首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the in vitro hippocampal slice preparation, we have investigated the effects of gamma-aminobutyric acid (GABA) and its analogue beta-(p-chlorophenyl)-GABA (baclofen) on CA1 and CA3 pyramidal cells in the developing rabbit hippocampus. Somatic applications: both GABA and baclofen, when applied to CA1 pyramidal cells from immature tissue, led to cell depolarization from resting membrane potential; this baclofen depolarization may be indirectly mediated. In contrast, CA3 pyramidal cells at the same age were primarily hyperpolarized by both drugs. In mature tissue, both GABA and baclofen applied at the soma induce cell hyperpolarizations. Dendritic applications: immature CA1 cells responded to dendritic GABA and baclofen application with depolarizations associated with increased cell excitability; here, too, the baclofen depolarization may be due to indirect 'disinhibition'. Both depolarizing and hyperpolarizing responses were recorded in immature tissue when GABA was applied to CA3 pyramidal cell dendrites: baclofen produced only hyperpolarizations. In mature CA1 cells, dendritic GABA application produced membrane depolarization, but dendritic baclofen application produced hyperpolarizations. In mature CA3 cells, dendritic GABA and baclofen application produced predominant hyperpolarizations. Mature CA1 pyramidal cells appear to retain some of the GABA-induced depolarizations characteristic of immature tissue. In contrast, mature CA3 neurons show only hyperpolarizing responses to GABA and baclofen application. In all cases, responses to GABA and baclofen are associated with a decrease in cell input resistance. We conclude that the GABAergic receptor/channel complexes mature differently in the CA1 and CA3 regions of the hippocampus.  相似文献   

2.
In urethane-anaesthetized rats, the β-carboline derivative βCCE (0.3–1.0 mg/kg i.v.) excited hippocampal pyramidal cells which were inhibited by GABA (applied iontophoretically) and benzodiazepines (applied iontophoretically or intravenously). While benzodiazepines facilitated the action of GABA, the effects of GABA and benzodiazepines were antagonized by βCCE. This electrophysiological study supports the behavioural observations that βCCE is a benzodiazepine receptor antagonist.  相似文献   

3.
The resistance of the turtle brain to hypoxic injury permits a unique in vitro preparation in which the organization and function of visual cortex can be explored. Intracellular recordings from cortical pyramidal neurons revealed biphasic responses to flashes of light, consisting of an early phase (50-100 msec) of concurrent inhibitory and excitatory activation, followed by a longer, inhibitory phase (250-600 msec) composed of summated Cl- -dependent postsynaptic potentials mediated by GABA. This response sequence results from the coactivation of pyramidal and GABAergic non-pyramidal cells, followed by feed-forward and possibly feed-back pyramidal cell inhibition, and is partly dependent on differences in the membrane properties of pyramidal and non-pyramidal neurons.  相似文献   

4.
5.
Previous in vivo studies from our laboratory have consistently shown that iontophoretically applied norepinephrine (NE) can potentiate γ-aminobutyric acid (GABA)-induced depressant responses of cerebrocortical, cerebellar and hypothalamic neurons. Additional experiments have further suggested that this noradrenergic facilitating action is specific for GABA and results from the activation of a β-type adrenoceptor. The goal of the present studies was to determine if the cAMP second messenger system might also be a component of the mechanism responsible for this NE modulatory action on GABA-mediated inhibition. In one set of in vitro experiments, we examined cerebellar neuronal responses to GABA before, during and after iontophoretic application of NE, 8-bromo3′,5′-cylic AMP (BcAMP) or 3-isobutyl-1-methyl xanthine (IBMX) or bath application of forskolin (10–30 μM). In a second group of in vivo studies, extracellularly recorded responses of individual cerebellar Purkinje (P) cells to iontophoretic pulses of GABA or β-alanine were examined before, during and after NE or BcAMP microiontophoresis. In 20 of 25 cerebellar cells recorded from tissue slices, iontophoretically applied NE markedly enhanced responses to GABA in a manner similar to that observed previously in vivo. In these in vitro preprarations, bath application of forskolin was also capable of potentiating GABA-induced inhibition in each of 4 cases tested whereas dideoxy-forskolin was not. Iontophoretic application of IBMX further enhanced the facilitating effects of NE on GABA-induced inhibition in 10 of 11 cases tested. Furthermore, under in vitro conditions, BcAMP augmented inhibitory responses to GABA in all cerebellar neurons tested. In the intact rat brain, iontophoretic administration of BcAMP caused a marked NE-like augmentation of P-cell responses to GABA in 73% of the cells tested. As with NE, BcAMP was ineffective in enhancing P-cell inhibitory responses to β-alanine, an agent which like GABA causes hyperpolarization, by increasing Cl conductance. In summary, these results indicate that a membrane permeant analog of cAMP, a phosphodiesterase inhibitor and an agent which directly activates adenyl cyclase can mimic the previously observed GABA-potentiating actions of NE. Thus, these findings provide further support for the contention that noradrenergic enhancement of GABA inhibition results from a cascade of transmembrane events which includes β-receptor activation, adenyl cyclase stimulation and increased intracellular production of cAMP.  相似文献   

6.
Phosphate-activated glutaminase (PAG), which catalyses conversion of glutamine to glutamate, is a potential marker for glutamatergic, and possibly GABA, neurons in the central nervous system. A polyclonal antibody, raised in rabbits against rat brain PAG, was applied to postmortem human brain tissue to reveal the distribution of PAG in the cerebral cortex. PAG immunoreactivity was observed in pyramidal and non-pyramidal neurons but not in glial cells. In the neocortex, large to medium-sized pyramidal neurons in layers III and V were stained most intensely, while the majority of smaller pyramidal cells were labeled either lightly or moderately. Such modified pyramids as the giant Betz cells, the large pyramidal cells of Meynert, and the solitary cells of Ramón y Cajal were also stained intensely. Fusiform cells in layer VI showed moderate to intense labeling. A number of cortical non-pyramidal neurons of various sizes stained moderately to intensely. These included large basket cells which were identified by their characteristic morphology and size in primary cortical areas. Pyramidal cells in the hippocampal formation as well as basket cells of the stratum oriens stained moderately to intensely. Since pyramidal cells are believed to be glutamatergic and large basket cells GABAergic, these results suggest that PAG plays a role in generating not only transmitter glutamate, but also GABA precursor glutamate.  相似文献   

7.
The non-pyramidal cells in layer III of cat primary auditory cortex (AI)   总被引:1,自引:0,他引:1  
The form and location of non-pyramidal neurons in layer III of the primary auditory cortex (AI) of adult cats is described in Golgi, Nissl, and other material. The cells were compared to the profiles of retrogradely labeled, commissurally interconnected cells. A principal finding is that certain non-pyramidal and pyramidal cells project interhemispherically to AI; a second conclusion is that the retrogradely labeled commissural cells form small clusters or narrow strips separated by unlabeled patches even after massive injections in the opposite AI. The non-pyramidal cells of origin have not yet been conclusively identified, but they must include one (or more) of the following six types of cells observed in Golgi-impregnated material: tufted or bitufted cells with a radially elongated dendritic arbor; sparsely spinous stellate neurons with thin, smooth dendrites and vertically disposed axonal branches; small stellate cells with varicose dendrites, a restricted dendritic field, and a profusely branched local axon; bipolar neurons with long, thin dendrites; medium-sized multipolar cells with radiating, sparsely branched dendrites; and small stellate neurons with smooth dendrites and a tiny dendritic field. These non-pyramidal cells are found throughout layer III but are more numerous in the upper part, layer IIIa, where they mingle with the small pyramidal neurons. As a rule the axonal branches of non-pyramidal cells are more numerous than those arising from layer III pyramidal neurons, and although they have many axonal collaterals, most project locally and vertically in narrow radial strips. In contrast, pyramidal cell axons have ascending and descending components which invade large, lateral territories in many cortical layers. Layer III non-pyramidal neurons are similar to those in layer IV in certain respects, although their dendritic fields are more spherical and less tufted than those of layer IV cells, and their axons have more local, limited targets. These axons appear to contribute but little to the conspicuous, lateral fiber striae in layer III. The primary intrinsic targets of non-pyramidal cell axons appear to be the apical dendrites of medium-sized and large layer III pyramidal cells, and recurrent branches to the parent cell; their fine, distal branches fortify the vertical plexus in layer III, and certain axons may descend into layer IV. Since layer III in AI receives both commissural and thalamic input, it is possible that these parallel, afferent channels are to some degree segregated, and to some degree convergent, onto particular types of cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Epileptiform potentials, consisting of spontaneous, generalized bursts frequently assuming a 3/sec spike-wave form and tonic clonic electrographic seizures were produced in 32 lightly anesthetized cats by parenteral injections of penicillin. The activity of 83 identified pyramidal tract cells and 207 cortical non-pyramidal tract cells was correlated with the surface EEG. The majority of both cell types generated depolarizations and action potentials with the EEG spike. Hyperpolarizations, during which cells were inhibited, followed the depolarizations. The depolarizations responded to injected current as if they were generated by excitatory synapses; and hyperpolarizations to injected current and chloride ions as if generated by proximal inhibitory synapses. Attempts to identify a class of neurons firing during the surface-negative wave (presumed inhibitory interneurons) were unsuccessful. Forty-two units were recorded during tonic-clonic seizures. Intracellular records disclosed tonic oscillations of membrane potential, phased bursting with "depolarization shifts", abortive action potentials and post-ictal hyperpolarizations. Cell somata often depolarized to the point of inactivation, but axons continued to fire at high rates. These results emphasize the role of EPSP-IPSP sequences in the generation of spike-wave rhythms.  相似文献   

9.
Using the in vitro rabbit hippocampal slice preparation, we have investigated the effects of gamma-aminobutyric acid (GABA) iontophoresis on CA3 pyramidal cell dendrites. The predominant response (70% of the cells tested) was a hyperpolarization associated with a 30% decrease in cell input resistance (Rm). These hyperpolarizations displayed a very pronounced voltage dependency: they were decreased by cell depolarization and flattened by hyperpolarization. Bicuculline methiodide (BMI, 50 microM) did not abolish this response, nor did intracellular iontophoresis of chloride ions. In 5% of the cells, an additional hyperpolarization was obtained with longer ejection times; it reversed close to the reversal potential of the early component of the IPSP. In 25% of the cells, dendritic GABA application produced a depolarization. This response was reversed with cell membrane depolarization and was associated with a large (80%) decrease in Rm. The depolarizations were abolished by BMI (50 microM) and greatly increased by increasing the intracellular chloride concentration. None of the responses to GABA were affected by blockade of synaptic transmission. We conclude that the predominant response of CA3 pyramidal cell dendrites to GABA application is a hyperpolarization mediated by GABAB receptors and probably carried by potassium ions. The depolarizing responses are mediated via GABAA receptors and depend on an increase in chloride permeability.  相似文献   

10.
Fast spiking cells in the CA1 region of the rat hippocampus were revealed as γ-aminobutyric acid (GABA)ergic non-pyramidal cells containing the calcium-binding protein parvalbumin by intracellular injection of Lucifer yellow in vitro in combination with postem-bedding parvalbumin immunohistochemistry.  相似文献   

11.
The somata of type ‘C’ neurons in rabbit nodose ganglion are endowed with receptor sites for 5-HT, BK, ACh, II and GABA. 5-HT and ACh application to type ‘C’ neurons in the nodose ganglion of rabbits produced a rapid depolarization associated with an increased membrane conductance, most likely to Na+ and K+. BK and H elicited slow depolarizations accompanied by a decreased membrane conductance probably to K+. GABA induced a rapid depolarization associated with an increased conductance to Cl. In contrast, type ‘A’ neurons were insensitive to the four algesic agents but responded to GABA. d-Tubocurarine or picrotoxin at relatively low concentrations blocked ACh, 5-HT and GABA depolarizations without affecting membrane properties. Hexamethonium blocked ACh responses but not 5-HT responses. In addition, no desensitization occurred between the substances 5-HT, ACh or BK. The results suggest that the depolarizing effect of these agents on visceral neurons might be exerted via different receptors.  相似文献   

12.
The effects of γ-vinyl-GABA (4-amino-hex-5-enoic acid, RMI 71754) and γ-acetylenic-GABA (4-amino-hex-5-ynoic acid, RMI 71645), the selective and irreversible inhibitors of GABA-transaminase (E.C. 2.6.1.19), on the resting and stimulated release of GABA and other amino acids from sensorimotor cortex of rats was studied using a superfusion technique.Administration of a single dose of γ-vinyl-GABA (1500 mg/kg i.p.) caused the appearance of GABA in superfusate. This reached a maximal peak size after 50 min and remained high for 3 h. γ-Vinyl-GABA was also released and reached a maximum value after 20 min and decreased to low levels during 3 h. There was no direct parallelism between the time courses of release of GABA and γ-vinyl-GABA. Also, the amount of GABA released was much larger when the drug was administered by i.p. injection than when applied directly to the cortex surface through the cannula at 100 μM.In the presence of γ-vinyl-GABA, stimulation of the brachial plexus contralateral to the superfusion cannula increased GABA and glutamate release, but was without effect on γ-vinyl-GABA itself or any other amino acid.In the presence of γ-acetylenic-GABA the contralateral stimulation increased significantly only the rate of release of glutamate and the combined peaks of GABA and γ-acetylenic-GABA. These changes were not observed to follow stimulation of the ipsilateral plexus. Stimulation of either plexus had no detectable action on the rates of release of GABA from the visual cortex.The changes in rates of release of GABA and glutamate due to stimuli were reversible, returning to control levels after cessation of the stimulation.  相似文献   

13.
The preceding studies demonstrated that norepinephrine (NE) can consistently augment synaptically mediated (70%) and γ-aminobutyric acid (GABA)-induced (69%) inhibitory responses of lateral hypothalamic (LH) neurons in vivo. The present experiments further characterized the interactions of NE with LH neuronal responses to GABA in terms of α- and ß-receptor mechanisms and demonsrated the utility of the in vitro LH tissue slice preparation as a model for future extra- and intracellular studies of NE modulatory phenomena. Extracellular activity of LH cells was recorded from diencephalic slices (450 μm) incubated in artificial cerebrospinal fluid at 33 °C. Interactions between iontophoretically applied NE, isoproterenol (ISO) or phenylephrine (PE) and responses of LH neurons (n = 64) to GABA microiontophoresis were quantitated and characterized using computer-generated ratemeter and histogram records. This analysis revealed two distinct actions of NE on GABA-induced responses of LH neurons. In 8 of 32 cells tested (25%), locally applied NE markedly enhanced inhibitory responses to GABA iontophoresis in a manner identical to that observed in vivo. However, in 20 cells (62.5%), iontophoretic application of NE produced a clear antagonism of GABA responses. NE also exerted dual effects on the background firing rate of LH neurons, causing both inhibition and excitation. Overall, in those cells where NE administration increased spontaneous discharge, it either antagonized or had no effect on GABA-mediated inhibition. In contrast, spontaneous firing rate was never elevated above control levels in those cases where NE potentiated GABA responses. Additional experiments demonstrated that the GABA potentiating actions of the benzodiazepine, flurazepam, were preserved in LH tissue slice preparations. In addition, iontophoretic application of the ß-agonist, ISO, routinely suppressed the spontaneous activity of LH neurons and mimicked the facilitating action of NE on GABA. Likewise, microiontophoretic application of 8-bromo cyclic adenosine monophosphate (AMP) enhanced GABA-induced inhibition of LH firing rate in each of 11 cells tested. On the other hand, local administration of the alpha agonist, PE, routinely produced NE-like antagonism of GABA inhibition along with increases in spontaneous firing rate. Taken together these findings indicate that the commonly observed in vivo phenomena of NE augmentation of GABA and suppression of LH neuron spontaneous firing can be demonstrated in vitro, and most likely result from activation of beta adrenoceptors and subsequent elevation of cyclic AMP levels. As such these results suggest that the in vitro preparation will be a useful tool for further investigation of the transmembrane and intracellular events associated with noradrenergically mediated enhancement of GABA. However, in contrast to results obtained in vivo, NE antagonism of GABA inhibition and excitatory effects on spontaneous activity were more frequently observed in LH slices and appear to be mediated by alpha receptor activation. The reduced capacity of NE to augment GABA in vitro might be related to changes in the balance between α- and ß-mediated effects rather than deficits in GABA-facilitating mechanisms, since ISO, cyclic AMP and the benzodiazepine were all routinely capable of enhancing GABAergic responses.  相似文献   

14.
Dopamine (DA) was applied iontophoretically on intracellularly recorded cat caudate neurons. Ejected approximately 100 μm away from the cell soma, it caused slow depolarizations of the membrane while the ongoing firing rate was reduced. This last effect was not due to sodium inactivation. Cortically evoked EPSP-IPSP sequences were inhibited during the depolarizations. The latency of cortically evoked action potentials was consistently increased during DA-ejections. These effects were blocked by fluphenazine, a relatively selective blocker of the DA-sensitive adenylate cyclase. Nevertheless, there are serious doubts as to the specificity of these actions of DA as a number of other substances like naloxone, nicotine, acetylcholine or glutamate-diethylester occasionally had very similar effects on membrane potential, firing rate and cortically evoked EPSP-IPSP sequences.If DA was applied nearer to the soma, approximately 50 μm away, 70% of the recorded neurons continued to display the slow depolarizations above described, while 30% of the cells now reacted by a hyperpolarization accompanied also by a reduced firing rate. If DA was applied for prolonged periods on such cells, the initial hyperpolarization was followed by the slow depolarization.The observation that during the slow depolarization there is a decrease in firing rate and amplitude of the cortically evoked IPSP is explained by the assumption that the region of the axon hillock is hyperpolarized by DA, and that the slow depolarization is a phenomenon restricted to the distant recording site and possibly to the dendritic region.None of the 74 responsive neurons displayed an increased firing rate when DA was ejected either continously, i.e. for more than 5 sec, or in short pulses of 50–500 msec.  相似文献   

15.
Recurrent neural activity is a pervasive mode of cortical operations and is believed to underlie cognitive functions of working memory, attention, and the generation of spontaneous activity during sleep [90]. It is proposed here that activity in corticothalamic recurrent circuits underlies the sustaining of attention, and that extended durations of attention are made possible by the stabilizing effects of electrical activity in long apical dendrites of pyramidal neurons. Using the cue–target delay task as a framework, the present paper describes sustained attention during the cue–target delay as activity in recurrent circuits involving layer 5/6 pyramidal neurons. At target onset, persistent activity in apical dendrites of layer 2/3 pyramidal neurons (projected from the recurrent circuits) can enhance the processing of incoming pulse trains at basal dendrites. Apical dendrite activity is assumed to modulate the soma processing of layer 2/3 and layer 5/6 pyramidal neurons at subthreshold voltage levels. The variability of successive soma depolarizations from the apical dendrite strongly influences the stability of activity in the corticothalamic recurrent circuit. Lower variability promotes higher stability. According to the present model of apical dendrite function, soma depolarizations can be reduced in variability and maintained within subthreshold levels by increasing the distance that EPSPs propagate along the apical dendrite. The close relationship between sustained attention and the electrical field potentials produced by repeated EPSP propagations in apical dendrites is supported in a brief review of sustained attention experiments that have employed measures of EEG, ERS/ERD, ERP, and LFP.  相似文献   

16.
When applied by microiontophoresis to neurons, including identified pyramidal tract cells, in the cerebral cortex, adenosine and AMP depressed cell firing. (—)Phenylisopropyladenosine depressed less than half the cells tested with usually, a very prolonged time course, though several units were powerfully and irreversibly inhibited. Ethylcar☐amide adenosine depressed 70% of the cells tested in a readily reversible manner. 2′,5′-dideoxy-adenosine produced small depressions of firing only when applied for several minutes, though it also prevented adenosine but not GABA depressions of some cells. The results are interpreted to mean that the purine receptor usually mediating depression may resemble the A2/Ra site more than the A1/Ri receptor.  相似文献   

17.
T.J. Ashwood  H.V. Wheal 《Brain research》1986,367(1-2):390-394
Somatic and dendritic responses to gamma-aminobutyric acid (GABA) were recorded intracellularly from CA1 pyramidal cells in slices of the hippocampus ipsilateral and contralateral to a unilateral kainic acid lesion of the CA3 region. Ipsilateral CA1 cells show a loss of GABA-mediated synaptic inhibition. However, somatic GABA responses and the sensitivity of cells to GABA were very similar in ipsilateral and contralateral cells. This was also true for dendritic applications of GABA.  相似文献   

18.
We tested whether cholinergic denervation of the hippocampas of young rats would result in an enhancement of CAI pyramidal cell responsiveness to nicotine. Electrolytic lesions of the medial septal area were performed in young male Fisher 344 rats, One month later the rats were anesthetized with pentobarbital and nicotine was locally applied to CAI pyramidal neurons using pressure microejection. The dose of nicotine required to excite the pyramidal neurons was significantly lower for cells recorded from rats with septal lesions. However, no changes in hippocampal cytisine or α-bungarotoxin binding were found.  相似文献   

19.
Ischemia is one of the most common causes of acquired brain injury. Central to its noxious sequelae are spreading depolarizations (SDs), waves of persistent depolarizations which start at the location of the flow obstruction and expand outwards leading to excitotoxic damage. The majority of acute stage of stroke studies to date have focused on the phenomenology of SDs and their association with brain damage. In the current work, we investigated the role of peri-injection zone pyramidal neurons in triggering SDs by optogenetic stimulation in an endothelin-1 rat model of focal ischemia. Our concurrent two photon fluorescence microscopy data and local field potential recordings indicated that a ≥ 60% drop in cortical arteriolar red blood cell velocity was associated with SDs at the ET-1 injection site. SDs were also observed in the peri-injection zone, which subsequently exhibited elevated neuronal activity in the low-frequency bands. Critically, SDs were triggered by low- but not high-frequency optogenetic stimulation of peri-injection zone pyramidal neurons. Our findings depict a complex etiology of SDs post focal ischemia and reveal that effects of neuronal modulation exhibit spectral and spatial selectivity.  相似文献   

20.
Phosphate-activated glutaminase (PAG) is the major enzyme involved in the synthesis of the excitatory neurotransmitter glutamate in cortical neurons of the mammalian cerebral cortex. In this study, the distribution and morphology of glutamatergic neurons in cat visual cortex was monitored through immunocytochemistry for PAG. We first determined the specificity of the anti-rat brain PAG polyclonal antibody for cat brain PAG. We then examined the laminar expression profile and the phenotype of PAG-immunopositive neurons in area 17 and 18 of cat visual cortex. Neuronal cell bodies with moderate to intense PAG immunoreactivity were distributed throughout cortical layers II-VI and near the border with the white matter of both visual areas. The largest and most intensely labeled cells were mainly restricted to cortical layers III and V. Careful examination of the typology of PAG-immunoreactive cells based on the size and shape of the cell body together with the dendritic pattern indicated that the vast majority of these cells were pyramidal neurons. However, PAG immunoreactivity was also observed in a paucity of non-pyramidal neurons in cortical layers IV and VI of both visual areas. To further characterize the PAG-immunopositive neuronal population we performed double-stainings between PAG and three calcium-binding proteins, parvalbumin, calbindin and calretinin, to determine whether GABAergic non-pyramidal cells can express PAG, and neurofilament protein, a marker for a subset of pyramidal neurons in mammalian neocortex. We here present PAG as a neurochemical marker to map excitatory cortical neurons that use the amino acid glutamate as their neurotransmitter in cat visual cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号