首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Implicated as a major mechanism of ethambutol (EMB) resistance in clinical studies of Mycobacterium tuberculosis, mutations in codon 306 of the embB gene (embB306) have also been detected in EMB-susceptible clinical isolates. Other studies have found strong associations between embB306 mutations and multidrug resistance, but not EMB resistance. We performed allelic exchange studies in EMB-susceptible and EMB-resistant clinical M. tuberculosis isolates to identify the role of embB306 mutations in any type of drug resistance. Replacing wild-type embB306 ATG from EMB-susceptible clinical M. tuberculosis strain 210 with embB306 ATA, ATC, CTG, or GTG increased the EMB MIC from 2 microg/ml to 7, 7, 8.5, and 14 microg/ml, respectively. Replacing embB306 ATC or GTG from two high-level EMB-resistant clinical strains with wild-type ATG lowered EMB MICs from 20 microg/ml or 28 microg/ml, respectively, to 3 microg/ml. All parental and isogenic mutant strains had identical isoniazid (INH) and rifampin (RIF) MICs. However, embB306 CTG mutants had growth advantages compared to strain 210 at sub-MICs of INH or RIF in monocultures and at sub-MICs of INH in competition assays. CTG mutants were also more resistant to the additive or synergistic activities of INH, RIF, or EMB used in different combinations. These results demonstrate that embB306 mutations cause an increase in the EMB MIC, a variable degree of EMB resistance, and are necessary but not sufficient for high-level EMB resistance. The unusual growth property of embB306 mutants in other antibiotics suggests that they may be amplified during treatment in humans and that a single mutation may affect antibiotic susceptibility against multiple first-line antibiotics.  相似文献   

2.
The katG, inhA and ahpC genes, in 71 isoniazid (INH)-resistant and 26 INH-susceptible Mycobacterium tuberculosis isolates, from South Korea were examined by sequencing and MspI restriction enzyme analysis. Mutations in the katG 315 alone, katG 315 plus inhA, katG 315 plus ahpC, katG 309 alone, katG 309 plus inhA, inhA alone, and ahpC alone, were detected in 54.9, 2.8, 1.4, 1.4, 1.4, 19.7, and 5.6% of the 71 INH-resistant isolates, respectively. There was no statistically significant difference (p > 0.05) in the frequencies of these mutations for the INH-monoresistant compared with the multidrug-resistant isolates. Mutations in the katG codon 315 were associated with the high-level of INH resistance (MIC, >1 microg/ml), whereas the mutation in the inhA promoter region was associated with the low-level of INH resistance (MIC, >0.2 to 1 microg/ml). The previously undescribed GGT-->GAT (Gly-->Asp) mutation in the katG codon 309 was found in two rifampin, including-multidrug-resistant isolates, but we cannot assess if this is predictive of INH resistance. The sensitivity and specificity of molecular analysis of the katG codon 315 and/or the inhA promoter region were 80.3 and 100%, respectively. Therefore, mutations in these regions are highly predictive of INH resistance in South Korea.  相似文献   

3.
Mutations at position 306 of embB (embB306) have been proposed as a marker for ethambutol resistance in Mycobacterium tuberculosis; however, recent reports of embB306 mutations in ethambutol-susceptible isolates caused us to question the biological role of this mutation. We tested 1,020 clinical M. tuberculosis isolates with different drug susceptibility patterns and of different geographical origins for associations between embB306 mutations, drug resistance patterns, and major genetic group. One hundred isolates (10%) contained a mutation in embB306; however, only 55 of these mutants were ethambutol resistant. Mutations in embB306 could not be uniquely associated with any particular type of drug resistance and were found in all three major genetic groups. A striking association was observed between these mutations and resistance to any drug (P < 0.001), and the association between embB306 mutations and resistance to increasing numbers of drugs was highly significant (P < 0.001 for trend). We examined the association between embB306 mutations and IS6110 clustering (as a proxy for transmission) among all drug-resistant isolates. Mutations in embB306 were significantly associated with clustering by univariate analysis (odds ratio, 2.44; P = 0.004). In a multivariate model that also included mutations in katG315, katG463, gyrA95, and kasA269, only mutations in embB306 (odds ratio, 2.14; P = 0.008) and katG315 (odds ratio, 1.99; P = 0.015) were found to be independently associated with clustering. In conclusion, embB306 mutations do not cause classical ethambutol resistance but may predispose M. tuberculosis isolates to the development of resistance to increasing numbers of antibiotics and may increase the ability of drug-resistant isolates to be transmitted between subjects.  相似文献   

4.
耐药结核分枝杆菌基因突变分析   总被引:2,自引:0,他引:2  
目的 探讨结核分枝杆菌耐药表型与基因突变位点之间的相互关系.方法 采用序列特异性引物分别扩增92株结核分枝杆菌利福平耐药基因rpoB,异烟肼耐药基因katG、inhA、ahpC,链霉素耐药基因rrs、rpsL,乙胺丁醇耐药基因embB及喹诺酮耐药基因gyrA,SSCP筛选出突变序列,DNA测序分析突变性质.结果 59株利福平耐药株rpoB基因突变检出率94.9%(56/59),以Ser450Trp突变最多;90株异烟肼耐药株中,katG基因突变检出率38.9%(35/90),以Ser315Thr最多,3株检出inhA基因突变,ahpC基因无突变检出;34株喹诺酮耐药株中gyrA基因突变检出率82.4%(28/34),主要为Asp94Gly,其次为Ala90Val;31株链霉素耐药株中,15株检出rrs突变,最常见为A514C和A1041G,10株发生rpsL Lys88Arg突变,总的链霉素基因突变检出率为77.4%(24/31);31株乙胺丁醇耐药株中embB 基因突变检出率19.4%(6/31),主要为Met306Val.结论 耐药结核分枝杆菌耐药情况较为严重,以DNA测序为基础的基因突变分析能快速有效地检测结核分枝杆菌的rpoB、katG、gyrA、rrs、rpsL、embB 等耐药分子标识,显示了西安地区耐药性结核分枝杆菌的突变特点,为结核病的临床诊断和合理用药提供了实验依据.  相似文献   

5.
Ethionamide (ETH) is a structural analog of the antituberculosis drug isoniazid (INH). Both of these drugs target InhA, an enzyme involved in mycolic acid biosynthesis. INH requires catalase-peroxidase (KatG) activation, and mutations in katG are a major INH resistance mechanism. Recently an enzyme (EthA) capable of activating ETH has been identified. We sequenced the entire ethA structural gene of 41 ETH-resistant Mycobacterium tuberculosis isolates. We also sequenced two regions of inhA and all or part of katG. The MICs of ETH and INH were determined in order to associate the mutations identified with a resistance phenotype. Fifteen isolates were found to possess ethA mutations, for all of which the ETH MICs were > or =50 microg/ml. The ethA mutations were all different, previously unreported, and distributed throughout the gene. In eight of the isolates, a missense mutation in the inhA structural gene occurred. The ETH MICs for seven of the InhA mutants were > or =100 microg/ml, and these isolates were also resistant to > or =8 microg of INH per ml. Only a single point mutation in the inhA promoter was identified in 14 isolates. A katG mutation occurred in 15 isolates, for which the INH MICs for all but 1 were > or =32 microg/ml. As expected, we found no association between katG mutation and the level of ETH resistance. Mutations within the ethA and inhA structural genes were associated with relatively high levels of ETH resistance. Approximately 76% of isolates resistant to > or =50 microg of ETH per ml had such mutations.  相似文献   

6.
Ethambutol [(S,S')-2,2'-(ethylenediimino)di-1-butanol; EMB], is a first-line drug used to treat tuberculosis. To gain insight into the molecular basis of EMB resistance, we characterized the 10-kb embCAB locus in 16 EMB-resistant and 3 EMB-susceptible genetically distinct Mycobacterium tuberculosis strains from diverse localities by automated DNA sequencing and single-stranded conformation polymorphism analysis. All 19 organisms had virtually identical sequences for the entire 10-kb region. Eight EMB-resistant organisms had mutations located in codon 306 of embB that resulted in the replacement of the wild-type Met residue with Ile or Val. Automated sequence analysis of the 5' region (1,892 bp) of embB in an additional 69 EMB-resistant and 30 EMB-susceptible M. tuberculosis isolates from diverse geographic localities and representing 70 distinct IS6110 fingerprints confirmed the unique association of substitutions in amino acid residue 306 of EmbB with EMB resistance. Six other embB nucleotide substitutions resulting in four amino acid replacements were uniquely found in resistant strains. Sixty-nine percent of epidemiologically unassociated EMB-resistant organisms had an amino acid substitution not found in susceptible strains, and most (89%) replacements occurred at amino acid residue 306 of EmbB. For strains with the Met306Leu or Met306Val replacements EMB MICs were generally higher (40 microg/ml) than those for organisms with Met306Ile substitutions (20 microg/ml). The data are consistent with the idea that amino acid substitutions in EmbB alter the drug-protein interaction and thereby cause EMB resistance.  相似文献   

7.
Ethambutol (EMB) is a major component of the first-line therapy of tuberculosis. Mutations in codon 306 of embB (embB306) were suggested as a major resistance mechanism in clinical isolates. To directly analyze the impact of individual embB306 mutations on EMB resistance, we used allelic exchange experiments to generate embB306 mutants of M. tuberculosis H37Rv. The level of EMB resistance conferred by particular mutations was measured in vitro and in vivo after EMB therapy by daily gavage in a mouse model of aerogenic tuberculosis. The wild-type embB306 ATG codon was replaced by embB306 ATC, ATA, or GTG, respectively. All of the obtained embB306 mutants exhibited a 2- to 4-fold increase in EMB MIC compared to the wild-type H37Rv. In vivo, the one selected embB306 GTG mutant required a higher dose of ethambutol to restrict its growth in the lung compared to wild-type H37Rv. These experiments demonstrate that embB306 point mutations enhance the EMB MIC in vitro to a moderate, but significant extent, and reduce the efficacy of EMB treatment in the animal model. We propose that conventional EMB susceptibility testing, in combination with embB306 genotyping, may guide dose adjustment to avoid clinical treatment failure in these low-level resistant strains.  相似文献   

8.
目的 研究耐多药结核分枝菌中embB基因突变与乙胺丁醇耐药的相关性. 方法 比例法检测84株耐多药结核分枝杆菌的乙胺丁醇(EMB)耐药性,基因测序检测embB基因的突变,2检验分析二者之间的相关性. 结果 84株耐多药结核分枝杆菌中有43株(51.2%)对EMB耐药,41株(48.8%)对EMB敏感,57株耐多药菌株(67.9%)的embB基因发生突变.在43株EMB耐药菌株中,embB基因突变的菌株为40株(93.0%),而41株EMB敏感菌株中,embB基因突变的菌株为17株(41.5%),embB基因在耐药菌株中的突变频率远高于敏感菌株(2=25.58,P=0.00).embB306是最常见的突变位点,其在耐药菌株的突变率也高于敏感菌株(2=12.37,P=0.00),embB基因和embB306位点检测EMB耐药的敏感度、特异度和准确性分别为93.0%和65.1%,58.5%和73.2%,76.2%和69.0%. 结论 EMB耐药的产生与embB基因和embB306突变有关,二者用于检测EMB耐药有一定的参考意义.  相似文献   

9.
We investigated the causal relationship between genotype and phenotype of drug-resistant Mycobacterium tuberculosis isolates obtained from patients with pulmonary tuberculosis (TB) in Korea. Of 80 isolates tested, 17, 20, 1, and 7 isolates were mono-resistant to ethambutol (EMB), isoniazid (INH), pyrazinamide (PZA), and rifampicin (RFP), respectively, and 31 isolates (38.8%) were multidrug-resistant (MDR). Sequencing analysis showed that 78% (32/41) of RFP-resistant strains had mutations in the rifampicin resistance-determining region (RRDR) of rpoB, and the mutation at rpoB531 (59.4%) was most abundant. In 52 INH-resistant strains, mutations were found mostly at C-15T (n = 21, 40.4%) in the inhA promoter region as well as at katG315 (n = 12, 23.1%). Mutations at embB306 were mostly found in 26.7% (12/45) of EMB-resistant isolates. New mutations found here in MDR isolates include rpoB523 (Gly523Glu) and embB319 (Tyr319Ser). Consequently, mutations in the rpoB531, C-15T in the inhA promoter region, embB306, and katG315 would be a useful marker for rapid detection of MDR M. tuberculosis isolates in Korea.  相似文献   

10.
Elucidation of the molecular basis of isoniazid (INH) resistance in Mycobacterium tuberculosis has led to the development of different genotypic approaches for the rapid detection of INH resistance in clinical isolates. Mutations in katG, in particular the S315T substitution, are responsible for INH resistance in a large proportion of tuberculosis cases. However, the frequency of the katG S315T substitution varies with population samples. In this study, 52 epidemiologically unrelated clinical INH-resistant M. tuberculosis isolates collected in Australia were screened for mutations at katG codon 315 and the fabG1-inhA regulatory region. Importantly, 52 INH-sensitive isolates, selected to reflect the geographic and genotypic diversity of the isolates, were also included for comparison. The katG S315T substitution and fabG1-inhA -15 C-to-T mutation were identified in 34 and 13 of the 52 INH-resistant isolates, respectively, and none of the INH-sensitive isolates. Three novel katG mutations, D117A, M257I, and G491C, were identified in three INH-resistant strains with a wild-type katG codon 315, fabG1-inhA regulatory region, and inhA structural gene. When analyzed for possible associations between resistance mechanisms, resistance phenotype, and genotypic groups, it was found that neither the katG S315T nor fabG1-inhA -15 C-to-T mutation clustered with any one genotypic group, but that the -15 C-to-T substitution was associated with isolates with intermediate INH resistance and isolates coresistant to ethionamide. In total, 90.4% of unrelated INH-resistant isolates could be identified by analysis of just two loci: katG315 and the fabG1-inhA regulatory region.  相似文献   

11.
Mutations at embB gene codons 306 and 497 and iniA gene codon 501 occur frequently in ethambutol (EMB)-resistant Mycobacterium tuberculosis strains worldwide. The identification of these mutations in resistant strains has been achieved by labor-intensive DNA sequencing or by tedious amplification protocols followed by restriction endonuclease digestion. In this report, we describe PCR-restriction fragment length polymorphism (RFLP)-based methods for determining substitutions at embB codons 306 and 497 and iniA codon 501 directly in BACTEC cultures of M. tuberculosis isolates. The wild-type and mutant alleles are revealed by easily interpretable and different RFLP patterns. The methods optimized initially on reference strains were tested directly on BACTEC cultures of 25 randomly selected clinical M. tuberculosis isolates, seven of which were determined to contain EMB-resistant strains by phenotypic drug susceptibility testing. The PCR-RFLP methods identified mutations in four of seven EMB-resistant strains with three isolates containing mutated embB codon 306 and one isolate containing mutated embB codon 497. The results of PCR-RFLP were confirmed by DNA sequencing. The worldwide prevalence figures for mutations at embB codons 306 and 497 and iniA codon 501 suggest that nearly half of EMB-resistant M. tuberculosis strains could be identified within one working day even in developing countries equipped with simple PCR technology instead of weeks required for phenotypic drug susceptibility testing. Further, since EMB resistance is also associated with multiple-drug resistance from some geographical locations, detection of EMB resistance may also lead to rapid identification of multidrug-resistant strains of M. tuberculosis.  相似文献   

12.
目的:了解结核分枝杆菌katG、inhA、ahpC、fabG1、sodA及sodC基因突变的特征及其与耐异烟肼的关系。方法对127例活动性肺结核患者痰标本进行菌型鉴定及结核分枝杆菌药敏试验,提取结核分枝杆菌菌株DNA,应用PCR扩增katG、inhA及ahpC、fabG1、sodA及sodC基因片段,并进行DNA序列分析。结果结核分枝杆菌药物敏感试验显示127株结核分枝杆菌中,其中47株耐异烟肼,80株对异烟肼敏感,耐异烟肼率为37.01%。47株耐异烟肼中,29株存在katG和(或)inhA基因突变,其中22株(46.81%,22/47)存在katG基因单位点突变,3株(6.38%,3/47)存在inhA基因单位点突变,4株(8.51%,4/47)存在katG及inhA基因联合位点突变。22株katG基因单位点突变中,20株为AGC315ACC、AGC315AAC (42.55%,20/47)突变,2株(2.13%,1/47)分别为CTG378CCG(Leu378Pro)、ACG394ATG(Thr394Met)突变,该突变位点及突变形式尚未见文献报道。18株katG及inhA未突变结核分枝杆菌均未检测到ahpC、fabG1、sodA及sodC基因突变。结论结核分枝杆菌对异烟肼耐药主要与katG和inhA基因突变有关。耐异烟肼结核分枝杆菌临床分离株378和394新突变位点的发现为进一步研究耐药机制以及耐药结核病的快速检测提供了依据。  相似文献   

13.
We analyzed 159 Mycobacterium tuberculosis isolates (101 ethambutol [EMB]-resistant strains, 33 multidrug-resistant but not EMB-resistant strains, and 25 fully susceptible strains) for the presence of mutations in embB codon 306 (embB306). Mutations were detected only in EMB-resistant strains (n = 69; 68%), thus confirming the significance of embB306 mutations for the prediction of resistance to EMB.  相似文献   

14.
Of 142 pulmonary tuberculosis patients, 76 were considered high risk for the development of resistance, and 24 were confirmed as resistant strain carriers. Resistant isoniazid strains presented a high frequency of katG and ahpC mutations (90%) correlated with an MIC >4 microg/mL (94%). inhA mutations were not seen. rpoB mutations were identified in 78.6% of rifampicin-resistant strains, usually in codon 531 (72.7%), and 75% had an MIC >16 microg/mL. katG and rpoB mutations recognized 88.2% of multidrug-resistant strains and proved more efficient than the katG and rpoB mutations alone. Seventy percent of resistant pyrazinamide strains had pncA mutations between genes 136 and 188, 62.5% of them with an MIC >900 microg/mL. Pyrazinamidase inactivity was not an efficient resistance marker because 60% of pncA-mutated strains maintained enzymatic activity despite displaying good correlation with high resistance levels. Resistant ethambutol strains had embB mutations in codon 306, with MIC >16 microg/mL.  相似文献   

15.
We developed a QIAplex system for the simultaneous detection of 24 Mycobacterium tuberculosis gene mutations responsible for resistance to isoniazid (INH), rifampin (RIF), streptomycin (STM), and ethambutol (EMB) in 196 M. tuberculosis isolates recovered in the Republic of Georgia. In comparison to phenotypic susceptibility tests, the QIAplex showed sensitivity and specificity of 85.4% and 96.1% for INH, 94.4% and 99.4% for RIF, 69.6% and 99.2% for STM, 50.0% and 98.8% for EBM, and 86.7% and 100.0% for multidrug resistance, respectively. The dominant resistance mutations revealed were a mutation in katG resulting in S315T (katG S315T), rpsL K43R, and rpoB S531L. Mutations katG S315G and S315T and rpoB S531L were detected with higher frequencies in pretreated patients than in naive patients (P < 0.05). Simultaneous detection of 24 common drug resistance-related mutations provides a molecular tool for studying and monitoring M. tuberculosis resistance mechanism and epidemiology.  相似文献   

16.
The emergence of multi- and extensively drug-resistant tuberculosis is a significant impediment to the control of this disease because treatment becomes more complex and costly. Reliable and timely drug susceptibility testing is critical to ensure that patients receive effective treatment and become noninfectious. Molecular methods can provide accurate and rapid drug susceptibility results. We used DNA sequencing to detect resistance to the first-line antituberculosis drugs isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB) and the second-line drugs amikacin (AMK), capreomycin (CAP), kanamycin (KAN), ciprofloxacin (CIP), and ofloxacin (OFX). Nine loci were sequenced: rpoB (for resistance to RIF), katG and inhA (INH), pncA (PZA), embB (EMB), gyrA (CIP and OFX), and rrs, eis, and tlyA (KAN, AMK, and CAP). A total of 314 clinical Mycobacterium tuberculosis complex isolates representing a variety of antibiotic resistance patterns, genotypes, and geographical origins were analyzed. The molecular data were compared to the phenotypic data and the accuracy values were calculated. Sensitivity and specificity values for the first-line drug loci were 97.1% and 93.6% for rpoB, 85.4% and 100% for katG, 16.5% and 100% for inhA, 90.6% and 100% for katG and inhA together, 84.6% and 85.8% for pncA, and 78.6% and 93.1% for embB. The values for the second-line drugs were also calculated. The size and scope of this study, in numbers of loci and isolates examined, and the phenotypic diversity of those isolates support the use of DNA sequencing to detect drug resistance in the M. tuberculosis complex. Further, the results can be used to design diagnostic tests utilizing other mutation detection technologies.  相似文献   

17.
目的 调查浙江省丽水市结核病定点医院患者结核分枝杆菌(MTB)临床分离株耐药特征及耐药基因突变情况,为该地区耐药结核病防控提供依据。方法 采用荧光PCR熔解曲线法对培养自丽水市结核病定点医院结核病患者MTB临床分离株进行抗结核药物耐药性及耐药基因突变位点检测及分析。结果 242株MTB总耐药突变占16.53%(40/242),耐多药率为4.96%(12/242),耐药顺位分别为异烟肼>链霉素>利福平>氟喹诺酮类>乙胺丁醇。链霉素耐药株基因突变位点主要发生在rpsL43位密码子,占比为65.00%(13/20);异烟肼耐药基因突变位点主要发生在katG315密码子,占比为76.19%(14/21);利福平耐药基因突变位点主要发生在rpoB基因529-533位密码子,占比为61.11%(11/18);乙胺丁醇耐药基因突变位点主要发生在embB306位密码子,占77.78%(7/9)。结论 丽水市结核患者总体耐药突变低于全国耐药水平,但耐药模式和耐药基因突变情况仍较为复杂,需进一步加强耐药结核病监测及防控工作。  相似文献   

18.
Substitutions of codon 306 in the gene embB are the most common mutations found in ethambutol resistant Mycobacterium tuberculosis. The characterization of these mutations has been hampered by the need for prior cultivation of the mycobacteria, or the need for DNA sequencing, or both. Here, we describe a simple and culture-independent technique to detect embB codon 306 mutations directly from sputum samples, requiring little more than a PCR machine and a simple agarose minigel. There is no need for labelled probes or DNA sequencing. In a preliminary test of feasibility, interpretable results were obtained from 21 of 24 selected sputum samples, 12 of which were determined to contain ethambutol resistant M. tuberculosis after culture. All of six samples with embB codon 306 mutations were correctly identified. Although an exact validation of this technique is beyond the scope of this technical report, we conclude from well-known embB codon 306 mutation prevalence figures that approximately one half of EMB resistant cases could already be predicted within 2 working days, with little equipment or hands-on time needed, instead of weeks required for conventional resistance testing.  相似文献   

19.
目的 分析结核分枝杆菌katG基因2个不同区域的基因变异,并确定与INH耐药的相关性.方法 从痰液分离并鉴定结核分枝杆菌耐INH菌株53株,用PCR扩增katG基因的2个区域:区域1为第1位密码子至150位密码子,区域2为第227位密码子至470位密码子,并分别测序.结果 3株对INH耐药但2个区域都不发生突变.14株区域1存在突变,其中5株只在区域1存在突变,5株在区域1出现缺失突变,并呈现高度耐药.点突变是区域2的主要特点,特别是S315位密码子,60.4%(32/53)S315发生突变,最常见的是S315N(AGC→AAC)(18株);katG S315在高度INH耐药和低度INH耐药的结核分枝杆菌中突变率分别是84.4%(27/32)、15.6%(5/32),两组间差异有统计学意义(x2=30.25,P<0.01).27株S315突变呈高度耐药,占S315突变菌株总数的84.4%,其余18株至少有一个非S315点突变的耐药株中高度耐药只有5株,占27.7%,两组间差异有统计学意义(x2=16.02,P<0.01).对INH耐药的结核分枝杆菌区域2的突变发生率为84.9%.5株只在区域1存在突变,通过检测基因突变诊断INH耐药的检出率上升至94.3%.结论 S315突变发生率最高,突变类型和位置与耐药程度密切相关,分析区域1能使检出率提高9.4%.
Abstract:
Objective To analyze and compare the mutations in two different regions of the katG gene and study the relevance of Mycobacterium tuberculosis isoniazid-resistance and mutations in two different regions of the katG gene. Methods Fifty-three INH-resistant Mycobacterium tuberculosis strains isolated in cultures of sputum samples obtained from Zhejiang province were analyzed. PCR was used to amplify two regions of the katG gene (GenBank accession no. U06258) region 1 (from codon 1 to codon 150) and region 2 ( from codon 227 to codon 470) which were then sequenced in order to identify mutations. Results Three strains resistant to INH did not contain mutations in either region. Fourteen strains carried mutations in region 1. Among them 5 strains barbered deletions, and showed high-level resistance to isoniazid. Five strains had mutations only in region 1. Region 2 carried multiple point mutations, especially at codon 315, and there were S315 N ( AGC→AAC ) substitution in 18 of those cases. The frequency of mutations in the katG S315 of high-level INH-resistance isolates ( 84. 4%, 27/32) was significantly higher than those of low-level INH-resistance isolates( 15.6%, 5/32 ), there was statistically significant difference (x2 = 30. 25, P < 0. 01 ).katG S315 mutations in high-level INH-resistance frequency (84. 4%, 27/32) was significantly higher than the other mutations of katG gene of high-level INH-resistance frequency (27. 7%, 5/18 ), there was significant difference (x2 = 16.02, P < 0. 01 ). The analysis of region 2 allowed INH resistance to be diagnosed in 84. 9% of the strains. Five strains had mutations only in region 1 ,which allowed the proportion of INH-resistant strains identified to be increased to 94. 3%. Conclusions The number of mutations at codon 315 was high. Mutation type and location closely related with drug resistance and the analysis of region 1 resulted in a 9. 4% increase in the rate at which mutations were identified.  相似文献   

20.
Mutations at codon 315 of the katG gene were detected in 312 of 364 (85.7%) isoniazid-resistant Mycobacterium tuberculosis isolates. Seven of 52 (13.5%) isoniazid-resistant isolates with the wild-type Ser315 codon and 10 of 52 (19.2%) isoniazid-resistant isolates with a mutated katG allele had mutation -15C-->T in the promoter of the mabA-inhA operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号