首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: Previous studies evaluating the lipolytic effect of GH have in general been performed in subjects on chronic GH therapy. In this study we assessed the lipolytic effect of GH in previously untreated patients and examined whether the negative effect of enhanced lipolysis on glucose metabolism could be counteracted by acute antilipolysis achieved with acipimox. METHODS: Ten GH-deficient (GHD) adults participated in four experiments each, during which they received in a double-blind manner: placebo (A); GH (0.88+/-0.13 mg) (B); GH+acipimox 250 mg b.i.d. (C); and acipimox b.i.d. (no GH) (D), where GH was given the night before a 2 h euglycemic, hyperinsulinemic clamp combined with infusion of [3-(3)H]glucose and indirect calorimetry. RESULTS: GH increased basal free fatty acid (FFA) levels by 74% (P=0.0051) and insulin levels by 93% (P=0.0051). This resulted in a non-significant decrease in insulin-stimulated glucose uptakes (16.61+/-8.03 vs 12.74+/-5.50 micromol/kg per min (s.d.), P=0.07 for A vs B). The rates of insulin-stimulated glucose uptake correlated negatively with the FFA concentrations (r=-0.638, P<0.0001). However, acipimox caused a significant improvement in insulin-stimulated glucose uptake in the GH-treated patients (17.35+/-5.65 vs 12.74+/-5.50 micromol/kg per min, P=0.012 for C vs B). The acipimox-induced enhancement of insulin-stimulated glucose uptake was mainly due to an enhanced rate of glucose oxidation (8.32+/-3.00 vs 5.88+/-2.39 micromol/kg per min, P=0.07 for C vs B). The enhanced rates of glucose oxidation induced by acipimox correlated negatively with the rate of lipid oxidation in GH-treated subjects both in basal (r=-0.867, P=0.0093) and during insulin-stimulated (r=-0.927, P=0.0054) conditions. GH did not significantly impair non-oxidative glucose metabolism (6.86+/-5.22 vs 8.67+/-6.65 micromol/kg per min, P=NS for B vs A). The fasting rate of endogenous glucose production was unaffected by GH and acipimox administration (10.99+/-1.98 vs 11.73+/-2.38 micromol/kg per min, P=NS for B vs A and 11.55+/-2.7 vs 10.99+/-1.98 micromol/kg per min, P=NS for C vs B). On the other hand, acipimox alone improved glucose uptake in the untreated GHD patients (24.14+/-8.74 vs 16.61+/-8.03 micromol/kg per min, P=0.0077 for D vs A) and this was again due to enhanced fasting (7.90+/-2.68 vs 5.16+/-2.28 micromol/kg per min, P=0.01 for D vs A) and insulin-stimulated (9.78+/-3.68 vs 7.95+/-2.64 micromol/kg per min, P=0.07 for D vs A) glucose oxidation. CONCLUSION: The study of acute administration of GH to previously untreated GHD patients provides compelling evidence that (i) GH-induced insulin resistance is mainly due to induction of lipolysis by GH; and (ii) inhibition of lipolysis can prevent the deterioration of insulin sensitivity. The question remains whether GH replacement therapy should, at least at the beginning of therapy, be combined with means to prevent an excessive stimulation of lipolysis by GH.  相似文献   

2.
During fasting, a lack of GH increases protein loss by close to 50%, but the underlying mechanisms remain uncertain. The present study tests the hypothesis that the anabolic actions of GH depend on mobilization of lipids. Seven normal subjects were examined on four occasions during a 37-h fast with infusion of somatostatin, insulin, and glucagon for the final 15 h: 1) with GH replacement, 2) with GH replacement and antilipolysis with acipimox, 3) without GH and with antilipolysis, and 4) with GH replacement, antilipolysis, and infusion of intralipid. Urinary urea excretion, serum urea concentrations, and muscle protein breakdown (assessed by labeled phenylalanine) increased by almost 50% during fasting with suppression of lipolysis. Addition of GH during fasting with antilipolysis did not influence indexes of protein degradation, whereas restoration of high FFA levels regenerated proportionally low concentrations of urea and decreased whole body protein degradation (phenylalanine to tyrosine conversion) by 10-15%, but failed to affect muscle protein metabolism. Thus, the present data provide strong evidence that FFA are important protein-sparing agents during fasting. The finding that inhibition of lipolysis eliminates the ability of GH to restrict fasting protein loss indicates that stimulation of lipolysis is the principal protein-conserving mechanism of GH.  相似文献   

3.
The lipolytic properties of GH are essential for the acute effects on glucose metabolism and insulin sensitivity, whereas its more long-term impact on substrate metabolism is uncertain. The aim of the study was to evaluate the influence of pharmacological antilipolysis on substrate metabolism during constant and continued GH exposure. Seven adult GH-deficient (GHD) patients were studied twice in a double-blind randomized order: 1) after 4 wk of acipimox treatment (250 mg, orally, three times daily) and 2) after 4 wk of placebo treatment. Daily GH replacement was continued throughout both study periods. At the end of each period glucose and lipid oxidation rates were assessed by indirect calorimetry, and the protein oxidation rate was estimated by urinary excretion of urea. Endogenous glucose production and whole body protein metabolism were assessed by isotope dilution techniques using tritiated glucose and stable phenylalanine and tyrosine isotopes, respectively. GH and IGF-I levels were not different between periods, whereas FFA and glycerol levels were distinctly suppressed after 4 wk of pharmacological antilipolysis [FFA, 256 +/- 63 (acipimox) vs. 596 +/- 69 (placebo) micromol/liter; P = 0.001]. Likewise, plasma levels of total and low density lipoprotein cholesterol as well as triglycerides were significantly reduced after acipimox. Despite this, lipid oxidation rates were identical at the end of the two treatment periods [589 +/- 106 (acipimox) vs. 626 +/- 111 (placebo) kcal/24 h; P = 0.698]. The total and oxidative rates of glucose as well as protein oxidation and urea excretion were identical at the end of the two treatment periods (P > 0.05). Phenylalanine flux, a measure of protein turnover, was increased [34.62 +/- 1.83 (acipimox) vs. 33.15 +/- 1.61 (placebo) micromol/kg.h; P = 0.049] as was phenylalanine incorporation into protein, a measure of protein synthesis [30.79 +/- 1.67 (acipimox) vs. 28.97 +/- 1.51 (placebo) micromol/kg.h; P = 0.035]. The following conclusions were reached: 1) prolonged antilipolysis by means of acipimox stimulates protein turnover without affecting net protein balance; and 2) acipimox in combination with constant GH exposure results in sustained suppression of circulating levels of FFA, glycerol, and triglycerides without a reduction in the rate of lipid oxidation. The site and origin of lipid fuels for oxidation during suppression of lipolysis remain to be determined.  相似文献   

4.
OBJECTIVE: The regulation and function of systemic ghrelin levels appear to be associated with food intake and energy balance rather than GH. Since GH, in turn, acutely induces lipolysis and insulin resistance in skeletal muscle, we aimed to study the isolated and combined effects of GH, free fatty acids (FFAs) and insulin sensitivity on circulating ghrelin levels in human subjects. DESIGN: Seven GH-deficient patients (aged 37 +/- 4 years (mean +/- s.e.)) were studied on four occasions in a 2 x 2 factorial design with and without GH substitution and with and without administration of acipimox, which lowers FFA levels by inhibition of the hormone-sensitive lipase, in the basal state and during a hyperinsulinemic euglycemic clamp. RESULTS: Serum FFA levels decreased with acipimox administration irrespective of GH status. The GH-induced reduction in insulin sensitivity was countered by acipimox. Fasting ghrelin levels decreased insignificantly during GH administration alone, but were reduced by 33% during co-administration of GH and acipimox (Aci) (in ng/l): 860 +/- 120 (-GH - Aci), 711 +/- 130 (-GH + Aci), 806 +/- 130 (+GH - Aci), 574 +/- 129 (+GH + Aci), P < 0.01. The clamp was associated with a further, moderate lowering of ghrelin. GH and acipimox induced a reciprocal 25% increase in serum leptin levels (microg/l): 11.2 +/- 4.4 (-GH - Aci), 11.7 +/- 4.4 (-GH + Aci), 11.5 +/- 4.4 (+GH - Aci), 13.9 +/- 4.2 (+GH + Aci), P = 0.005. CONCLUSION: Our data suggest that antilipolysis via suppression of the hormone-sensitive lipase in combination with GH administration is associated with significant and reciprocal changes in ghrelin and leptin.  相似文献   

5.
The present studies were undertaken to determine whether fasting hyperglycemia can compensate for decreased insulin-stimulated glucose disposal, oxidation, and storage in noninsulin-dependent diabetes mellitus (NIDDM) as well as to determine whether hyperglycemia normalizes insulin-stimulated skeletal muscle glycogen synthase and pyruvate dehydrogenase (PDH) activities. To accomplish this, we used the glucose clamp technique with isotopic determination of glucose disposal and indirect calorimetry for measuring the pathways of glucose metabolism, and vastus lateralis muscle biopsies to determine the effects of insulin on glycogen synthase and PDH activities. Nine patients with NIDDM and eight matched non-diabetic subjects were infused with insulin (40 mU/m2.min) while plasma glucose was maintained at the prevailing fasting concentration. During insulin infusion, rates of glucose disposal, storage, and oxidation were the same in the two groups. Insulin infusion significantly activated glycogen synthase fractional velocity to the same extent in NIDDM (0.210 +/- 0.056 vs. 0.332 +/- 0.079) and controls (0.192 +/- 0.036 vs. 0.294 +/- 0.050). Insulin infusion increased PDH fractional velocity in controls (from 0.281 +/- 0.022 to 0.404 +/- 0.038), but not in NIDDM (from 0.356 +/- 0.043 to 0.436 +/- 0.060), although the activity of PDH during insulin infusion did not differ between the groups. We conclude that prevailing fasting hyperglycemia normalizes the nonoxidative and oxidative pathways of insulin-stimulated glucose in metabolism in NIDDM and may act as a homeostatic mechanism to normalize muscle glucose metabolism.  相似文献   

6.
Treatment for HIV-1 infection is often complicated by a lipodystrophy syndrome associated with insulin resistance and an elevated rate of lipolysis. In eight HIV-1 infected men with lipodystrophy syndrome, we studied the effects of replacement of protease inhibitor (PI) by abacavir on insulin sensitivity and lipolysis by hyperinsulinemic euglycemic clamp and on fat distribution assessed by dual-energy x-ray absorptiometry and computed tomography scan.Glucose metabolism and lipolysis were assessed by tracer dilution employing [6,6-(2)H(2)]glucose and [(2)H(5)]glycerol, respectively. Data are expressed as mean +/- sd or 95% confidence interval (CI), as appropriate.There were no significant changes in fat distribution assessed by dual-energy x-ray absorptiometry and computed tomography scan at wk 36 and wk 96. The fasting total glucose production decreased from 16.1 +/- 2.5 at study entry by 1.1 (range, -2.1 to -0.1) to 15.0 +/- 1.5 micromol/kg.min after PI withdrawal at wk 36 (n = 8). In an analysis restricted to the patients on treatment at wk 96 (n = 6), the decrease was 0.9 (range, -2.1 to 0.3) micromol/kg.min. During insulin infusion, glucose oxidation (as percent of total glucose disposal) increased from 36.8 +/- 12.7% by 11.0% (range, 1.3-20.8) to 47.9 +/- 13.9% in the wk 36 analysis. In the analysis restricted to the patients on treatment at wk 96 (n = 6) the increase was 7.7 (-4.0 to 19.4)%. Fasting lipolysis decreased from 2.7 +/- 0.6 micromol/kg.min by 0.9 (-1.6 to -0.2) to 1.8 +/- 0.3 micromol/kg.min in the wk-96 analysis (n = 6).The replacement of the studied PIs by abacavir in severe lipodystrophic HIV-1-infected patients results in a marked reduction of lipolysis. In contrast, fasting glucose production and insulin-stimulated glucose oxidation improve moderately, whereas insulin-stimulated glucose disposal and fat distribution do not change.  相似文献   

7.
To test the hypothesis that GH-induced insulin resistance is mediated by an increase in FFA levels we assessed insulin sensitivity after inhibiting the increase in FFA by a nicotine acid derivative, Acipimox, in nine GH-deficient adults receiving GH replacement therapy. The patients received in a double blind fashion either Acipimox (500 mg) or placebo before a 2-h euglycemic (plasma glucose, 5.5 +/- 0.2 mmol/liter) hyperinsulinemic (serum insulin, 28.7 +/- 6.3 mU/liter) clamp in combination with indirect calorimetry and infusion of [3-(3)H]glucose. Acipimox decreased fasting FFA by 88% (P = 0.012) and basal lipid oxidation by 39% (P = 0.015) compared with placebo. In addition, the insulin-stimulated lipid oxidation was 31% (P = 0.0077) lower during Acipimox than during placebo. Acipimox increased insulin-stimulated total glucose uptake by 36% (P = 0.021) compared with placebo, which mainly was due to a 47% (P = 0.015) increase in glucose oxidation. GH induced insulin resistance is partially prevented by inhibition of lipolysis by Acipimox.  相似文献   

8.
It has been suggested that growth hormone (GH) can inhibit its own release: in fact it has repeatedly been shown that an acute methionyl-GH (met-GH) infusion blocks the GH response to GH-releasing hormone (GHRH). However, met-GH infusions are accompanied by a significant increase of free fatty acids (FFA), which can block GH release. The aim of this study was to evaluate whether the inhibition of GH response to GHRH also occurs when lipolysis is pharmacologically blocked. Therefore, six normal subjects received GHRH, 50 micrograms intravenously (IV), after a 4-hour saline infusion and a 4-hour met-GH infusion (80 ng/kg/min, yielding a constant GH level of 33.6 +/- 4.63 micrograms/L), and GH release was evaluated during the following 2 hours. To prevent lipolysis, all subjects received on both occasions acipimox, an antilipolytic agent, 500 mg during the 6 hours before IV GHRH. GHRH induced a clear GH release during saline infusion (46.6 +/- 2.70 micrograms/L) and a scanty GH release during met-GH infusion (9.3 +/- 1.52 micrograms/L; P less than .01). Plasma levels of FFA, somatostatin, insulin-like growth factor I (IGF-I), and glucagon and serum insulin levels were unaffected, while blood glucose levels slightly decreased during saline infusion, but not during GH infusion. These data confirm that met-GH inhibits GHRH-induced GH release, and demonstrate that this inhibition is not mediated by FFA levels.  相似文献   

9.
The effect of prolonged treatment with Acipimox on in vivo peripheral insulin sensitivity, and on glucose and lipid metabolism, was investigated in patients with NIDDM in a double-blind study. Twelve NIDDM patients were randomized to treatment with either placebo or Acipimox in pharmacological doses (250 mg x 3) for three months. Fasting plasma glucose, insulin, C-peptide and HbA1c concentrations were unaffected after three months of acipimox treatment. However, fasting plasma non-esterified fatty acid (NEFA) concentrations were twofold elevated after Acipimox treatment (1.34 +/- 0.09 vs 0.66 +/- 0.09 mmol/l; p < 0.05). Despite this, repeated acute Acipimox administration after the three months' treatment period enhanced total insulin-stimulated glucose disposal to the same extent as acute Acipimox administration before the treatment period (367 +/- 59 vs 392 +/- 66 mg.m-2.min-1, NS; both p < 0.05 vs placebo glucose disposal) (267 +/- 44 mg.m-2.min-1). In conclusion, insulin resistance or tachyphylaxis towards the effects of Acipimox on insulin stimulated glucose disposal was not induced during prolonged Acipimox treatment. The lack of improvement of blood glucose control in the patients with NIDDM may be due to the demonstrated rebound effect of lipolysis.  相似文献   

10.
Acute effects of ghrelin administration on glucose and lipid metabolism   总被引:11,自引:0,他引:11  
CONTEXT: Ghrelin infusion increases plasma glucose and nonesterified fatty acids, but it is uncertain whether this is secondary to the concomitant release of GH. OBJECTIVE: Our objective was to study direct effects of ghrelin on substrate metabolism. DESIGN: This was a randomized, single-blind, placebo-controlled two-period crossover study. SETTING: The study was performed in a university clinical research laboratory. PARTICIPANTS: Eight healthy men aged 27.2 +/- 0.9 yr with a body mass index of 23.4 +/- 0.5 kg/m(2) were included in the study. INTERVENTION: Subjects received infusion of ghrelin (5 pmol x kg(-1) x min(-1)) or placebo for 5 h together with a pancreatic clamp (somatostatin 330 microg x h(-1), insulin 0.1 mU x kg(-1) x min(-1), GH 2 ng x kg(-1) x min(-1), and glucagon 0.5 ng.kg(-1) x min(-1)). A hyperinsulinemic (0.6 mU x kg(-1) x min(-1)) euglycemic clamp was performed during the final 2 h of each infusion. RESULTS: Basal and insulin-stimulated glucose disposal decreased with ghrelin [basal: 1.9 +/- 0.1 (ghrelin) vs. 2.3 +/- 0.1 mg x kg(-1) x min(-1), P = 0.03; clamp: 3.9 +/- 0.6 (ghrelin) vs. 6.1 +/- 0.5 mg x kg(-1) x min(-1), P = 0.02], whereas endogenous glucose production was similar. Glucose infusion rate during the clamp was reduced by ghrelin [4.0 +/- 0.7 (ghrelin) vs. 6.9 +/- 0.9 mg.kg(-1) x min(-1); P = 0.007], whereas nonesterified fatty acid flux increased [131 +/- 26 (ghrelin) vs. 69 +/- 5 micromol/min; P = 0.048] in the basal period. Regional lipolysis (skeletal muscle, sc fat) increased insignificantly with ghrelin infusion. Energy expenditure during the clamp decreased after ghrelin infusion [1539 +/- 28 (ghrelin) vs. 1608 +/- 32 kcal/24 h; P = 0.048], but the respiratory quotient did not differ. Minor but significant elevations in serum levels of GH and cortisol were observed after ghrelin infusion. CONCLUSIONS: Administration of exogenous ghrelin causes insulin resistance in muscle and stimulates lipolysis; these effects are likely to be direct, although a small contribution of GH and cortisol cannot be excluded.  相似文献   

11.
To investigate the effect of a sustained (7-d) decrease in plasma free fatty acid (FFA) concentration in individuals genetically predisposed to develop type 2 diabetes mellitus (T2DM), we studied the effect of acipimox, a potent inhibitor of lipolysis, on insulin action and adipocytokine concentrations in eight normal glucose-tolerant subjects (aged 40 +/- 4 yr, body mass index 26.5 +/- 0.8 kg/m(2)) with at least two first-degree relatives with T2DM. Subjects received an oral glucose tolerance test (OGTT) and 120 min euglycemic insulin clamp (80 mU/m(2).min) with 3-[(3)H] glucose to quantitate rates of insulin-mediated whole-body glucose disposal (Rd) and endogenous (primarily hepatic) glucose production (EGP) before and after acipimox, 250 mg every 6 h for 7 d. Acipimox significantly reduced fasting plasma FFA (515 +/- 64 to 285 +/- 58 microm, P < 0.05) and mean plasma FFA during the OGTT (263 +/- 32 to 151 +/- 25 microm, P < 0.05); insulin-mediated suppression of plasma FFA concentration during the insulin clamp also was enhanced (162 +/- 18 to 120 +/- 15 microm, P < 0.10). Following acipimox, fasting plasma glucose (5.1 +/- 0.1 vs. 5.2 +/- 0.1 mm) did not change, whereas mean plasma glucose during the OGTT decreased (7.6 +/- 0.5 to 6.9 +/- 0.5 mm, P < 0.01) without change in mean plasma insulin concentration (402 +/- 90 to 444 +/- 102 pmol/liter). After acipimox Rd increased from 5.6 +/- 0.5 to 6.8 +/- 0.5 mg/kg.min (P < 0.01) due to an increase in insulin-stimulated nonoxidative glucose disposal (2.5 +/- 0.4 to 3.5 +/- 0.4 mg/kg.min, P < 0.05). The increment in Rd correlated closely with the decrement in fasting plasma FFA concentration (r = -0.80, P < 0.02). Basal EGP did not change after acipimox (1.9 +/- 0.1 vs. 2.0 +/- 0.1 mg/kg.min), but insulin-mediated suppression of EGP improved (0.22 +/- 0.09 to 0.01 +/- 0.01 mg/kg.min, P < 0.05). EGP during the insulin clamp correlated positively with the fasting plasma FFA concentration (r = 0.49, P = 0.06) and the mean plasma FFA concentration during the insulin clamp (r = 0.52, P < 0.05). Plasma adiponectin (7.1 +/- 1.0 to 7.2 +/- 1.1 microg/ml), resistin (4.0 +/- 0.3 to 3.8 +/- 0.3 ng/ml), IL-6 (1.4 +/- 0.3 to 1.6 +/- 0.4 pg/ml), and TNFalpha (2.3 +/- 0.3 to 2.4 +/- 0.3 pg/ml) did not change after acipimox treatment.We concluded that sustained reduction in plasma FFA concentration in subjects with a strong family history of T2DM increases peripheral (muscle) and hepatic insulin sensitivity without increasing adiponectin levels or altering the secretion of other adipocytokines by the adipocyte. These results suggest that lipotoxicity already is well established in individuals who are genetically predisposed to develop T2DM and that drugs that cause a sustained reduction in the elevated plasma FFA concentration may represent an effective modality for the prevention of T2DM in high-risk, genetically predisposed, normal glucose-tolerant individuals despite the lack of an effect on adipocytokine concentrations.  相似文献   

12.
OBJECTIVE: Insulin resistance is a frequent consequence of GH replacement therapy but patients on GH replacement therapy often also have replacement of other hormone deficiencies which theoretically could modify the metabolic effects of GH. In particular, cortisol replacement if given in supra physiologic doses immediately before the evaluation of insulin sensitivity could influence insulin sensitivity. The aim of this study was thus to evaluate the effect of morning cortisol replacement given prior to a euglycaemic clamp combined with infusion of [3-(3)H]glucose and indirect calorimetry on glucose and lipid metabolism. METHODS: Ten GH/ACTH-deficient adults received, in a double-blind manner, either cortisol (A) or placebo (B) before the clamp whereas five GH-deficient-ACTH-sufficient adults participated in a control (C) clamp experiment. All subjects received GH replacement therapy. RESULTS: Serum cortisol levels were significantly higher after cortisol than after placebo (324+/-156 vs 132+/-136 mmol/l; P=0.006) and similar to controls (177+/-104 mmol/l). As a measure of the biological effect of cortisol, eosinophil leukocyte counts in peripheral blood decreased (164+/-91 x 10(9)/l vs 216+/-94 x 10(9)/l; P=0.04). Cortisol replacement had no significant effect on insulin-stimulated glucose uptake (11.8+/-1.8 vs 13.2+/-3.9 micromol/kg min), either on glucose oxidation or on glucose storage. There was also no significant effect of cortisol on fasting endogenous glucose production and no effect was seen on serum free fatty acid concentrations. CONCLUSION: Administration of cortisol in the morning before a clamp cannot explain the insulin resistance seen with GH replacement therapy.  相似文献   

13.
Free fatty acids (FFA) physiologically regulate GH release via a negative feedback. The aim of this study was to examine whether such feedback is preserved in acromegaly, a condition in which alterations in other regulatory mechanisms of GH release occur. Eight acromegalic patients (group 1: five women and three men, 43.0 +/- 4.2 yr old, mean +/- SE) received per os on two different days, at a 3 day-interval, in a random order, placebo or 250 mg of acipimox, an inhibitor of lipolysis analogous to nicotinic acid, at 0700 and 1100 h. In both tests GHRH (1-29 NH2), 50 microg, was administered i.v. at 1300 h. Blood samples for GH, FFA, immunoreactive insulin (IRI), and glucose were taken from 0900 to 1500 h, and the time period considered for statistical analysis was 1200-1500 h, representative of steady-state condition for FFA, IRI, and glucose. Mean plasma FFA levels (1200-1500 h) were significantly lower after acipimox than after placebo (0.05 +/- 0.01 vs. 0.17 +/- 0.01 g/L, P < 0.01). In contrast, both mean basal GH levels (1200-1300 h) and the mean GH response to GHRH (GH delta area, 1300-1500 h) were significantly higher after acipimox than after placebo (12.0 +/- 1.9 vs. 7.8 +/- 1.2 microg/L, P < 0.01; 2937 +/- 959 vs. 1154 +/- 432 microg/L x 120 min, P < 0.01). The increase in both basal GH levels and GH delta area occurred in all eight patients. Acipimox also reduced mean serum IRI (83 +/- 12 vs. 112 +/- 14 pmol/L) and blood glucose (5.1 +/- 0.1 vs. 5.7 +/- 0.1 mmol/L) levels, as compared with placebo (P < 0.03 or less). Eight acromegalic patients (group 2: six women and two men, 46.6 +/- 5.7 yr old) underwent a constant i.v. 10% lipid infusion (150 mL/h), started at 0900 h and continued until 1500 h. Mean plasma FFA levels (1200-1500 h) were significantly higher during lipid infusion than after placebo (0.27 +/- 0.01 vs. 0.16 +/- 0.01 g/L, P < 0.02); in contrast, mean basal GH levels (1200-1300 h) were reduced by lipid infusion, as compared with placebo (9.9 +/- 3.1 vs. 16.6 +/- 4.4 microg/L, P < 0.01), and the same occurred for the GH delta area after GHRH (2498 +/- 1643 vs. 4512 +/- 1988 microg/L x 120 min, P < 0.01). Serum IRI and blood glucose levels were similar after placebo and during lipid infusion. These data indicate that, in acromegaly, the acute reduction of circulating FFA levels results in increased GH release, whereas the increase in circulating FFA levels is accompanied by a reduced GH release. Taken together, these findings suggest that, in acromegaly, the control of FFA on GH release is preserved.  相似文献   

14.
Methionyl-GH (met-GH) infusions inhibit the GH response to GH-releasing hormone (GHRH). Met-GH infusions induce lipolysis with a rise of plasma FFA that are known to suppress GH release, but the met-GH inhibition of the GH response to GHRH occurs also when lipolysis is pharmacologically blocked by acipimox. In addition, the inhibition of GH release might be due to an enhanced release of hypothalamic somatostatin. The aim of this study was to evaluate the effect of a met-GH infusion on the GH response to GHRH when lipolysis and hypothalamic somatostatin release are pharmacologically blocked. Twelve normal subjects, randomly allocated to two groups (A and B), received GHRH (50 micrograms, iv) at 1300 h after a 4-h saline infusion or met-GH infusion (80 ng/kg.min). To block lipolysis and hypothalamic somatostatin release, subjects in group B received acipimox, an antilipolytic agent (500 mg), and pyridostigmine, an acetylcholinesterase inhibitor (60 mg), during the 6 h before iv GHRH. GHRH induced a clear GH release during saline infusion in both groups, significantly higher in group B (43.6 +/- 4.8 micrograms/L) than in group A (20.1 +/- 6.1 micrograms/L; P less than 0.02 vs. A), and only a slight increase during met-GH infusions (10.4 +/- 4.1 micrograms/L in group A; 16.7 +/- 4.2 micrograms/L in group B; P = NS). These data indicate that the GH response to GHRH is inhibited by met-GH infusions when peripheral lipolysis and hypothalamic somatostatin release are pharmacologically blocked, suggesting the possibility of autoinhibition of GH at the pituitary level.  相似文献   

15.
To study whether therapeutic reduction of non-esterified fatty acids (NEFA) can be used to improve glucose metabolism, we administered the antilipolytic agent, acipimox, 250 mg four times daily for 4 weeks in eight obese Type 2 diabetic patients. Glucose and NEFA metabolism were assessed before and after treatment with a two-step euglycaemic hyperinsulinaemic clamp (0.25 and 1 ***mU kg?1 min?1 insulin) combined with infusions of [3–3H] glucose and [1–14C] palmitate. Three days of acipimox treatment reduced 24-h serum NEFA levels by 10%, but the difference disappeared after 4 weeks of treatment mainly due to a two-fold rise in morning NEFA concentrations (p < 0.01). After 3 days of acipimox treatment, fasting and 24-h plasma glucose and serum triglyceride concentrations were significantly reduced (p < 0.05), but no longer after 4 weeks of treatment. Despite the rebound rise in NEFA, acute administration of acipimox still inhibited both oxidative and non-oxidative NEFA metabolism in the basal state (p < 0.01 – 0.001) and during insulin infusion (p < 0.05 – 0.001). Inhibition of NEFA metabolism was associated with increased insulin-stimulated glucose uptake (from 3.56 ± 0.28 to 5.14 ± 0.67 μmol kg?1 min?1, p < 0.05), mainly due to stimulation of non-oxidative glucose disposal (from 1.74 ± 0.23 to 3.03 ± 0.53 μmol kg?1 min?1, p < 0.05). In conclusion, acipimox administered acutely inhibits NEFA appearance (lipolysis), which is associated with improved glucose uptake. However, after 4 weeks of treatment, the beneficial effects on NEFA and glucose metabolism are outweighed by a marked rebound rise in fasting NEFA concentrations. The results emphasize the problems using acipimox as a means to improve glucose tolerance in patients with Type 2 diabetes.  相似文献   

16.
We have recently presented experimental evidence indicating that insulin has a physiologic inhibitory effect on growth hormone (GH) release in healthy humans. The aim of the present study was to determine whether in obesity, which is characterized by hyperinsulinemia and blunted GH release, insulin contributes to the GH defect. To this aim, we used a simplified experimental protocol previously used in healthy humans to isolate the effect of insulin by removing the interference of free fatty acids (FFAs), which are known to block GH release. Six obese subjects (four men and two women; age, 30.8 +/- 5.2 years; body mass index, 36.8 +/- 2.8 kg/m2 [mean +/- SE]) and six normal subjects (four men and two women; age, 25.8 +/- 1.9 years; body mass index, 22.7 +/- 1.1 kg/m2) received intravenous (i.v.) GH-releasing hormone (GHRH) 0.6 microg/kg under three experimental conditions: (1) i.v. 0.9% NaCl infusion and oral placebo, (2) i.v. 0.9% NaCl infusion and oral acipimox, an antilipolytic agent able to reduce FFA levels (250 mg at 6 and 2 hours before GHRH), and (3) euglycemic-hyperinsulinemic clamp (insulin infusion rate, 0.4 mU x kg(-1) x min(-1)). As expected, after placebo, the GH response to GHRH was lower for obese subjects versus normals (488 +/- 139 v 1,755 +/- 412 microg/L x 120 min, P < .05). Acipimox markedly reduced FFA levels and produced a mild reduction of insulin levels; under these conditions, the GH response to GHRH was increased in both groups, remaining lower in obese versus normal subjects (1,842 +/- 360 v 4,871 +/- 1,286 microg/L x 120 min, P < .05). In both groups, insulin infusion yielded insulin levels usually observed under postprandial conditions and reduced circulating FFA to the levels observed after acipimox administration. Again, the GH response to GHRH was lower for obese subjects versus normals (380 +/- 40 v 1,075 +/- 206 microg/L x 120 min, P < .05), and in both groups, it was significantly lower than the corresponding response after acipimox. In obese subjects, as previously reported in normals, the GH response to GHRH was inversely correlated with the mean serum insulin (r = -.70, P < .01). In conclusion, our data indicate that in the obese, as in normal subjects, the GH response to GHRH is a function of insulin levels. The finding that after both the acipimox treatment and the insulin clamp the obese still show higher insulin levels and a lower GH response to GHRH than normal subjects suggests that hyperinsulinemia is a major determinant of the reduced GH release associated with obesity.  相似文献   

17.
Hepatic cirrhosis is frequently associated with glucose intolerance and insulin resistance, but the mechanisms underlying the insulin insensitivity are unknown. Plasma concentrations of nonesterified fatty acids (NEFA) are typically elevated in cirrhosis, and the glucose-fatty acid cycle provides a mechanism by which fatty acids may play a role in regulating glucose metabolism. We have therefore investigated the effect of acute inhibition of lipolysis, using the nicotinic acid analogue, acipimox, in 10 male patients with cirrhosis. All subjects were studied in the postabsorptive state after a 10- to 12-hour fast and were given either acipimox 250 mg or a placebo orally 2 hours before a 75-g oral glucose tolerance test (OGTT) and an infusion of insulin (50 mU/kg/h) and glucose (6 mg/kg/min) (insulin sensitivity tests [IST]). The drug was taken in a double-blind crossover design for each test. During the 2 hours following acipimox, there were rapid decreases in plasma NEFA, glycerol, and 3-hydroxybutyrate, confirming inhibition of lipolysis, while there were significant decreases in glucose, insulin, and C-peptide (P less than .001) compared with patients receiving the placebo. Acipimox blunted the increase in glucose after oral glucose loading and decreased incremental glucose concentration (from 579 +/- 76 to 445 +/- 65 mmol/min/L, P less than .02) and incremental insulin concentration (from 13.4 +/- 2.5 to 9.0 +/- 1.4 U/min/L, P = .056) in the OGTT. Improvements in classification of glucose tolerance were seen in five subjects. During the IST, significant reductions occurred in steady-state blood glucose (to 8.8 +/- 1 mmol/L, P less than .02) and C-peptide (to 3.0 +/- 0.5 nmol/L, P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
CONTEXT: Pegvisomant is a specific GH receptor antagonist that is able to normalize serum IGF-I concentrations in most patients with acromegaly. The impact of pegvisomant on insulin sensitivity and substrate metabolism is less well described. PATIENTS AND METHODS: We assessed basal and insulin-stimulated (euglycemic clamp) substrate metabolism in seven patients with active acromegaly before and after 4-wk pegvisomant treatment (15 mg/d) in an open design. RESULTS: After pegvisomant, IGF-I decreased, whereas GH increased (IGF-I, 621 +/- 82 vs. 247 +/- 33 microg/liter, P = 0.02; GH, 5.3 +/- 1.5 vs. 10.8 +/- 3.3 microg/liter, P = 0.02). Basal serum insulin and plasma glucose levels decreased after treatment (insulin, 54 +/- 5.9 vs. 42 +/- 5.3 pmol/liter, P = 0.001; glucose, 5.7 +/- 0.1 vs. 5.3 +/- 0.0 mmol/liter, not significant), whereas palmitate kinetics were unaltered. During the clamp, the glucose infusion rate increased after pegvisomant (3.1 +/- 0.5 vs. 4.4 +/- 0.6 mg/kg.min, P = 0.02), whereas the suppression of endogenous glucose production tended to increase (0.7 +/- 0.0 vs. 0.5 +/- 0.1 mg/kg.min, not significant). Total resting energy expenditure decreased after pegvisomant treatment (1703 +/- 109 vs. 1563 +/- 101 kcal/24 h, P = 0.03), but the rate of lipid oxidation did not change significantly. CONCLUSIONS: 1) Pegvisomant treatment for 4 wk improves peripheral and hepatic insulin sensitivity in acromegaly. 2) This is associated with a decrease in resting energy expenditure, whereas free fatty acid metabolism is unaltered. 3) The data support the important direct effects of GH on glucose metabolism and add additional benefits to pegvisomant treatment for acromegaly.  相似文献   

19.
Hyperlipidaemia, in particular raised concentrations of serum triglycerides, together with raised plasma non-esterified fatty acid concentrations, is common in patients with Type 2 (non-insulin-dependent) diabetes mellitus and may be associated with insulin insensitivity. Thirty non-obese Type 2 diabetic patients (15 controlled with diet alone and 15 with diet plus oral sulphonylurea therapy) were therefore recruited to take part in a double-blind, randomized, crossover comparison of acipimox (250 mg three times daily for 3 months) and placebo. Serum lipids, blood glucose control, insulin sensitivity, and glucose tolerance were measured before and after each treatment period. There was a significant decrease in serum triglycerides (2.05 +/- 1.08 vs 2.91 +/- 1.75: p < 0.005), cholesterol (5.66 +/- 1.02 vs 6.26 +/- 1.17: p = 0.0005), and apoprotein B (1.32 +/- 0.23 vs 1.44 +/- 0.25: p < 0.05) while HDL cholesterol and apoprotein A-1 concentrations were unchanged. There was no change in blood glucose control measured by fasting glucose, insulin, and HBA, concentrations, but there was a significant improvement in insulin action assessed by glucose-insulin infusion. Although plasma non-esterified fatty acid concentrations were lower during the oral glucose tolerance test after acipimox, there was no difference in either the peak or 2-h plasma glucose concentrations and the total area under the glucose curve did not change. Acipimox was well tolerated and no patients withdrew from the study for drug-related symptoms. Thus, acipimox effectively lowers serum cholesterol and triglycerides in patients with Type 2 diabetes without adversely altering blood glucose control, and appears to improve insulin sensitivity.  相似文献   

20.
BACKGROUND/AIM: Our previous studies showed that administration of dexamethasone plus food increased serum leptin levels 100% more than dexamethasone alone. We hypothesized that this increase in leptin from the meal could result directly from the provision of fuel metabolites rather than from the meal-induced rise in insulin. In the current study, we tested the effect of an i.v. lipid fuel source (Intralipid 20%/heparin) that would incur only a modest increase in insulin. This study was undertaken because the role of lipid in the regulation of human leptin levels has been controversial, with differing effects reported: stimulatory, inhibitory, or no effect at all. METHODS: In order to evaluate how lipids affect serum leptin in humans, we administered the following to seven lean, healthy, fasting subjects: (i) Intralipid 20% at 0.83 ml/kg.h plus heparin (800 IE/h) infused i.v. for 7 h (LIPID), (ii) LIPID with one initial pulse of insulin (0.09 U/kg) given s.c. (LIPID+INS), (iii) LIPID with dexamethasone (2 mg i.v. push) given at the start of the infusion (LIPID+DEX), and (iv) LIPID with insulin plus dexamethasone (LIPID+INS+DEX). Control trials in another 14 subjects matched hormonal conditions but lacked the LIPID infusion. Blood levels were collected over 8 h for determination of free fatty acids (FFA), glucose, insulin, and leptin under each experimental condition. RESULTS: Over the 420 min of LIPID infusion, FFA levels rose four-fold from 0.28+/-0.05 mmol/l to 0.99+/-0.05 mmol/l. Serum leptin levels were suppressed by 10-20% in the LIPID condition as compared with control (no LIPID) between 90 min (P=0.008) and 360 min (P=0.045). LIPID+DEX did not increase leptin. A pulse of insulin (INS) increased serum insulin levels to 49.9+/-6.1 U/ml at 90 min and increased serum leptin by 21.3+/-6.6% at 480 min (P=0.054). LIPID decreased leptin in the face of this insulin-induced increase (LIPID+INS), between 360 min (P=0.017) and 420 min (P=0.003), with a 23% suppressive effect at 420 min. LIPID+DEX elevated leptin levels by 112.5+/-35.8% at 480 min (P=0.037), however, the Intralipid/heparin infusion did not blunt the rise of leptin under these conditions. CONCLUSIONS: These data showed that Intralipid/heparin: (i) are not sufficient to trigger the effect of dexamethasone on leptin, (ii) have an acute inhibitory effect on both fasting and insulin-stimulated leptin levels, and (iii) that this inhibitory effect cannot reverse the strong stimulatory effect of dexamethasone and insulin on serum leptin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号