestingly, intron DdOX1/2.2 has two free-standing ORFs in a loop (L8) which have similar amino-acid sequences and are homologous to ai4 DNA endonuclease (I-Sce II) and bi4 RNA maturase found in group-I introns of Saccharomyces cerevisiae mitochondrial DNA. Two group-I introns (DdOX1/2.3 and DdOX1/2.4) also have a free-standing ORF in loop 1 and loop 2, respectively. These results show that these group-I introns and the intronic ORFs have evolved from the same ancestral origin, but that these ORFs have been propagated independently. Received: 1 May / 16 September 1996  相似文献   

7.
Splicing of the group I intron of the T4 thymidylate synthase (td) gene was uncoupled from translation by introducing stop codons in the upstream exon. This resulted in severe splicing deficiency in vivo. Overexpression of a UGA suppressor tRNA partially rescued splicing, suggesting that this in vitro self-splicing intron requires translation for splicing in vivo. Inhibition of translation by the antibiotics chloramphenicol and spectinomycin also resulted in splicing deficiency. Ribosomal protein S12, a protein with RNA chaperone activity, and CYT-18, a protein that stabilizes the three-dimensional structure of group I introns, efficiently rescued the stop codon mutants. We identified a region in the upstream exon that interferes with splicing. Point mutations in this region efficiently alleviate the effect of a nonsense codon. We infer from these results that the ribosome acts as an RNA chaperone to facilitate proper folding of the intron.  相似文献   

8.
A class of large site-specific deletions (del-B) occurs with exceptionally-high frequencies of 10-3 in the mitochondrial COX1 gene of Mn2+-treated yeast cells. This work shows that del-B deletions are associated with COX1 intron aI1. All five deletion mutants studied have their upstream end at the authentic 3 splice site of this intron. The deletion ends 8.2 kb downstream in intron aI5b. This downstream deletion-end constitutes a potentially-cryptic 5 splice site for intron aI1. The coincidences of the del-B deletion-ends with authentic and cryptic RNA splice sites suggest that the group-II intron aI1, and/or the RNA maturase encoded in it, plays an active role in this exceptionally-frequent, site-specific deletion process.  相似文献   

9.
Summary nam3 and R705, yeast nuclear omnipotent suppressors of mitochondrial mit mutations, reverse the superimposed spectrum of trans-recessive splicing defects by affecting the protein composition of the small mitoribosomal subunit. Analysis of the suppressor's interaction suggests that suppression results from mutations in the mitoribosomal polypeptides. These data indicate an obligatory connection between mitoribosome function and splicing of introns bI2, bI4 and aI1 in yeast mitochondria.  相似文献   

10.
To explore the structural basis of alternative splicing, we have analyzed the splicing of pre-mRNAs containing an optional exon, E4, from the preprotachykinin gene. This gene encodes substance P and related tachykinin peptides by alternative splicing of a common pre-mRNA. We have shown that alternative splicing of preprotachykinin pre-mRNA occurs by preferential skipping of optional E4. The competing mechanism that incorporates E4 into the final spliced RNA is constrained by an initial block to splicing of the immediate upstream intervening sequence (IVS), IVS3. This block is relieved by sequential splicing, in which the immediate downstream IVS4 is removed first. The structural change resulting from the first splicing event is directly responsible for activation of IVS3 splicing. This structural rearrangement replaces IVS4 sequences with E5 and its adjacent IVS5 sequences. To determine how this structural change promoted IVS3 splicing, we asked what structural change(s) would restore activity of IVS3 splicing-defective mutants. The most significant effect was observed by a 2-nucleotide substitution that converted the 5' splice site of E4 to an exact consensus match, GUAAGU. Exon 5 sequences alone were found not to promote splicing when present in one or multiple copies. However, when a 15-nucleotide segment of IVS5 containing GUAAGU was inserted into a splicing-defective mutant just downstream of the hybrid exon segment E4E5, splicing activity was recovered. Curiously, the 72-nucleotide L2 exon of adenovirus, without its associated 5' splice site, activates splicing when juxtaposed to E4. Models for the activation of splicing by an RNA structural change are discussed.  相似文献   

11.
12.
13.
14.
15.
16.
Background: Mutations in CHRNE, the gene encoding the muscle nicotinic acetylcholine receptor ε subunit, cause congenital myasthenic syndromes. Only three of the eight intronic splice site mutations of CHRNE reported to date have had their splicing consequences characterised. Methods: We analysed four previously reported and five novel splicing mutations in CHRNE by introducing the entire normal and mutant genomic CHRNEs into COS cells. Results and conclusions: We found that short introns (82–109 nucleotides) favour intron retention, whereas medium to long introns (306–1210 nucleotides) flanking either or both sides of an exon favour exon skipping. Two mutations are of particular interest. Firstly, a G→T substitution at the 3'' end of exon 8 predicts an R286M missense mutation, but instead results in skipping of exon 8. In human genes, a mismatch of the last exonic nucleotide to U1 snRNP is frequently compensated by a matching nucleotide at intron position +6. CHRNE intron 8 has a mismatch at position +6, and accordingly fails to compensate for the exonic mutation at position –1. Secondly, a 16 bp duplication, giving rise to two 3'' splice sites (g.IVS10-9_c.1167dup16), results in silencing of the downstream 3'' splice site. This conforms to the scanning model of recognition of the 3'' splice site, which predicts that the first "ag" occurring after the branch point is selected for splicing.  相似文献   

17.
Efficient splicing of the td group I intron in vivo is dependent on the ribosome. In the absence of translation, the pre-mRNA is trapped in nonnative-splicing-incompetent conformations. Alternatively, folding of the pre-mRNA can be promoted by the RNA chaperone StpA or by the group I intron-specific splicing factor Cyt-18. To understand the mechanism of action of RNA chaperones, we probed the impact of StpA on the structure of the td intron in vivo. Our data suggest that StpA loosens tertiary interactions. The most prominent structural change was the opening of the base triples, which are involved in the correct orientation of the two major intron core domains. In line with the destabilizing activity of StpA, splicing of mutant introns with a reduced structural stability is sensitive to StpA. In contrast, Cyt-18 strengthens tertiary contacts, thereby rescuing splicing of structurally compromised td mutants in vivo. Our data provide direct evidence for protein-induced conformational changes within catalytic RNA in vivo. Whereas StpA resolves tertiary contacts enabling the RNA to refold, Cyt-18 contributes to the overall compactness of the td intron in vivo.  相似文献   

18.
The protein encoded by the second intron (bi2) of the mitochondrial cyt b gene from Saccharomyces cerevisiae functions as a maturase promoting intron splicing. This protein belongs to a large family characterized by the presence of two conserved motifs: LAGLIDADG (or P1 and P2). We have isolated and characterized spontaneous revertants from two mis-sense mutations, G85D and H92P (localized in the P1 motif of the bi2-maturase), that have a detrimental effect on intron splicing. All analyzed revertants are intragenic and resulted from monosubstitutions in the mutated codons. Only true back-mutations that restore the initial glycine 85 and a pseudoreversion that replaces the deleterious aspartic acid 85 by alanine were found in revertants of the mutant G85D. In contrast, all possible monosubstitutions in the mutated codon H92P were identified among the revertants of this mutant. The maturase activity of all novel forms of the protein is similar to the wild-type protein.  相似文献   

19.
20.
Summary Earlier, we reported that the ND1 mitochondrial gene of Podospora anserina is mosaic, containing at least three class I introns. We have now completed the sequence of the ND1 gene and have determined that it contains four class I introns of 1,820, 2,631, 2,256 and 2,597 by with the entire gene complex containing 10,505 bp, only 1,101 of which are exon sequences. Introns 1 and 3 appear to be related in that their open reading frames (ORFS) exhibit extensive amino acid sequence similarity and like the URFN sequence from Neurospora crassa have multiple sequence repetitions. Introns 2 and 4 are similar in that both appear to be mosaic introns. Where intron 2 has many short ORFS, intron 4 has two, 391 and 262 as respectively. The first ORF has some patch work sequence similarity with one of the intron 2 ORFs but the second ORF is strikingly similar to the single intron ORF in the ND1 gene of N. crassa. Just upstream of the sequences necessary to form the central core of the P. anserina intron 4 secondary structure, there is a 17 bp sequence which is an exact replica of the exon sequence abutting the 5 flank of the 1,118 by N. crassa ND1 intron. Secondary structure analysis suggests that the 2,597 by intron 4 can fold as an entity but a similar structure can be constructed just from an 1,130 bp portion by utilizing the 17 bp element as an alternate splice site. Detailed structural analysis suggests that intron 4 (as well as the single ND1 intron from N. crassa) can utilize helical configurations which bring the downstream open reading frame into juxtaposition with the exon sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号