首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was previously shown that i.p. administration of the alpha 2-adrenergic antagonist yohimbine increased the magnitude of the acoustic startle response in rats. The purpose of the present study was to determine possible central noradrenergic involvement in yohimbine's effect on startle. Pretreatment with N-(2-chloroethyl)-N-ethyl-2-bromo-benzylamine (DSP4; 50 mg/kg, i.p.; 1-2 days before testing) completely blocked the excitatory effect of yohimbine on startle. DSP4 reduced forebrain and spinal cord NE levels by 47% and 56%, respectively, without affecting forebrain or spinal serotonin (5-HT), or forebrain dopamine (DA). Pretreatment with the NE reuptake blocker desmethylimipramine (DMI; 20 mg/kg, i.p.; 30 min before DSP4) prevented the ability of DSP4 to block the yohimbine effect. DMI partially reversed the NE-depleting effects of DSP4. Neither bilateral adrenalectomy nor intravenously administered 6-hydroxydopamine (6-OHDA; 20 mg/kg; 1-2 days before testing) altered the excitatory effect of yohimbine, indicating that peripheral NE is not involved. 6-OHDA (2 X 200 micrograms) injected into the lateral ventricles blocked yohimbine's effect, and depleted NE by 95% (spinal cord) and 86% (forebrain), without affecting 5-HT in either region. 6-OHDA also depleted forebrain DA levels by 49%. Finally, intrathecal administration of 6-OHDA (20 micrograms; 14 days before testing) into the subarachnoid space of the lumbar spinal cord blocked the excitatory effect of yohimbine, and produced an extensive (94%) depletion of spinal cord NE. Intrathecal 6-OHDA did not alter spinal levels of 5-HT or forebrain levels of NE, 5-HT or DA. In summary, these data indicate that central descending NE neurons are necessary for yohimbine's excitatory effect on startle.  相似文献   

2.
To evaluate the physiological role of striatal dopamine (DA) during exercise and the mechanism of functional recovery mediated by grafted DAergic neurons, the locomotor ability (treadmill running) and DA turnover were investigated using treadmill running combined with in vivo microdialysis in the intact control rats, 6-hydroxydopamine (6-OHDA) lesioned rats (hemi-parkinsonian model rats) and DAergic cell grafted rats. The 3 groups of rats were trained to run on a straight treadmill at a speed of 1,800 cm/min for 20 min every day for 7 consecutive days. If the rats could not follow the speed they got electrostimulation (ES) from the grid behind the treadmill belt. The numbers of ES rats received during treadmill running were counted to quantify the locomotor ability. Control rats could keep up with the treadmill easily (0-1 ES/10 min), whereas lesioned rats could not follow the speed (80-100 ES/10 min). Most of the grafted rats received only a few ES, but a few received over 100 ES/10 min. Extracellular DA and its metabolites, dihydroxyphenyl acetic acid (DOPAC) and homovanillic acid (HVA), were measured by in vivo microdialysis and high-performance liquid chromatography (HPLC) during and after treadmill running. In control rats the basal levels of DA, DOPAC and HVA were 2.3 fmol/μl, 1,109.8 fmol/μl and 612.2 fmol/μl, respectively. They increased up to 130%, 140% and 160% by running. In 6-OHDA lesioned rats basal values of DA, DOPAC and HVA were less than 10% of controls. We did not perform microdialysis in these rats since they got too much ES during running. In grafted rats that showed good recovery in locomotor ability, DA returned to almost control level (1.9 fmol/μl), but those of DOPAC (127.8 fmol/μl) and HVA (100.2 fmol/μl) were still low. DA, DOPAC and HVA increased up to 130%, 130% and 150% by running in a similar pattern as in intact rats. These results suggest that grafted neurons can release and metabolize DA in the host striatum both tonically and phasically in relation with internal and external stimuli and also suggest that treadmill running ability is a good indicator of DA turnover in the striatum. Thus, the treadmill running test with microdialysis is useful for quantitative evaluation of motor function in grafted animals.  相似文献   

3.
The intracerebroventricular (i.c.v.) administration of 6-hydroxydopamine (6-OHDA; 50 micrograms X 3) and the systemic administration of DSP4 (50 mg/kg X 2; i.p.), alone and in combination, were compared for their abilities to alter the concentrations of norepinephrine (NE), dopamine (DA), dihydroxyphenylacetic acid (DOPAC) and 5-hydroxytryptamine (5-HT) in selected hypothalamic and extra-hypothalamic (striatum, frontal cortex, hippocampus) regions of the male rat brain. DSP4 markedly lowered NE concentrations in extrahypothalamic regions, and within the hypothalamus produced a mild and variable reduction of NE without altering concentrations of DA, DOPAC or 5-HT. 6-OHDA markedly lowered NE concentrations in all brain regions, but was without effect on DA, DOPAC and 5-HT concentrations in any region analyzed. Combined treatment with DSP4 and 6-OHDA did not produce additional effects on levels of NE, DA and DOPAC over either drug alone, but did cause a mild reduction of 5-HT in several brain regions. These results indicate that systemic treatments with DSP4 per se are not as effective as i.c.v. 6-OHDA in depleting NE in the hypothalamus, and that when the two neurotoxins are administered there appears to be some destruction of 5-HT neurons.  相似文献   

4.
In rats lesioned with 6-hydroxydopamine (6-OHDA) the effect of the noncompetitive N-methyl D-aspartate (NMDA) receptor antagonist, MK-801, the dopamine (DA) D2 receptor agonist quinpirole and the A2A adenosine antagonist SCH 58261 was studied on acetylcholine (ACh) release in the lesioned striatum and contralateral turning behaviour stimulated by the administration of the DA D1 receptor agonist CY 208-243. Administration of CY 208-243 (75, 100 and 200 microg/kg) to 6-OHDA-lesioned rats dose-dependently stimulated ACh release and induced contralateral turning. MK-801 (50 and 100 microg/kg) reduced basal ACh release (max 22%) and did not elicit any turning. MK-801 (50 and 100 microg/kg) potentiated the contralateral turning, but failed to modify the stimulation of ACh release elicited by 100 and 200 microg/kg of CY 208-243. MK-801 (100 microg/kg) prevented the increase in striatal ACh release evoked by the lower dose of CY 208-243 (75 microg/kg) but contralateral turning was not observed. The D2 receptor agonist quinpirole (30 and 60 microg/kg) elicited low-intensity contralateral turning and decreased basal ACh release. Quinpirole potentiated the D1-mediated contralateral turning behaviour elicited by CY 208-243 (100 microg/kg), but failed to affect the increase in ACh release elicited by the D1 agonist. The adenosine A2A receptor antagonist SCH 58261 (1 microg/kg i.v.) failed per se to elicit contralateral turning behaviour. SCH 58261 potentiated the contraversive turning induced by CY 208-243 but failed to affect the increase of ACh release. The results of the present study indicate that blockade of NMDA receptors by MK-801. stimulation of DA D2 receptors by quinpirole and blockade of adenosine A2A receptors by SCH 58261 potentiate the D1-mediated contralateral turning behaviour in DA denervated rats without affecting the action of the D1 agonist on ACh release. These observations do not support the hypothesis that the potentiation of D1-dependent contralateral turning by MK-801, quinpirole or SCH 58261 is mediated by changes in D1-stimulated release of ACh in the striatum.  相似文献   

5.
The effect of L-dihydroxyphenylalanine (L-DOPA) on extracellular dopamine (DA) in the striatum was determined by microdialysis in 6-hydroxydopamine (6-OHDA)-lesioned rats treated with and without the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT). At the same time the intensity of L-DOPA-induced rotational behavior was assessed. In 6-OHDA-lesioned rats treated with 5,7-DHT, L-DOPA (50 mg/kg, i.p.) increased extracellular DA only to 20% of that measured in animals not treated with 5,7-DHT. Likewise, 6-OHDA-lesioned rats treated with 5,7-DHT exhibited a significantly lower number of L-DOPA-induced rotations. These results suggest that serotonergic terminals in the striatum can convert exogenously administered L-DOPA into DA that can be released into the extracellular space.  相似文献   

6.
We have previously observed that the delivery of an adenoviral vector encoding for glial cell line-derived neurotrophic factor (AdGDNF) into the substantia nigra (SN) 7 days after intrastriatal administration of 6-hydroxydopamine (6-OHDA) protects dopamine (DA)-dependent behaviors, tyrosine hydroxylase immunoreactive (TH+) cells in SN, and amphetamine-induced c-fos induction in striatum. In the present study, we sought to determine if the behavioral protection observed in 6-OHDA-treated rats receiving AdGDNF was associated with an increase in DA availability in the striatum as measured by microdialysis. Rats received intrastriatal 6-OHDA (16 microg/2.8 microl) or vehicle followed 7 days later by intranigral AdGDNF (3.2x10(7) pfu/2 microl), AdLacZ (3.2 x 10(7) pfu/2 microl), or phosphate buffered saline (PBS). Three weeks later, microdialysis samples were collected from the same striatal region under basal conditions, following KCl (100 mM) or amphetamine (250 microM) administered via the striatal microdialysis probe, or amphetamine administered systemically (6.8 mg/kg i.p). Animals given 6-OHDA followed by either PBS or AdLacZ showed a decrease in basal extracellular striatal DA levels to 24% of control. In contrast, basal extracellular DA in 6-OHDA-lesioned rats with a nigral injection of AdGDNF was almost 3-fold higher than 6-OHDA-vehicle treated animals, 65% of control DA levels. Moreover, although KCl and amphetamine produced no increase in striatal DA release in 6-OHDA-treated rats that subsequently were given either PBS or AdLacZ, these manipulations increased DA levels significantly in 6-OHDA-treated rats later given AdGDNF. Thus, DA neurotransmission within the striatum of 6-OHDA treated rats appears to be enhanced by increased expression of GDNF in the nigra.  相似文献   

7.
Rats lesioned unilaterally in the medial forebrain bundle with 6-OHDA rotated ipsilateral to the lesion following injections of amphetamine, phencyclidine (PCP), and MK-801. Concurrent measurement of striatal dopamine (DA) in the intact striatum with in vivo microdialysis revealed a dissociation between rotational behavior and alterations in DA overflow induced by the three drugs. Amphetamine produced robust ipsilateral rotational behavior and a substantial elevation in striatal DA (∼130% increase at asymptote). PCP produced comparable increases in rotational behavior, but only ∼30% increase in striatal DA. MK-801 also had a comparable behavioral effect but failed to alter DA overflow in the intact striatum. Since MK-801, a noncompetitive NMDA antagonist which does not enhance extracellular dopamine in the striatum, is able to produce ipsilateral rotational behavior in rats with unilateral nigrostriatal lesions, it is likely that the effects of PCP may also be determined predominantly through NMDA blockade in this model. Synapse 26:218–224, 1997. © 1997 Wiley-Liss Inc.  相似文献   

8.
Experiments measuring behavior and immediate-early gene expression in the basal ganglia can reveal interactions between dopamine (DA) and glutamate neurotransmission. Nigrostriatal DA projections influence two striatal efferent pathways that, in turn, directly and indirectly influence the activity of the substantia nigra pars reticulata (SNr). This report tests the interactions between striatal DA receptors and nigral glutamate receptors on basal ganglia function by examining both contralateral turning and Fos immunoreactivity in striatum and pallidum following unilateral intranigral microinfusions of glutamate antagonists given to intact and 6-OHDA-lesioned rats. The NMDA antagonist AP5 (1 microg), or the AMPA/kainate antagonist DNQX (0.015-1.5 microg), injected into the SNr (0.5 microl) elicited contralateral turning as well as both striatal and pallidal Fos expression. Moreover, intranigral DNQX elicited more turning and greater numbers of Fos-positive striatal neurons in 6-OHDA-lesioned animals than in unlesioned controls, suggesting that the 6-OHDA injection induces functional changes in nigral glutamate transmission. In 6-OHDA-lesioned rats, systemic injections of the DA D1 receptor agonist SKF38393 (0.5 mg/kg, i.p.) increased striatal Fos expression due to intranigral DNQX. In contrast, the D2 agonist quinpirole (0.1 mg/kg, i.p.) decreased striatal Fos expression but increased the pallidal Fos arising from intranigral AP5. In additional experiments, both intact and 6-OHDA-lesioned rats were given simultaneous intranigral and intrastriatal infusions and turning and pallidal Fos expression were measured. 6-OHDA-lesioned rats given 5 microg of intrastriatal quinpirole exhibited both turning and pallidal Fos that was significantly increased by intranigral AP5. These results indicate that the opposing influences of D2 agonists and endogenous nigral glutamate transmission are mediated by striatal D2 receptors. Finally, the behavioral effects of intranigral glutamate antagonism can be dissociated from the effects on striatal or pallidal immediate-early gene expression.  相似文献   

9.
In the neonatally 6-hydroxydopamine (6-OHDA)-lesioned rat hyperlocomotor activity, first described in the 1970s, was subsequently found to be increased by an additional lesion with 5,7-dihydroxytryptamine (5,7-DHT) (i.c.v.) in adulthood. The latter animal model (i.e., 134 microg 6-OHDA at 3 d postbirth plus 71 microg 5,7-DHT at 10 weeks; desipramine pretreatments) was used in this study, in an attempt to attribute hyperlocomotor attenuation by D,L-amphetamine sulfate (AMPH) and m-chlorophenylpiperazine di HCl (mCPP), to specific changes in extraneuronal (i.e., in vivo microdialysate) levels of dopamine (DA) and/or serotonin (5-HT). Despite the 98-99% reduction in striatal tissue content of DA, the baseline striatal microdialysate level of DA was reduced by 50% or less at 14 weeks, versus the intact control group. When challenged with AMPH (0.5 mg/kg), the microdialysate level of DA went either unchanged or was slightly reduced over the next 180 min (i.e., 20 min sampling), while in the vehicle group and 5,7-DHT (alone) lesioned group, the microdialysate level was maximally elevated by approximately 225% and approximately 450%, respectively--and over a span of nearly 2 h. Acute challenge with mCPP (1 mg/kg salt form) had little effect on microdialysate levels of DA, DOPAC and 5-HT. Moreover, there was no consistent change in the microdialysate levels of DA, DOPAC, and 5-HT between intact, 5-HT-lesioned rats, and DA-lesioned rats which might reasonably account for an attenuation of hyperlocomotor activity. These findings indicate that there are other important neurochemical changes produced by AMPH- and mCPP-attenuated hyperlocomotor activity, or perhaps a different brain region or multiple brain regional effects are involved in AMPH and mCPP behavioral actions.  相似文献   

10.
Extracellular dopamine (DA) and its main cerebral metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), were measured by bilateral striatal microdialysis in rats at different times (2, 7, 15 and 60 days) after unilateral administration into the right striatum of 1-methyl-4-phenylpyridinium ion (MPP+) or 6-hydroxydopamine (6-OHDA). In both cases the decrease in extracellular dopamine did not exceed 40% of control values. The response of DOPAC and HVA depended on the treatment: MPP+ caused a marked acute decrease in the dopamine metabolites but allowed a progressive recovery that was very evident after 60 days; 6-OHDA caused a progressive decrease in the dopamine metabolites throughout the two months of the study. Tyrosine hydroxylase immunostaining revealed severe neuronal loss in substantia nigra two months after striatal administration of 6-OHDA, whereas no significant neuronal loss was found at the same time after MPP+ administration. A bilateral challenge infusion of MPP+ through the microdialysis probe was used to assess the dopaminergic capacity of both striata: at all the times studied there was a sharp depletion of DA on the non-lesioned side; both MPP+- and 6-OHDA-treated striata were unresponsive after a short time (2 days); after 2 months the response in MPP+-lesioned rats was similar on both sides, whereas 6-OHDA-lesioned striata were still unresponsive to MPP+. In rats, then, the effects of MPP+ could be partly reversed whereas the effects of 6-OHDA were not. These results suggest that neurotoxins causing striatal dopamine loss may act through different mechanisms, which could be significant for the etiopathogenic development of Parkinson's disease.  相似文献   

11.
Summary In the present report we examined the differences in in vitro dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) efflux from the corpus striatum (CS) of intact versus 6-hydroxydopamine (6-OHDA) lesioned (in substantia nigra) male rats in response to different doses of two pulse infusions of L-dihydroxyphenylalanine (L-DOPA). In the first experiment, we tested the effects of two 20-min infusions of 5 uM L-DOPA. In the second experiment we repeated this protocol using 50 uM L-DOPA. There was an overall significantly greater output of DA for intact versus 6-OHDA lesioned rats for both doses. Moreover, in Experiment 1, the 5 uM L-DOPA produced a peak DA response to the second infusion which was significantly higher than that of the first infusion in the intact, but not lesioned rats. In Experiment 2, the 50 uM L-DOPA group showed no significant differences in DA output between the two infusions for both intact and lesioned rats. In contrast to DA responses, there were no overall significant differences in DOPAC output between intact and 6-OHDA lesioned rats for both doses. However, for both doses tested, the peak DOPAC output from the second infusion was significantly increased in lesioned, but not intact rats. These data demonstrate that L-DOPA evoked DA and DOPAC output are differentially modulated in intact and 6-OHDA lesioned striatum. The lesions of the striatal dopaminergic system may alter these responses through changes in intraneuronal storage and metabolism of DA following L-DOPA infusion.  相似文献   

12.
In vivo microdialysis was used in freely moving rats to determine whether the locomotor stimulant effects of dizocilpine maleate (MK-801) were related to increased dopamine (DA) release within the nucleus accumbens (N. Acc.). Each experiment began with a baseline period of at least 2 h (starting 15–20 h after insertion of concentric, removable dialysis probes), during which activity records and dialysate samples were collected every 20 min. Rats in the first experiment then were injected with MK-801 (0.125, 0.25, or 0.50 mg/kg, i.p.) or saline, and activity and extracellular levels of DA, dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) were measured for a further 160 min post-injection. In a second experiment, rats were given 1.5 mg/kg d-amphetamine sulphate 40 min after receiving the same doses of MK-801, and testing was continued for 120 min. Rats in a third experiment were given low, autoreceptor-preferring doses of apomorphine hydrochloride (25 or 50 μg/kg, s.c.) or its vehicle 40 min after injection of 0.25 mg/kg MK-801 and then monitored for 120 min. MK-801 produced strong and consistent increases in locomotor activity that were augmented by amphetamine and greatly reduced by the low doses of apomorphine. MK-801 did not increase extracellular DA levels within the N. Acc. when given alone, and it failed to influence the changes in extracellular DA produced by d-amphetamine and apomorphine. MK-801 did produce consistent, dose-related increases in DOPAC and HVA that were probably not related to transmitter release. These results indicate that the increases in locomotor activity seen following MK-801 do not arise from a drug-induced increase in DA levels within the N. Acc. © 1996 Wiley-Liss, Inc.  相似文献   

13.
In rats bearing a unilateral 6-hydroxydopamine (6-OHDA) lesion of the medial forebrain bundle, a single administration of a dopamine receptor agonist (priming) sensitizes the behavioral motor responses to a dopaminergic agonist, administered 3 days after priming. In this study, changes in the electroencephalogram (EEG) frequency spectra were evaluated during priming in unilaterally 6-OHDA-lesioned rats, implanted bilaterally with electrodes both in the somatosensory cortex and striatum. Two weeks after 6-OHDA lesion, rats were primed with apomorphine (0.2 mg/kg) and received a challenge with the D(1) agonist SKF 38393 (3 mg/kg) 3 days later. 6-OHDA lesion modified the EEG pattern mainly in the beta(1) frequency band, in both cortex and striatum. Apomorphine priming produced a power decrease in the beta(1) frequency band, more pronounced in the cortex than in the striatum, as compared to saline-treated rats. Antagonism of NMDA receptor with MK-801, a treatment known to block the development of priming, increased apomorphine inhibitory effect mainly in the striatum, producing the same degree of inhibition in the two structures. Administration of SKF 38393, 3 days after priming, caused a power decrease in beta(1) frequency band of the cortex and striatum, which was more pronounced in apomorphine-primed as compared to drug-naive rats. The inhibitory effect of SKF 38393 was enhanced in rats primed with MK-801 plus apomorphine, particularly in the striatum. The results of this study suggest that long-term changes in the electrical activity of cortex and striatum after priming, might contribute to the development of the behavioral sensitization observed after priming. Development of priming might be related to the degree and cortical/striatal ratio of EEG power inhibition produced by dopamine agonists.  相似文献   

14.
This experiment examined the effects on locomotor activity of intraventricular 6-hydroxydopamine (6-OHDA) administered to developing and adult rats. 6-OHDA was administered subsequent to parygline desmethylimipramine (DMI) treatmen(6-OHDA/DMI) at 3 and 6 days of age, 11 and 14 days of age, 20 and 23 days of age, or 46 and 48 days of age. Locomotor activity of vehicle-treated rats assessed in stabilimeter cages peaked between 14 and 16 days of age and subsequently declined to levels characteristic of the adult. Treatment with pargyline and 6-OHDA at 3 days of age, or 6-OHDA/DMI at 3 and 6 or 11 and 14 days of age, did not alter the early rise in locomotor activity but prevented the decline in activity normally seen during the third and fourth weeks of life. When tested as adults, locomotor activity was greater in rats that had been treated with 6-OHDA/DMI at 3 and 6 and at 11 and 14 days of age than in those that had been treated at 20 and 23 days of age. Treatment with 6-OHDA/DMI at 46 and 48 days of age was without significant effect on locomotor activity. 6-OHDA (with pargyline pretreatment) produced large decreases in NE content in telencephalon and diencephalon and in dopamine (DA) content in striatum. 6-OHDA/DMI also produced large decreases in DA content in striatum and, in some of the treatment groups, only small decreases in norepinephrine (NE) content in telencephalon, diencephalon, and brain stem. These data suggest that the maturation of neuronal systems utilizing dopamine as a neurotransmitter is essential for the suppression of locomotor activity normally seen during development. The data further suggest that dopamine depletion per se does not lead to increased locomotor activity, but rather it is the destruction of dopamine-containing fibers prior to the normal period of locomotor suppression that increases locomotor activity.  相似文献   

15.
The purpose of this study was to obtain direct evidence that the nigrostriatal dopamine (DA) pathway modulates the metabolism of striatal dynorphin and [Met5]-enkephalin. This was achieved by repeated injections of apomorphine (APO) or D-amphetamine (AMP) in unilateral nigral 6-hydroxydopamine (6-OHDA)-lesioned rats. Three weeks after a 6-OHDA lesion, dynorphin A(1-8)-like immunoreactivity (DN-LI) and the level of mRNA encoding prodynorphin in the striatum on the lesioned side were decreased compared with the contralateral control side. Activation of DA receptors by 7 daily injections of APO (5 mg/kg, Bid, s.c.), however, caused a large increase (3- to 4-fold of saline control) in striatal levels of DN-LI and prodynorphin mRNA on the 6-OHDA lesioned side, which is far greater than the increase on the contralateral side (2-fold of saline control). Presumably, the potentiated effect of APO in 6-OHDA lesioned rats is due to hypersensitivity of DA receptors resulting from DA denervation. Seven daily injections of AMP (5 mg/kg, Bid, s.c.), a DA-releasing agent, increased striatal DN-LI (187% of saline control) on the non-lesioned side, but not on the 6-OHDA-lesioned side. Taken together, the data indicate that the nigrostriatal pathway exerts a tonic excitatory influence over the biosynthesis of dynorphin and that this influence is not maximal since an additional increase in dopaminergic tone further increases the expression of dynorphin. In contrast, [Met5]-enkephalin-like immunoreactivity (ME-LI) in the striatum was increased by a 6-OHDA-lesion (145% of contralateral control), which was blocked by repeated administration of APO but not AMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In the present study, an attempt has been made to explore the neuroprotective and neuroreparative (neurorescue) effect of black tea extract (BTE) in 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD). In the neuroprotective (BTE + 6-OHDA) and neurorescue (6-OHDA + BTE) experiments, the rats were given 1.5% BTE orally prior to and after intrastriatal 6-OHDA lesion respectively. A significant recovery in d-amphetamine induced circling behavior (stereotypy), spontaneous locomotor activity, dopamine (DA)-D2 receptor binding, striatal DA and 3-4 dihydroxy phenyl acetic acid (DOPAC) level, nigral glutathione level, lipid peroxidation, striatal superoxide dismutase and catalase activity, antiapoptotic and proapoptotic protein level was evident in BTE + 6-OHDA and 6-OHDA + BTE groups, as compared to lesioned animals. BTE treatment, either before or after 6-OHDA administration protected the dopaminergic neurons, as evident by significantly higher number of surviving tyrosine hydroxylase immunoreactive (TH-ir) neurons, increased TH protein level and TH mRNA expression in substantia nigra. However, the degree of improvement in motor and neurochemical deficits was more prominent in rats receiving BTE before 6-OHDA. Results suggest that BTE exerts both neuroprotective and neurorescue effects against 6-OHDA-induced degeneration of the nigrostriatal dopaminergic system, suggesting that possibly daily intake of BTE may slow down the PD progression as well as delay the onset of neurodegenerative processes in PD.  相似文献   

17.
Spontaneous release and metabolism of dopamine (DA) from intrastriatal grafts of fetal mesencephalic DA neurons was measured by intracerebral dialysis. Mesencephalic DA cell suspensions were implanted into the head of the caudate-putamen in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the mesostriatal DA pathway. Four months later, when tests for amphetamine-induced turning behaviour showed that the grafts had become functional, loops of dialysis tubing were implanted into the striatum on the grafted side and the contralateral non-lesioned side of the grafted rats, and in a similar position in the denervated caudate-putamen of 6-OHDA lesioned control rats. Dialysis perfusates collected from the 6-OHDA lesioned striata showed a reduction of about 95-98% in DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). In the grafted animals these levels had recovered to about 40% of control for DA and to 12-16% of control for HVA and DOPAC. In addition, the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) was increased in the grafted striata compared to both the lesioned and non-lesioned controls. Amphetamine had little or no effect on DA release in the 6-OHDA lesioned rats, but caused a marked increase in DA release in the grafted rats, this response being proportional to that seen in intact striata. Since the subsequent histochemical analysis showed that the dialysis probe had been located in the transplant-reinnervated part of the caudate-putamen, the results provide additional evidence that the grafted DA neurons exert their functional effects through a continuous active transmitter release from their newly-established terminals in the reinnervated host target.  相似文献   

18.
The extracellular concentrations of dopamine (DA), norepinephrine (NE), and serotonin (5-HT) in the nucleus accumbens (NACC) of freely moving rats were monitored simultaneously via intracerebral microdialysis. Local infusion of the non-competitive N-methyl-

-aspartate (NMDA) receptor antagonist MK-801 (dizocilpine) (5–250 μM) produced significant increases in extracellular levels of DA, NE and 5-HT in a concentration-dependent fashion. Perfusion with tetrodotoxin (TTX, 1 μM) blocked the ability of focal MK-801 (50 μM) to increase DA, NE and 5-HT in the dialysate. Systemic administration of MK-801 (0.3 mg/kg, i.p.) also produced small, but statistically significant, increases in extracellular concentrations of DA, NE and 5-HT in the NACC. Our microdialysis results are consistent with the hypothesis that, in addition to dopaminergic, serotonergic and noradrenergic neurotransmissions in the NACC are involved in the mechanism by which MK-801 alters behavior in rats. Also, the present study gives further support to the concept that NMDA receptors within the NACC do not regulate DA release through direct excitatory control.  相似文献   

19.
The purpose of the present study was to identify which catecholamine-containing neurons (norepinephrine (NE) or dopamine (DA)) and which central nervous system (CNS) region(s) innervated by them might participate in the pressor and drinking responses produced by central drug stimulation. Forebrain NE was reduced in rats by injecting 4 micrograms of 6-hydroxydopamine (6-OHDA) into the ascending noradrenergic bundles. Spinal cord NE was depleted by intracisternal injection of 50 micrograms 6-OHDA. Depletion of forebrain DA was produced by bilateral injection of 4 micrograms 6-OHDA into the substantia nigra of desipramine-pretreated rats. Pressor responses to various doses of angiotensin II (AII), carbachol or hyperosmolar NaCl injected into the lateral ventricles (LVT); and drinking responses to LVT AII and carbachol were examined. Injection of 6-OHDA into the noradrenergic bundles reduced telencephalic and hypothalamic NE by more than 80% without significantly affecting brain DA or spinal cord NE. Intracisternal 6-OHDA depleted spinal cord NE by 80% and forebrain NE by 20-25% without reducing brain DA. Injection of 6-OHDA into the substantia nigra reduced telencephalic DA by 86% and NE by 29% without significantly affecting NE in other CNS regions. Substantia nigra 6-OHDA injected animals evidenced attenuated drinking to both LVT AII and carbachol. Pressor responses to LVT AII, carbachol and hypertonic saline were largely unaffected. Almost complete depletion of brain and/or spinal cord NE failed to alter centrally mediated drinking or pressor responses. These data indicate that the integrity of brain DA neurons is required for the behavioral but not hypertensive responses produced by central drug stimulation.  相似文献   

20.
A lesion of the dopamine (DA)-containing nigrostriatal pathway with 6-hydroxydopamine (6-OHDA) results in an increase in the density of nerve terminal glutamate immunolabeling and in the mean percentage of asymmetrical synapses containing a discontinuous postsynaptic density [Meshul et al. (1999) Neuroscience 88:1-16]. Similar alterations in striatal glutamate synapses have been reported following blockade of striatal DA D-2 receptors with subchronic haloperidol treatment [Meshul et al. (1994) Brain Res 648:181-195]. The haloperidol-induced change in glutamate synapses was blocked by coadministration of the N-methyl-D-aspartate (NMDA) noncompetitive receptor antagonist MK-801. In order to determine if blockade of NMDA receptors could alter the density of nerve terminal glutamate immunolabeling following a 6-OHDA lesion of the nigrostriatal pathway, MK-801 was administered to lesioned animals for 14 days. In addition, the number of apomorphine-induced contralateral rotations was determined prior to and following the administration of MK-801. MK-801 administration reversed the increase in the density of nerve terminal glutamate immunolabeling due to a 6-OHDA lesion. There was a small but significant decrease in the number of apomorphine-induced contralateral rotations following administration of MK-801 compared to the number of rotations prior to treatment with the NMDA antagonist. These results demonstrate that blockade of postsynaptic NMDA receptors affects the density of presynaptic glutamate immunolabeling and that this change in nerve terminal glutamate density is associated with a decreased behavioral response to direct DA receptor stimulation. Whether the effect of MK-801 is directly on the striatum or acts through other excitatory pathways of the basal ganglia remains unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号