首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: To test susceptibilities of Mycobacterium tuberculosis (MTB) isolates to ethambutol by the L?wenstein-Jensen (LJ) proportion method and resazurin microtitre assay (REMA) and to evaluate REMA for the determination of ethambutol MICs for MTB and Mycobacterium avium isolates. METHODS: A total of 50 MTB and 20 M. avium isolates were tested to determine the MICs of ethambutol by REMA and agar dilution method. MTB isolates were also tested by the LJ proportion method. RESULTS: REMA provided ethambutol susceptibility results for all the isolates within 8-9 days. For MTB isolates, REMA showed 96.7% sensitivity, 100.0% specificity and 98.0% accuracy when LJ proportion results were taken as 'gold standard'. For both MTB and M. avium isolates, the MICs determined by REMA were lower than those determined in agar medium, indicating that MIC values determined by REMA are closer to the actual MICs for the isolates. CONCLUSIONS: REMA can be used as a rapid and inexpensive method for mycobacterial drug susceptibility testing against ethambutol. In comparison with the agar method, the MICs determined by REMA can more accurately be correlated with achievable plasma concentrations of antimycobacterial agents.  相似文献   

2.
耐药结核分枝杆菌基因突变分析   总被引:2,自引:0,他引:2  
目的 探讨结核分枝杆菌耐药表型与基因突变位点之间的相互关系.方法 采用序列特异性引物分别扩增92株结核分枝杆菌利福平耐药基因rpoB,异烟肼耐药基因katG、inhA、ahpC,链霉素耐药基因rrs、rpsL,乙胺丁醇耐药基因embB及喹诺酮耐药基因gyrA,SSCP筛选出突变序列,DNA测序分析突变性质.结果 59株利福平耐药株rpoB基因突变检出率94.9%(56/59),以Ser450Trp突变最多;90株异烟肼耐药株中,katG基因突变检出率38.9%(35/90),以Ser315Thr最多,3株检出inhA基因突变,ahpC基因无突变检出;34株喹诺酮耐药株中gyrA基因突变检出率82.4%(28/34),主要为Asp94Gly,其次为Ala90Val;31株链霉素耐药株中,15株检出rrs突变,最常见为A514C和A1041G,10株发生rpsL Lys88Arg突变,总的链霉素基因突变检出率为77.4%(24/31);31株乙胺丁醇耐药株中embB 基因突变检出率19.4%(6/31),主要为Met306Val.结论 耐药结核分枝杆菌耐药情况较为严重,以DNA测序为基础的基因突变分析能快速有效地检测结核分枝杆菌的rpoB、katG、gyrA、rrs、rpsL、embB 等耐药分子标识,显示了西安地区耐药性结核分枝杆菌的突变特点,为结核病的临床诊断和合理用药提供了实验依据.  相似文献   

3.
Phenotypic characterization of pncA mutants of Mycobacterium tuberculosis   总被引:7,自引:0,他引:7  
We examined the correlation of mutations in the pyrazinamidase (PZase) gene (pncA) with the pyrazinamide (PZA) resistance phenotype with 60 Mycobacterium tuberculosis isolates. PZase activity was determined by the method of Wayne (L. G. Wayne, Am. Rev. Respir. Dis. 109:147-151, 1974), and the entire pncA nucleotide sequence, including the 74 bp upstream of the start codon, was determined. PZA susceptibility testing was performed by the method of proportions on modified Middlebrook and Cohn 7H10 medium. The PZA MICs were > or =100 microg/ml for 37 isolates, 34 of which had alterations in the pncA gene. These mutations included missense substitutions for 24 isolates, nonsense substitutions for 3 isolates, frameshifts by deletion for 4 isolates, a three-codon insertion for 1 isolate, and putative regulatory mutations for 2 isolates. Among 21 isolates for which PZA MICs were <100 microg/ml, 3 had the same mutation (Thr47-->Ala) and 18 had the wild-type sequence. For the three Thr47-->Ala mutants PZA MICs were 12.5 microg/ml by the method of proportions on 7H10 agar; two of these were resistant to 100 microg of PZA per ml and the third was resistant to 800 microg of PZA per ml by the BACTEC method. In all, 30 different pncA mutations were found among the 37 pncA mutants. No PZase activity was detected in 35 of 37 strains that were resistant to > or =100 microg of PZA per ml or in 34 of 37 pncA mutants. Reduced PZase activity was found in the three mutants with the Thr47-->Ala mutation. This study demonstrates that mutations in the pncA gene may serve as a reliable indicator of resistance to > or =100 microg of PZA per ml.  相似文献   

4.
Of 142 pulmonary tuberculosis patients, 76 were considered high risk for the development of resistance, and 24 were confirmed as resistant strain carriers. Resistant isoniazid strains presented a high frequency of katG and ahpC mutations (90%) correlated with an MIC >4 microg/mL (94%). inhA mutations were not seen. rpoB mutations were identified in 78.6% of rifampicin-resistant strains, usually in codon 531 (72.7%), and 75% had an MIC >16 microg/mL. katG and rpoB mutations recognized 88.2% of multidrug-resistant strains and proved more efficient than the katG and rpoB mutations alone. Seventy percent of resistant pyrazinamide strains had pncA mutations between genes 136 and 188, 62.5% of them with an MIC >900 microg/mL. Pyrazinamidase inactivity was not an efficient resistance marker because 60% of pncA-mutated strains maintained enzymatic activity despite displaying good correlation with high resistance levels. Resistant ethambutol strains had embB mutations in codon 306, with MIC >16 microg/mL.  相似文献   

5.
目的评价利福平寡核苷酸探针杂交技术(RIFO杂交)和PCR-限制性片段长度多态性(PCR-RFLP)在结核分枝杆菌(MTB)耐利福平(RIF)和异烟肼(INH)快速检测中的应用价值。方法选取121株北京地区MTB菌株,分别采用RIFO杂交技术和PCR—RFLP检测RIF耐药相关基因rpoB核心区和INH耐药相关基因katG315位点突变,并对所有菌株的rpoB基因核心区进行测序验证。结果RIFO杂交检测发现,91,5%(65/71)的RIF耐药株和92.9%(52/56)的耐多药菌株(至少对RIF和INH耐药)存在rpoB基因核心区突变,而RIF敏感株中未发现突变;RIFO杂交与测序结果完全一致,测序结果中有突变的位点在RIFO杂交中均有相应的野生型杂交信号缺失;PCR-RFLP结果显示,INH耐药株中katG315突变率为60.6%(40/66)。结论rpoB基因核心区可作为RIF耐药检测的分子标志及耐多药的筛选指标;RIFO杂交技术是检测MTB耐RIF的快速、准确的实验方法,具有推广及潜在的临床应用价值;PCR—RFLP可检测出大部分INH耐药株,可作为临床INH耐药性检测的辅助手段。  相似文献   

6.
Implicated as a major mechanism of ethambutol (EMB) resistance in clinical studies of Mycobacterium tuberculosis, mutations in codon 306 of the embB gene (embB306) have also been detected in EMB-susceptible clinical isolates. Other studies have found strong associations between embB306 mutations and multidrug resistance, but not EMB resistance. We performed allelic exchange studies in EMB-susceptible and EMB-resistant clinical M. tuberculosis isolates to identify the role of embB306 mutations in any type of drug resistance. Replacing wild-type embB306 ATG from EMB-susceptible clinical M. tuberculosis strain 210 with embB306 ATA, ATC, CTG, or GTG increased the EMB MIC from 2 microg/ml to 7, 7, 8.5, and 14 microg/ml, respectively. Replacing embB306 ATC or GTG from two high-level EMB-resistant clinical strains with wild-type ATG lowered EMB MICs from 20 microg/ml or 28 microg/ml, respectively, to 3 microg/ml. All parental and isogenic mutant strains had identical isoniazid (INH) and rifampin (RIF) MICs. However, embB306 CTG mutants had growth advantages compared to strain 210 at sub-MICs of INH or RIF in monocultures and at sub-MICs of INH in competition assays. CTG mutants were also more resistant to the additive or synergistic activities of INH, RIF, or EMB used in different combinations. These results demonstrate that embB306 mutations cause an increase in the EMB MIC, a variable degree of EMB resistance, and are necessary but not sufficient for high-level EMB resistance. The unusual growth property of embB306 mutants in other antibiotics suggests that they may be amplified during treatment in humans and that a single mutation may affect antibiotic susceptibility against multiple first-line antibiotics.  相似文献   

7.
The katG, inhA and ahpC genes, in 71 isoniazid (INH)-resistant and 26 INH-susceptible Mycobacterium tuberculosis isolates, from South Korea were examined by sequencing and MspI restriction enzyme analysis. Mutations in the katG 315 alone, katG 315 plus inhA, katG 315 plus ahpC, katG 309 alone, katG 309 plus inhA, inhA alone, and ahpC alone, were detected in 54.9, 2.8, 1.4, 1.4, 1.4, 19.7, and 5.6% of the 71 INH-resistant isolates, respectively. There was no statistically significant difference (p > 0.05) in the frequencies of these mutations for the INH-monoresistant compared with the multidrug-resistant isolates. Mutations in the katG codon 315 were associated with the high-level of INH resistance (MIC, >1 microg/ml), whereas the mutation in the inhA promoter region was associated with the low-level of INH resistance (MIC, >0.2 to 1 microg/ml). The previously undescribed GGT-->GAT (Gly-->Asp) mutation in the katG codon 309 was found in two rifampin, including-multidrug-resistant isolates, but we cannot assess if this is predictive of INH resistance. The sensitivity and specificity of molecular analysis of the katG codon 315 and/or the inhA promoter region were 80.3 and 100%, respectively. Therefore, mutations in these regions are highly predictive of INH resistance in South Korea.  相似文献   

8.
目的建立结核分支杆菌对链霉素(SM)和乙胺丁醇(EMB)耐药基因突变的快速检测方法。方法根据结核分支杆菌标准株H37Rv序列,自行设计针对rpsL和embB基因常见耐药突变的系列寡核苷酸探针,制成膜芯片,并对64例结核分支杆菌临床株的基因突变情况进行检测。结果在34株SM耐药菌中,有25株被检出在rpsL基因分析部位发生突变,检出率为73.5%(25/34),其中23株(67.6%)为第43位密码子AAG→AGG突变,2株(5.9%)为第88位密码子AAG→AGG突变;在32株EMB耐药菌中,有19株在embB基因分析部位发生突变,检出率为59.4%(19/32),其中12株(37.5%)为ATG→GTG突变;6株(18.8%)为ATG→ATA突变;1株(3.1%)为ATG-*CTG突变。膜芯片检出的突变与基因测序结果一致。结论用膜芯片检测结核分支杆菌对链霉素和乙胺丁醇的耐药性,具有较高的特异性和敏感性,可作为常规药敏方法的补充,用于指导开展早期、有效的临床化疗。  相似文献   

9.
10.
Seventy-four Mycobacterium tuberculosis clinical isolates from China were subjected to drug susceptibility testing using ethambutol, isoniazid, rifampin, and ofloxacin. The results revealed that the presence of embB mutations did not correlate with ethambutol resistance but was associated with multiple-drug resistance, especially resistance to both ethambutol and rifampin.  相似文献   

11.
Isoniazid is a first-line antibiotic used in the treatment of infections caused by Mycobacterium tuberculosis. Isoniazid is a prodrug requiring oxidative activation by the catalase-peroxidase hemoprotein, KatG. Resistance to isoniazid can be obtained by point mutations in the katG gene, with one of the most common being a threonine-for-serine substitution at position 315 (S315T). The S315T mutation is found in more than 50% of isoniazid-resistant clinical isolates and results in an approximately 200-fold increase in the MIC of isoniazid compared to that for M. tuberculosis H37Rv. In the present study we investigated the hypothesis that superoxide plays a role in KatG-mediated isoniazid activation. Plumbagin and clofazimine, compounds capable of generating superoxide anion, resulted in a lower MIC of isoniazid for M. tuberculosis H37Rv and a strain carrying the S315T mutation. These agents did not cause as great of an increase in isoniazid susceptibility in the mutant strain when the susceptibilities were assessed by using the inhibitory concentration that causes a 50% decrease in growth. These results provide evidence that superoxide can play a role in isoniazid activation. Since clofazimine alone has antitubercular activity, the observation of synergism between clofazimine and isoniazid raises the interesting possibility of using both drugs in combination to treat M. tuberculosis infections.  相似文献   

12.
Ethambutol (EMB) is a central component of drug regimens used worldwide for the treatment of tuberculosis. To gain insight into the molecular genetic basis of EMB resistance, approximately 2 Mb of five chromosomal regions with 12 genes in 75 epidemiologically unassociated EMB-resistant and 33 EMB-susceptible Mycobacterium tuberculosis strains isolated from human patients were sequenced. Seventy-six percent of EMB-resistant organisms had an amino acid replacement or other molecular change not found in EMB-susceptible strains. Thirty-eight (51%) EMB-resistant isolates had a resistance-associated mutation in only 1 of the 12 genes sequenced. Nineteen EMB-resistant isolates had resistance-associated nucleotide changes that conferred amino acid replacements or upstream potential regulatory region mutations in two or more genes. Most isolates (68%) with resistance-associated mutations in a single gene had nucleotide changes in embB, a gene encoding an arabinosyltransferase involved in cell wall biosynthesis. The majority of these mutations resulted in amino acid replacements at position 306 or 406 of EmbB. Resistance-associated mutations were also identified in several genes recently shown to be upregulated in response to exposure of M. tuberculosis to EMB in vitro, including genes in the iniA operon. Approximately one-fourth of the organisms studied lacked mutations inferred to participate in EMB resistance, a result indicating that one or more genes that mediate resistance to this drug remain to be discovered. Taken together, the results indicate that there are multiple molecular pathways to the EMB resistance phenotype.  相似文献   

13.
Mutations at codon 315 of the katG gene were detected in 312 of 364 (85.7%) isoniazid-resistant Mycobacterium tuberculosis isolates. Seven of 52 (13.5%) isoniazid-resistant isolates with the wild-type Ser315 codon and 10 of 52 (19.2%) isoniazid-resistant isolates with a mutated katG allele had mutation -15C-->T in the promoter of the mabA-inhA operon.  相似文献   

14.
Elucidation of the molecular basis of isoniazid (INH) resistance in Mycobacterium tuberculosis has led to the development of different genotypic approaches for the rapid detection of INH resistance in clinical isolates. Mutations in katG, in particular the S315T substitution, are responsible for INH resistance in a large proportion of tuberculosis cases. However, the frequency of the katG S315T substitution varies with population samples. In this study, 52 epidemiologically unrelated clinical INH-resistant M. tuberculosis isolates collected in Australia were screened for mutations at katG codon 315 and the fabG1-inhA regulatory region. Importantly, 52 INH-sensitive isolates, selected to reflect the geographic and genotypic diversity of the isolates, were also included for comparison. The katG S315T substitution and fabG1-inhA -15 C-to-T mutation were identified in 34 and 13 of the 52 INH-resistant isolates, respectively, and none of the INH-sensitive isolates. Three novel katG mutations, D117A, M257I, and G491C, were identified in three INH-resistant strains with a wild-type katG codon 315, fabG1-inhA regulatory region, and inhA structural gene. When analyzed for possible associations between resistance mechanisms, resistance phenotype, and genotypic groups, it was found that neither the katG S315T nor fabG1-inhA -15 C-to-T mutation clustered with any one genotypic group, but that the -15 C-to-T substitution was associated with isolates with intermediate INH resistance and isolates coresistant to ethionamide. In total, 90.4% of unrelated INH-resistant isolates could be identified by analysis of just two loci: katG315 and the fabG1-inhA regulatory region.  相似文献   

15.
We analyzed 159 Mycobacterium tuberculosis isolates (101 ethambutol [EMB]-resistant strains, 33 multidrug-resistant but not EMB-resistant strains, and 25 fully susceptible strains) for the presence of mutations in embB codon 306 (embB306). Mutations were detected only in EMB-resistant strains (n = 69; 68%), thus confirming the significance of embB306 mutations for the prediction of resistance to EMB.  相似文献   

16.
In this study we designed two pairs of probes for the detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis with real-time PCR procedures. One pair of probes spans the region between codon 510 and 528 of the rpoB gene, and the other one screens for mutation at the regulatory region of the inhA gene. We have evaluated these probes in combination with two other pairs of probes previously described to detect mutations in 20 susceptible and 53 unique resistant M. tuberculosis clinical isolates. We were able to detect nine different mutations affecting five codons of the rpoB gene, two different mutations at codon 315 of the katG gene and a nucleotide substitution (C209T) in the regulatory region of the inhA gene within two hours turnaround.  相似文献   

17.
18.
OBJECTIVES: To characterize 250 drug-resistant Mycobacterium tuberculosis (MTB) isolates in Hong Kong with respect to their drug susceptibility phenotypes to five common anti-tuberculosis drugs (ofloxacin, rifampicin, ethambutol, isoniazid and pyrazinamide) and the relationship between such phenotypes and the patterns of genetic mutations in the corresponding resistance genes (gyrA, rpoB, embB, katG, inhA, ahpC and pncA). METHODS: The MIC values of the aforementioned anti-tuberculosis drugs were determined for each of the 250 drug-resistant MTB clinical isolates by the absolute concentration method. Genetic mutations in the corresponding resistance genes in these MTB isolates were identified by PCR-single-stranded conformation polymorphism/multiplex PCR amplimer conformation analysis (SSCP/MPAC), followed by DNA sequencing of the purified PCR products. RESULTS: Resistance to four or five drugs was commonly observed in these MTB isolates; such phenotypes accounted for over 34% of the 250 isolates. The most frequently observed phenotypes were those involving both rifampicin and isoniazid, with or without additional resistance to the other drugs. A total of 102 novel mutations, which accounted for 80% of all mutation types detected in the 7 resistance genes, were recovered. Correlation between phenotypic and mutational data showed that genetic changes in the gyrA, rpoB and katG genes were more consistently associated with a significant resistance phenotype. Despite this, however, a considerable proportion of resistant MTB isolates were found to harbour no detectable mutations in the corresponding gene loci. CONCLUSIONS: These findings expand the spectrum of potential resistance-related mutations in MTB clinical isolates and help consolidate the framework for the development of molecular methods for delineating the drug susceptibility profiles of MTB isolates in clinical laboratories.  相似文献   

19.
We assessed the performance of MTBDRsl for detection of resistance to fluoroquinolones, aminoglycosides/cyclic peptides, and ethambutol compared to BACTEC MGIT 960 by subjecting simultaneously to both tests 385 phenotypically multidrug-resistant-Mycobacterium tuberculosis isolates from Sao Paulo, Brazil. Discordances were resolved by Sanger sequencing. MTBDRsl correctly detected 99.7% of the multidrug-resistant isolates, 87.8% of the pre-XDR, and 73.9% of the XDR. The assay showed sensitivity of 86.4%, 100%, 85.2% and 76.4% for fluoroquinolones, amikacin/kanamycin, capreomycin and ethambutol, respectively. Specificity was 100% for fluoroquinolones and aminoglycosides/cyclic peptides, and 93.6% for ethambutol. Most fluoroquinolone-discordances were due to mutations in genome regions not targeted by the MTBDRsl v. 1.0: gyrA_H70R and gyrB_R446C, D461N, D449V, and N488D. Capreomycin-resistant isolates with wild-type rrs results on MTBDRsl presented tlyA mutations. MTBDRsl presented good performance for detecting resistance to second-line drugs and ethambutol in clinical isolates. In our setting, multidrug-resistant. isolates presented mutations not targeted by the molecular assay.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号