首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-linked spinal and bulbar muscular atrophy (SBMA; Kennedy's disease) is a polyglutamine (polyQ) disease in which the affected males suffer progressive motor neuron degeneration accompanied by signs of androgen insensitivity, such as gynecomastia and reduced fertility. SBMA is caused by CAG repeat expansions in the androgen receptor (AR) gene resulting in the production of AR protein with an extended glutamine tract. SBMA is one of nine polyQ diseases in which polyQ expansion is believed to impart a toxic gain-of-function effect upon the mutant protein, and initiate a cascade of events that culminate in neurodegeneration. However, whether loss of a disease protein's normal function concomitantly contributes to the neurodegeneration remains unanswered. To address this, we examined the role of normal AR function in SBMA by crossing a highly representative AR YAC transgenic mouse model with 100 glutamines (AR100) and a corresponding control (AR20) onto an AR null (testicular feminization; Tfm) background. Absence of endogenous AR protein in AR100Tfm mice had profound effects upon neuromuscular and endocrine-reproductive features of this SBMA mouse model, as AR100Tfm mice displayed accelerated neurodegeneration and severe androgen insensitivity in comparison to AR100 littermates. Reduction in size and number of androgen-sensitive motor neurons in the spinal cord of AR100Tfm mice underscored the importance of AR action for neuronal health and survival. Promoter-reporter assays confirmed that AR transactivation competence diminishes in a polyQ length-dependent fashion. Our studies indicate that SBMA disease pathogenesis, both in the nervous system and the periphery, involves two simultaneous pathways: gain-of-function misfolded protein toxicity and loss of normal protein function.  相似文献   

2.
3.
4.
5.
Abnormal accumulation of disease-causing protein is a commonly observed characteristic in chronic neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and polyglutamine (polyQ) diseases. A therapeutic approach that could selectively eliminate would be a promising remedy for neurodegenerative disorders. Spinal and bulbar muscular atrophy (SBMA), one of the polyQ diseases, is a late-onset motor neuron disease characterized by proximal muscle atrophy, weakness, contraction fasciculations, and bulbar involvement. The pathogenic gene product is polyQ-expanded androgen receptor (AR), which belongs to the heat shock protein (Hsp) 90 client protein family. 17-Allylamino-17-demethoxygeldanamycin (17-AAG), a novel Hsp90 inhibitor, is a new derivative of geldanamycin that shares its important biological activities but shows less toxicity. 17-AAG is now in phase II clinical trials as a potential anti-cancer agent because of its ability to selectively degrade several oncoproteins. We have recently demonstrated the efficacy and safety of 17-AAG in a mouse model of SBMA. The administration of 17-AAG significantly ameliorated polyQ-mediated motor neuron degeneration by reducing the total amount of mutant AR. 17-AAG accomplished the preferential reduction of mutant AR mainly through Hsp90 chaperone complex formation and subsequent proteasome-dependent degradation. 17-AAG induced Hsp70 and Hsp40 in vivo as previously reported; however, its ability to induce HSPs was limited, suggesting that the HSP induction might support the degradation of mutant protein. The ability of 17-AAG to preferentially degrade mutant protein would be directly applicable to SBMA and other neurodegenerative diseases in which the disease-causing proteins also belong to the Hsp90 client protein family. Our proposed therapeutic approach, modulation of Hsp90 function by 17-AAG treatment, has emerged as a candidate for molecular-targeted therapies for neurodegenerative diseases. This review will consider our research findings and discuss the possibility of a clinical application of 17-AAG to SBMA and other neurodegenerative diseases.  相似文献   

6.
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disease caused by the expansion of a polyglutamine repeat within the androgen receptor (AR). We have studied the mutant AR in an in vitro system, and find both aggregation and proteolytic processing of the AR protein to occur in a polyglutamine repeat length-dependent manner. In addition, we find the aberrant metabolism of expanded repeat AR to be coupled to cellular toxicity, indicating a likely molecular basis for the toxic gain of AR function that produces neuronal degeneration in SBMA.   相似文献   

7.
Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease caused by an abnormal expansion of a tandem CAG repeat in exon 1 of the androgen receptor (AR) gene that results in an abnormally long polyglutamine tract (polyQ) in the AR protein. As a result, the mutant AR (ARpolyQ) misfolds, forming cytoplasmic and nuclear aggregates in the affected neurons. Neurotoxicity only appears to be associated with the formation of nuclear aggregates. Thus, improved ARpolyQ cytoplasmic clearance, which indirectly decreases ARpolyQ nuclear accumulation, has beneficial effects on affected motoneurons. In addition, increased ARpolyQ clearance contributes to maintenance of motoneuron proteostasis and viability, preventing the blockage of the proteasome and autophagy pathways that might play a role in the neuropathy in SBMA. The expression of heat shock protein B8 (HspB8), a member of the small heat shock protein family, is highly induced in surviving motoneurons of patients affected by motoneuron diseases, where it seems to participate in the stress response aimed at cell protection. We report here that HspB8 facilitates the autophagic removal of misfolded aggregating species of ARpolyQ. In addition, though HspB8 does not influence p62 and LC3 (two key autophagic molecules) expression, it does prevent p62 bodies formation, and restores the normal autophagic flux in these cells. Interestingly, trehalose, a well-known autophagy stimulator, induces HspB8 expression, suggesting that HspB8 might act as one of the molecular mediators of the proautophagic activity of trehalose. Collectively, these data support the hypothesis that treatments aimed at restoring a normal autophagic flux that result in the more efficient clearance of mutant ARpolyQ might produce beneficial effects in SBMA patients.  相似文献   

8.
9.
Glutamine (Q) expansion diseases are a family of degenerative disorders caused by the lengthening of CAG triplet repeats present in the coding sequences of seemingly unrelated genes whose mutant proteins drive pathogenesis. Despite all the molecular evidence for the genetic basis of these diseases, how mutant poly-Q proteins promote cell death and drive pathogenesis remains controversial. In this report, we show a specific interaction between the mutant androgen receptor (AR), a protein associated with spinal and bulbar muscular atrophy (SBMA), and the nuclear protein PTIP (Pax Transactivation-domain Interacting Protein), a protein with an unusually long Q-rich domain that functions in DNA repair. Upon exposure to ionizing radiation, PTIP localizes to nuclear foci that are sites of DNA damage and repair. However, the expression of poly-Q AR sequesters PTIP away from radiation-induced nuclear foci. This results in sensitivity to DNA-damaging agents and chromosomal instabilities. In a mouse model of SBMA, evidence for DNA damage is detected in muscle cell nuclei and muscular atrophy is accelerated when one copy of the gene encoding PTIP is removed. These data provide a new paradigm for understanding the mechanisms of cellular degeneration observed in poly-Q expansion diseases.  相似文献   

10.
Spinal and bulbar muscular atrophy (SBMA) is a heritable neurodegenerative disease caused by the expansion of a polyglutamine [poly(Q)] repeat within the androgen receptor (AR) protein. We studied SBMA in Drosophila using an N-terminal fragment of the human AR protein. Expression of a pathogenic AR protein with an expanded poly(Q) repeat in Drosophila results in nuclear and cytoplasmic inclusion formation, and cellular degeneration, preferentially in neuronal tissues. We have studied the influence of ubiquitin-dependent modification and the proteasome pathway on neural degeneration and AR protein fragment solubility. Compromising the ubiquitin/proteasome pathway enhances degeneration and decreases poly(Q) protein solubility. Our data further suggest that Hsp70 and the proteasome act in an additive manner to modulate neurodegeneration. Through the over-expression of a mutant of the SUMO-1 activating enzyme Uba2, we further show that poly(Q)-induced degeneration is intensified when the cellular SUMO-1 protein conjugation pathway is altered. These data suggest that post-translational protein modification, including the ubiquitin/proteasome and the SUMO-1 pathways, modulate poly(Q) pathogenesis.  相似文献   

11.
12.
Aggregates, a hallmark of most neurodegenerative diseases, may have different properties, and possibly different roles in neurodegeneration. We analysed ubiquitin-proteasome pathway functions during cytoplasmic aggregation in polyglutamine (polyQ) diseases, using a unique model of motor neuron disease, the SpinoBulbar Muscular Atrophy. The disease, which is linked to a polyQ tract elongation in the androgen receptor (ARpolyQ), has the interesting feature that ARpolyQ aggregation is triggered by the AR ligand, testosterone. Using immortalized motor neurons expressing ARpolyQ, we found that a proteasome reporter, YFPu, accumulated in absence of aggregates; testosterone treatment, which induced ARpolyQ aggregation, allowed the normal clearance of YFPu, suggesting that aggregation contributed to proteasome de-saturation, an effect not related to AR nuclear translocation. Using AR antagonists to modulate the kinetic of ARpolyQ aggregation, we demonstrated that aggregation, by removing the neurotoxic protein from the soluble compartment, protected the proteasome from an excess of misfolded protein to be processed.  相似文献   

13.
14.
Expansion of the polyglutamine (polyQ) stretch in the androgen receptor (AR) protein leads to spinal and bulbar muscular atrophy (SBMA), a neurodegenerative disease characterized by lower motor neuron degeneration. The pathogenic mechanisms underlying SBMA remain unknown, but recent experiments show that inhibition of fast axonal transport (FAT) by polyQ-expanded proteins, including polyQ-AR, represents a new cytoplasmic pathogenic lesion. Using pharmacological, biochemical and cell biological experiments, we found a new pathogenic pathway that is affected in SBMA and results in compromised FAT. PolyQ-AR inhibits FAT in a human cell line and in squid axoplasm through a pathway that involves activation of cJun N-terminal kinase (JNK) activity. Active JNK phosphorylated kinesin-1 heavy chains and inhibited kinesin-1 microtubule-binding activity. JNK inhibitors prevented polyQ-AR-mediated inhibition of FAT and reversed suppression of neurite formation by polyQ-AR. We propose that JNK represents a promising target for therapeutic interventions in SBMA.  相似文献   

15.
16.
Spinal and bulbar muscular atrophy (SBMA) impairs motor function in men and is linked to a CAG repeat mutation in the androgen receptor (AR) gene. Defects in motoneuronal retrograde axonal transport may critically mediate motor dysfunction in SBMA, but the site(s) where AR disrupts transport is unknown. We find deficits in retrograde labeling of spinal motoneurons in both a knock-in (KI) and a myogenic transgenic (TG) mouse model of SBMA. Likewise, live imaging of endosomal trafficking in sciatic nerve axons reveals disease-induced deficits in the flux and run length of retrogradely transported endosomes in both KI and TG males, demonstrating that disease triggered in muscle can impair retrograde transport of cargo in motoneuron axons, possibly via defective retrograde signaling. Supporting the idea of impaired retrograde signaling, we find that vascular endothelial growth factor treatment of diseased muscles reverses the transport/trafficking deficit. Transport velocity is also affected in KI males, suggesting a neurogenic component. These results demonstrate that androgens could act via both cell autonomous and non-cell autonomous mechanisms to disrupt axonal transport in motoneurons affected by SBMA.  相似文献   

17.
Spinal and bulbar muscular atrophy (SBMA) is an adult-onset motor neuron disease, caused by the expansion of a trinucleotide repeat (TNR) in exon 1 of the androgen receptor (AR) gene. This disorder is characterized by degeneration of motor and sensory neurons, proximal muscular atrophy, and endocrine abnormalities, such as gynecomastia and reduced fertility. We describe the development of a transgenic model of SBMA expressing a full-length human AR (hAR) cDNA carrying 65 (AR(65)) or 120 CAG repeats (AR(120)), with widespread expression driven by the cytomegalovirus promoter. Mice carrying the AR(120) transgene displayed behavioral and motor dysfunction, while mice carrying 65 CAG repeats showed a mild phenotype. Progressive muscle weakness and atrophy was observed in AR(120) mice and was associated with the loss of alpha-motor neurons in the spinal cord. There was no evidence of neurodegeneration in other brain structures. Motor dysfunction was observed in both male and female animals, showing that in SBMA the polyglutamine repeat expansion causes a dominant gain-of-function mutation in the AR. The male mice displayed a progressive reduction in sperm production consistent with testis defects reported in human patients. These mice represent the first model to reproduce the key features of SBMA, making them a useful resource for characterizing disease progression, and for testing therapeutic strategies for both polyglutamine and motor neuron diseases.  相似文献   

18.
Spinal and bulbar muscular atrophy is an X-linked motor neuronopathy caused by the expansion of an unstable CAG repeat in the coding region of the androgen receptor (AR) gene. Nuclear inclusions of the mutant AR protein have been shown to occur in the spinal motor neurons of spinal and bulbar muscular atrophy (Li M, Kobayashi Y, Merry D, Tanaka F, Doyu M, Hashizume Y, Fischbeck KH, Sobue G: Nuclear inclusions in spinal and bulbar muscular atrophy. Ann Neurol 1998 (in press)). In this study, we demonstrate the tissue-specific distribution, immunochemical features, and fine structure of nuclear inclusions of spinal and bulbar muscular atrophy. Nuclear inclusions were observed in affected spinal and brainstem motor neurons, but not in other, nonaffected neural tissues. Similar nuclear inclusions occurred in nonneural tissues including scrotal skin, dermis, kidney, heart, and testis, but not in the spleen, liver, and muscle. These inclusions had similar epitope features detectable by antibodies that recognize a small portion of the N-terminus of the AR protein only, and they were ubiquitinated. Electron microscopic immunohistochemistry showed dense aggregates of AR-positive granular material without limiting membrane, both in the neural and nonneural inclusions. These findings indicate that nuclear inclusions of AR protein are present in selected nonneural tissues as well as in neurons that degenerate in spinal and bulbar muscular atrophy, suggesting that a common mechanism underlies in the formation of neural and nonneural nuclear inclusions.  相似文献   

19.
Spinal and bulbar muscular atrophy (SBMA) is associated with an abnormal expansion of the (CAG)(n)repeat in the androgen receptor (AR) gene. Similar mutations have been reported in other proteins that cause neurodegenerative disorders. The CAG-coded elongated polyglutamine (polyGln) tracts induce the formation of neuronal intracellular aggregates. We have produced a model to study the effects of potentially 'neurotoxic' aggregates in SBMA using immortalized motoneuronal cells (NSC34) transfected with AR containing polyGln repeats of different sizes [(AR.Q(n = 0, 23 or 46)]. Using chimeras of AR.Q(n) and the green fluorescent protein (GFP), we have shown that aggregate formation occurs when the polyGln tract is elongated and AR is activated by androgens. In NSC34 cells co-expressing the AR with the polyGln of pathological length (AR.Q46) and the GFP we have noted the presence of several dystrophic neurites. Cell viability analyses have shown a reduced growth/survival rate in NSC34 expressing the AR.Q46, whereas testosterone treatment partially counteracted both cell death and the formation of dystrophic neurites. These observations indicate the lack of correlation between aggregate formation and cell survival, and suggest that neuronal degeneration in SBMA might be secondary to axonal/dendritic insults.  相似文献   

20.
Spinal and bulbar muscular atrophy (SBMA) is one of a growing number of neurodegenerative diseases caused by a polyglutamine-encoding CAG trinucleotide repeat expansion, and is caused by an expansion within exon 1 of the androgen receptor (AR) gene. The family of polyglutamine diseases is characterized by the presence of ubiquitinated, intranuclear inclusions associated with molecular chaperones and 26S proteasome components, although the role of these inclusions in the pathogenesis of polyglutamine diseases remains unclear. The over-expression of molecular chaperones of the Hsp70 and Hsp40 families has been shown to modulate inclusion frequency and cellular toxicity. We developed a cell culture system which enables the quantitative analysis of the effects of molecular chaperones on the biochemical properties of an expanded repeat AR. Using this approach, we demonstrate that Hsp70 and its co-chaperone Hsp40 not only increase expanded repeat AR solubility, but function to enhance the degradation of expanded repeat AR through the proteasome. Furthermore, our studies indicate that these molecular chaperones significantly decrease the half-life of an expanded repeat AR. Molecular chaperone enhancement of protein degradation points to the modulation of molecular chaperones as a potential therapeutic target for polyglutamine diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号