首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 530 毫秒
1.
Flavivirus outbreaks require fast and reliable diagnostics that can be easily adapted to newly emerging and re-emerging flaviviruses. Due to the serological cross-reactivity among flavivirus antibodies, neutralization tests (NT) are considered the gold standard for sero-diagnostics. Here, we first established wild-type single-round infectious virus replicon particles (VRPs) by packaging a yellow fever virus (YFV) replicon expressing Gaussia luciferase (Gluc) with YFV structural proteins in trans using a double subgenomic Sindbis virus (SINV) replicon. The latter expressed the YFV envelope proteins prME via the first SINV subgenomic promoter and the capsid protein via a second subgenomic SINV promoter. VRPs were produced upon co-electroporation of replicon and packaging RNA. Introduction of single restriction enzyme sites in the packaging construct flanking the prME sequence easily allowed to exchange the prME moiety resulting in chimeric VRPs that have the surface proteins of other flaviviruses including dengue virus 1–-4, Zika virus, West Nile virus, and tick-borne encephalitis virus. Besides comparing the YF-VRP based NT assay to a YF reporter virus NT assay, we analyzed the neutralization efficiencies of different human anti-flavivirus sera or a monoclonal antibody against all established VRPs. The assays were performed in a 96-well high-throughput format setting with Gluc as readout in comparison to classical plaque reduction NTs indicating that the VRP-based NT assays are suitable for high-throughput analyses of neutralizing flavivirus antibodies.  相似文献   

2.
Sindbis virus, the type member of the alpha-viruses, is an enveloped virus containing a nonsegmented positive-strand RNA genome. We show that the nonstructural and the structural genes can function to produce infectious virus particles when they are expressed on two different RNA segments. The nonstructural genes are translated from an RNA in which the structural genes have been replaced by the chloramphenicol acetyltransferase gene [Xiong, C., Levis, R., Shen, P., Schlesinger, S., Rice, C. M. & Huang, H. V. (1989) Science 243, 1188-1191]. The structural genes are encoded in a defective-interfering RNA but are translated from a subgenomic RNA. Both segments contain the cis-acting sequences required for replication and packaging and are copackaged. This type of genome provides a model for an ancestral intermediate between alphaviruses and the multipartite positive-strand RNA viruses of plants. These different viruses show sequence similarities in their replicative proteins and are thought to have evolved from a common ancestor.  相似文献   

3.
BACKGROUND Previously, we have successfully constructed replication-competent hepatitis B virus(HBV) vectors by uncoupling the P open reading frame(ORF) from the preC/C ORF to carefully design the transgene insertion site to overcome the compact organization of the HBV genome and maintain HBV replication competence. Consequently, the replication-competent HBV vectors carrying foreign genes, including pCH-BsdR, carrying blasticidin resistance gene(399 bp),and pCH-hrGFP, carrying humanized renilla green fluorescent protein gene(720 bp), were successfully obtained. However, the replication efficiency of the former is higher but it is tedious to use, while that of the latter is poor and cannot be quantified. Hence, we need to search for a new reporter gene that is convenient and quantifiable for further research.AIM To establish a helpful tool for intracellular HBV replication and anti-viral drugs screening studies.METHODS We utilized the replication-competent HBV viral vectors constructed by our laboratory, combined with the secreted luciferase reporter gene, to construct replication-competent HBV vectors expressing the reporter gene secretory Nanoluc Luciferase(SecNluc). HepG2.TA2-7 cells were transfected with this vector to obtain cell lines with stably secreted HBV particles carrying sec Nluc reporter gene.RESULTS The replication-competent HBV vector carrying the SecNluc reporter gene p CHs NLuc could produce all major viral RNAs and a full set of envelope proteins and achieve high-level secreted luciferase expression. HBV replication intermediates could be produced from this vector. Via transfection with pTRE-sNLuc and selection by hygromycin, we obtained isolated cell clones, named HBV-NLuc-35 cells, which could secrete sec NLuc recombinant viruses, and were sensitive to existing anti-HBV drugs. Using differentiated Hepa RG cells, it was verified that recombinant HBV possessed infectivity.CONCLUSION Our research demonstrated that a replication-competent HBV vector carrying a secreted luciferase transgene possesses replication and expression ability, and the established HBV replication and expression cell lines could stably secrete viral particles carrying sec Nluc reporter gene. More importantly, the cell line and the secreted recombinant viral particles could be used to trace HBV replication or infection.  相似文献   

4.
5.
Kenneth Lundstrom 《Viruses》2014,6(6):2392-2415
Alphavirus vectors have demonstrated high levels of transient heterologous gene expression both in vitro and in vivo and, therefore, possess attractive features for vaccine development. The most commonly used delivery vectors are based on three single-stranded encapsulated alphaviruses, namely Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus. Alphavirus vectors have been applied as replication-deficient recombinant viral particles and, more recently, as replication-proficient particles. Moreover, in vitro transcribed RNA, as well as layered DNA vectors have been applied for immunization. A large number of highly immunogenic viral structural proteins expressed from alphavirus vectors have elicited strong neutralizing antibody responses in multispecies animal models. Furthermore, immunization studies have demonstrated robust protection against challenges with lethal doses of virus in rodents and primates. Similarly, vaccination with alphavirus vectors expressing tumor antigens resulted in prophylactic protection against challenges with tumor-inducing cancerous cells. As certain alphaviruses, such as Chikungunya virus, have been associated with epidemics in animals and humans, attention has also been paid to the development of vaccines against alphaviruses themselves. Recent progress in alphavirus vector development and vaccine technology has allowed conducting clinical trials in humans.  相似文献   

6.
Sindbis virus (SIN) is a small positive-strand enveloped RNA virus that infects a broad range of vertebrate and insect cells. A SIN vector (called dsSIN), designed for transient expression of heterologous RNAs and proteins, was engineered by inserting a second subgenomic mRNA promoter sequence into a nonessential region of the SIN genome. By using this vector, dsSIN recombinants have been constructed that express either bacterial chloramphenicol acetyltransferase, a truncated form of the influenza hemagglutinin (HA), or mini-genes encoding two distinct immunodominant cytotoxic T lymphocyte (CTL) HA epitopes. Infection of murine cell lines with these recombinants resulted in the expression of approximately 10(6)-10(7) chloramphenicol acetyltransferase polypeptides per cell and efficient sensitization of target cells for lysis by appropriate major histocompatibility complex-restricted HA-specific CTL clones in vitro. In addition, priming of an influenza-specific T-cell response was observed after immunizing mice with dsSIN recombinants expressing either a truncated form of HA or the immunodominant influenza CTL epitopes. This SIN expression system allows the generation of high-titered recombinant virus stocks in a matter of days and should facilitate mapping and mutational analysis of class I major histocompatibility complex-restricted T-cell epitopes expressed via the endogenous pathway of antigen processing and presentation.  相似文献   

7.
We are investigating the feasibility of using the positive-strand RNA virus Sindbis virus and its defective interfering (DI) particles as vectors for introducing foreign genes into cells. In previous work we showed by deletion mapping of a cloned cDNA derived from one of the DI RNAs that only nucleotides at the 3' and 5' termini of the RNA are essential for the DI RNA to be amplified after it is transfected into cells in the presence of helper virus. As a first step in developing a vector we replaced 75% of the internal nucleotides of this DI cDNA with foreign sequences including the bacterial chloramphenicol acetyltransferase (CAT; EC 2.3.1.28) gene. DI RNAs transcribed from this cDNA were replicated and packaged by helper Sindbis virus and became a major viral RNA species in infected cells by the third passage after transfection. They were also translated to produce enzymatically active CAT. CAT activity was measured at passage 3 but could also be detected in transfected cells. DI RNAs containing the CAT gene were translated in vivo and in vitro to produce two polypeptides immunoprecipitable by anti-CAT antibodies. One polypeptide was identical in size to the authentic CAT polypeptide; the other was the size expected for a protein initiated at an upstream, viral-specific AUG in frame with the CAT AUG. These studies establish that DI genomes of Sindbis virus can tolerate the insertion and direct the expression of at least one foreign gene.  相似文献   

8.
Replication and packaging of Norwalk virus RNA in cultured mammalian cells   总被引:12,自引:0,他引:12  
Human noroviruses, the most common cause of nonbacterial gastroenteritis, are characterized by high infectivity rate, low infectious dose, and unusually high stability outside the host. However, human norovirus research is hindered by the lack of a cell culture system and a small animal model of infection. Norwalk virus (NV) is the prototype strain of human noroviruses. We report here replication of NV viral RNA and its packaging into virus particles in mammalian cells by intracellular expression of native forms of NV viral RNA devoid of extraneous nucleotide sequences derived from the expression vector by the use of replication-deficient vaccinia virus MVA encoding the bacteriophage T7 RNA polymerase (MVA/T7). Expressed genomic RNA was found to replicate; NV subgenomic RNA was transcribed from genomic RNA by use of NV nonstructural proteins expressed from genomic RNA and was subsequently translated into NV capsid protein VP1. Viral genomic RNA was packaged into virus particles generated in mammalian cells. The cesium chloride (CsCl) density gradient profile of virus particles containing genomic RNA was similar to that of NV purified from stool. These observations indicate that the NV cDNA constructed here is a biologically infectious clone, and that mammalian cells have the ability to replicate NV genomic RNA. This work establishes a mammalian cell-based system for analysis of human norovirus replication and, thus, makes it feasible to investigate antiviral agents in mammalian cells.  相似文献   

9.
10.
The generation of high-titer, helper-free retroviruses by transient transfection has been achieved by using the highly transfectable 293T cell line into which are stably introduced constructs that express retroviral packaging functions. The resulting ecotropic virus packaging cell line BOSC 23 produces infectious retrovirus at > 10(6) infectious units/ml of supernatant within 72 hr after CaPO4-mediated transfection. A stringent assay for replication-competent virus showed that no helper virus was present. The system can produce high titers of retroviral vectors expressing genes that are extremely difficult to propagate at high titer in stable producer lines. This method should facilitate and extend the use of helper-free retroviral gene transfer, as well as be useful for gene therapy.  相似文献   

11.
12.
The production of plant helical virus-like particles (VLPs) via plant-based expression has been problematic with previous studies suggesting that an RNA scaffold may be necessary for their efficient production. To examine this, we compared the accumulation of VLPs from two potexviruses, papaya mosaic virus and alternanthera mosaic virus (AltMV), when the coat proteins were expressed from a replicating potato virus X- based vector (pEff) and a non-replicating vector (pEAQ-HT). Significantly greater quantities of VLPs could be purified when pEff was used. The pEff system was also very efficient at producing VLPs of helical viruses from different virus families. Examination of the RNA content of AltMV and tobacco mosaic virus VLPs produced from pEff revealed the presence of vector-derived RNA sequences, suggesting that the replicating RNA acts as a scaffold for VLP assembly. Cryo-EM analysis of the AltMV VLPs showed they had a structure very similar to that of authentic potexvirus particles. Thus, we conclude that vectors generating replicating forms of RNA, such as pEff, are very efficient for producing helical VLPs.  相似文献   

13.
Alphavirus-based expression vectors: strategies and applications.   总被引:18,自引:0,他引:18       下载免费PDF全文
Alphaviruses are positive-strand RNA viruses that can mediate efficient cytoplasmic gene expression in insect and vertebrate cells. Through recombinant DNA technology, the alphavirus RNA replication machinery has been engineered for high-level expression of heterologous RNAs and proteins. Amplification of replication-competent alpha-virus RNAs (replicons) can be initiated by RNA or DNA transfection and a variety of packaging systems have been developed for producing high titers of infectious viral particles. Although normally cytocidal for vertebrate cells, variants with adaptive mutations allowing noncytopathic replication have been isolated from persistently infected cultures or selected using a dominant selectable marker. Such mutations have been mapped and used to create new alphavirus vectors for noncytopathic gene expression in mammalian cells. These vectors allow long-term expression at moderate levels and complement previous vectors designed for short-term high-level expression. Besides their use for a growing number of basic research applications, recombinant alphavirus RNA replicons may also facilitate genetic vaccination and transient gene therapy.  相似文献   

14.
RNA is a structural element in retrovirus particles   总被引:21,自引:0,他引:21       下载免费PDF全文
A single retroviral protein, Gag, is sufficient for virus particle assembly. While Gag is capable of specifically packaging the genomic RNA into the particle, this RNA species is unnecessary for particle assembly in vivo. In vitro, nucleic acids profoundly enhance the efficiency of assembly by recombinant Gag proteins, apparently by acting as "scaffolding" in the particle. To address the participation of RNA in retrovirus assembly in vivo, we analyzed murine leukemia virus particles that lack genomic RNA because of a deletion in the packaging signal of the viral RNA. We found that these particles contain cellular mRNA in place of genomic RNA. This result was particularly evident when Gag was expressed by using a Semliki Forest virus-derived vector: under these conditions, the Semliki Forest virus vector-directed mRNA became very abundant in the cells and was readily identified in the retroviral virus-like particles. Furthermore, we found that the retroviral cores were disrupted by treatment with RNase. Taken together, the data strongly suggest that RNA is a structural element in retrovirus particles.  相似文献   

15.
目的制备日本血吸虫自杀性RNA颗粒抗原,并研究其在真核细胞内的表达,以期探讨新型抗原的研制方法,为制备抗血吸虫疫苗奠定基础。方法将编码日本血吸虫主要抗原GST、Sj23及编码两种抗原的嵌合基因(GST-Sj23)分别克隆到自杀性RNA疫苗载体SFV3.spider内,以体外转录法制备编码上述三种抗原的mRNA。同法合成编码SFV病毒表膜蛋白质(S蛋白质和C蛋白质)的mRNA,然后将编码上述三种抗原的mRNA分别与编码病毒膜蛋白质的mRNA混合,以电穿孔法导入BHK21细胞,制备含有日本血吸虫GST、Sj23抗原及GST-Sj23嵌合体抗原mRNA的假病毒颗粒。最后,对制备出的假病毒颗粒进行真核细胞感染实验,以间接免疫荧光法验证上述抗原的真核表达情况。结果三种RNA颗粒对BHK21细胞均具有很好的感染性,所编码的蛋白质在BHK21细胞内鉴定高效表达。  相似文献   

16.
Self-propagating, infectious, virus-like particles are generated in animal cell lines transfected with a Semliki Forest virus RNA replicon encoding a single viral structural protein, the vesicular stomatitis virus (VSV) glycoprotein. We show here that these infectious particles, which we call propagating replicons, are potent inducers of neutralizing antibody in animals yet are nonpathogenic. Mice vaccinated with a single dose of the particles generated high titers of VSV-neutralizing antibody and were protected from a subsequent lethal challenge with VSV. Induction of antibody required RNA replication. We also report that additional genes (including an HIV-1 envelope protein gene) expressed from the propagating replicons induced strong cellular immune responses to the corresponding proteins after a single inoculation. Our studies reveal the potential of these particles as simple and safe vaccine vectors inducing strong humoral and cellular immune responses.  相似文献   

17.
In human immunodeficiency virus type 1-infected cells, the efficient expression of viral proteins from unspliced and singly spliced RNAs is dependent on two factors: the presence in the cell of the viral protein Rev and the presence in the viral RNA of the Rev-responsive element (RRE). We show here that the HIV-1 Rev/RRE system can increase the expression of avian leukosis virus (ALV) structural proteins in mammalian cells (D-17 canine osteosarcoma) and promote the release of mature ALV virions from these cells. In this system, the Rev/RRE interaction appears to facilitate the export of full-length unspliced ALV RNA from the nucleus to the cytoplasm, allowing increased production of the ALV structural proteins. Gag protein is produced in the cytoplasm of the ALV-transfected cells even in the absence of a Rev/RRE interaction. However, a functional Rev/RRE interaction increases the amount of Gag present intracellularly and, more strikingly, results in the release of mature ALV particles into the supernatant. RCAS virus containing an RRE is replication-competent in chicken embryo fibroblasts; however, we have been unable to determine whether the particles produced in D-17 cells are as infectious as the particles produced in chicken embryo fibroblasts.  相似文献   

18.
Lundstrom K 《Viruses》2009,1(1):13-25
Alphaviruses are enveloped single stranded RNA viruses, which as gene therapy vectors provide high-level transient gene expression. Semliki Forest virus (SFV), Sindbis virus (SIN) and Venezuelan Equine Encephalitis (VEE) virus have been engineered as efficient replication-deficient and -competent expression vectors. Alphavirus vectors have frequently been used as vehicles for tumor vaccine generation. Moreover, SFV and SIN vectors have been applied for intratumoral injections in animals implanted with tumor xenografts. SIN vectors have demonstrated natural tumor targeting, which might permit systemic vector administration. Another approach for systemic delivery of SFV has been to encapsulate replication-deficient viral particles in liposomes, which can provide passive targeting to tumors and allow repeated administration without host immune responses. This approach has demonstrated safe delivery of encapsulated SFV particles to melanoma and kidney carcinoma patients in a phase I trial. Finally, the prominent neurotropism of alphaviruses make them attractive for the treatment of CNS-related diseases.  相似文献   

19.
Adeno-associated virus (AAV) vector system has several useful advantages with regard to in vitro and in vivo gene transfer. However, their usages have been limited by cumbersome and labor-intensive vector production in the traditional method. To overcome limitations in AAV production, in this report, we explored the possibility of generating AAV packaging cell line, 293T R/C.VA.E2A.E4. cells, by using lentivirus-mediated transduction of Rep/Cap gene of AAV-2, VA RNA, E2A, and E4 genes of Ad5 into 293T cells. In packaging cell lines, it is important that supply of the AAV vector can be stably performed for long time. We showed that the 293T R/C.VA.E2A.E4. cells have stably maintained the transduced components after more than 10 passages and yielded high-titer AAV vectors, and the titer of AAV vectors did not decline even if culture of the packaging cells was continued for long time. The Rep/Cap and E4 gene products caused no remarkable cytotoxicity. The 293T R/C.VA.E2A.E4. cells might be able to tolerate the Rep/Cap and E4 gene products, or have less copy numbers of the Rep/Cap and E4 genes than the traditional method. Moreover, we showed that the AAV vectors derived from 293T R/C.VA.E2A.E4. cells infected the primary human CD34+ haematopoietic progenitor cells with high efficiency (50-70%). In the 293T R/C.VA.E2A.E4. cells, the AAV vectors can be generated by the transfection of one AAV vector plasmid, and large-scale AAV production can be easily achieved. It is important that cumbersome, variable, and costly transfection is avoided.  相似文献   

20.
Kovesdi I  Hedley SJ 《Viruses》2010,2(8):1681-1703
Adenovirus (Ad) vectors, in particular those of the serotype 5, are highly attractive for a wide range of gene therapy, vaccine and virotherapy applications (as discussed in further detail in this issue). Wild type Ad5 virus can replicate in numerous tissue types but to use Ad vectors for therapeutic purposes the viral genome requires modification. In particular, if the viral genome is modified in such a way that the viral life cycle is interfered with, a specific producer cell line is required to provide trans-complementation to overcome the modification and allow viral production. This can occur in two ways; use of a producer cell line that contains specific adenoviral sequences incorporated into the cell genome to trans-complement, or use of a producer cell line that naturally complements for the modified Ad vector genome. This review concentrates on producer cell lines that complement non-replicating adenoviral vectors, starting with the historical HEK293 cell line developed in 1977 for first generation Ad vectors. In addition the problem of replication-competent adenovirus (RCA) contamination in viral preparations from HEK293 cells is addressed leading to the development of alternate cell lines. Furthermore novel cell lines for more complex Ad vectors and alternate serotype Ad vectors are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号