首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.

Background

To develop a novel therapeutic strategy for human pancreatic cancer using a midkine promoter-based conditionally replicating adenovirus.

Methods

We examined midkine mRNA expression and midkine protein expression by seven human pancreatic cancer cell lines (AsPC-1, BxPC-3, CFPAC-1, HPAC, MIAPaCa-2, PANC-1, and Suit-2), as well as by non-cancerous pancreatic tissue and pancreatic cancers. Midkine promoter activity was measured in cancer cell lines by the dual luciferase reporter assay. Adenoviral transduction efficiency was assessed by fluorescent staining of cancer cell lines using adenovirus type 5 containing the green fluorescent protein gene (Ad5GFP). Replication of adenovirus type 5 containing the 0.6 kb midkne promoter (Ad5MK) was assessed by the detection of E1 protein in cancer cell lines. The cytotoxicity of Ad5MK for cancer cells was evaluated from the extent of growth inhibition after viral infection. Infection and replication were also assessed in nude mice with subcutaneous Suit-2 tumors by intratumoral injection of Ad5MK, Ad5GFP, or vehicle. E1a mRNA expression in the treated tumors and expression of the replication-specific adenoviral hexon protein were evaluated. Finally, the anti-tumor activity of Ad5MK against intraperitoneal xenografts of Suit-2 pancreatic cancer cells was examined after intraperitoneal injection of the virus.

Results

Both midkine mRNA expression and midkine protein expression were strong in AsPC-1 and CFPAC-1 cell liens, moderate in BxPC-3, HPAC, and Suit-2 cell lines, and weak in PANC-1 and MIAPaCa-2 cell lines. Expression of midkine mRNA was significantly stronger in pancreatic cancers than in non-cancerous pancreatic tissues. The relative luciferase activity mediated by the 0.6 kb midkne fragment in AsPC-1, PANC-1, and Suit-2 cell lines was approximately 6 to 20 times greater than that in midkne-negative MIAPaCa-2 cell lines. Pancreatic cancer cell lines exhibited a heterogeneous adenoviral transduction profile. E1A expression was higher in cell lines with strong midkine expression than in cell lines with weak midkine expression. Ad5MK showed much greater cytotoxicity for midkine-expressing Suit-2 and PANC-1 cell lines than for midkine-negative MIAPaCa-2 cell lines. In the Suit-2 subcutaneous xenograft model, expression of E1A was detected in Ad5MK-treated tumors, but not in untreated and Ad5GFP-treated tumors. In the Suit-2 intraperitoneal xenograft model, the Ad5MK group survived for significantly longer than the Ad5GFP, PBS, and untreated groups.

Conclusion

Ad5MK has an anti-tumor effect against human pancreatic cancer cell lines that express midkine mRNA. Midkine promoter-based conditionally replicative adenovirus might be a promising new gene therapy for pancreatic cancer.  相似文献   

4.
Mutations or loss of heterozygosity of p53 are detected in approximately 50% of bladder cancers. E1B-55 kD-deleted adenovirus has been shown to kill tumour cells with defective p53 function while sparing normal cells. Here, we examined the cytolytic effect and replication of E1B-55 kD-deleted adenovirus, designated Ad5WS1, on human bladder cancer cell lines with various p53 status. Ad5WS1 caused more severe cytolytic effect and replicated more efficiently in J82 and TCC-SUP bladder cancer cells carrying mutant p53 compared with TSGH-8301 and BFTC-905 bladder cancer cells retaining wild-type p53. Introduction of dominant negative p53 into BFTC-905 cells rendered them more susceptible to Ad5WS1-induced cytolysis. Furthermore, cells susceptible to lysis caused by Ad5WS1 were not attributable to their greater infectability by adenovirus. Finally, Ad5WS1 suppressed the growth of TCC-SUP bladder tumour xenografts, which could be augmented when combined with replication-defective adenoviral vector encoding kringles 1-5 of plasminogen (K1-5), an angiogenic inhibitor. Taken together, our results show that E1B-55 kD-deleted adenovirus replicates and hence lyses bladder cancer cells with mutant p53 much more efficient than those with wild-type p53. Thus, E1B-deleted adenovirus may have therapeutic potential, especially in combination with adenoviral vector expressing K1-5, for the treatment of bladder cancer.  相似文献   

5.
D C Yu  Y Chen  M Seng  J Dilley  D R Henderson 《Cancer research》1999,59(17):4200-4203
CV787, a novel highly prostate-specific replication-competent adenovirus with improved efficacy, was constructed. CV787 contains the prostate-specific rat probasin promoter, driving the adenovirus type 5 (Ad5) E1A gene, and the human prostate-specific enhancer/promoter, driving the E1B gene. To improve efficacy, we constructed CV787 such that it also contains the entire Ad5 E3 region. CV787 replicates in prostate-specific antigen (PSA)+ cells as well as wild-type adenovirus, but in PSA- cells, CV787 replicates 10(4)-10(5) times less efficiently. CV787 destroys PSA+ prostate cancer cells 10,000 times more efficiently than PSA- cells. Incorporation of the Ad5 E3 region significantly improves the target cell killing ability or efficacy of CV787. In nu/nu mice carrying s.c. LNCaP xenografts, a single i.v. tail vein injection of CV787 eliminates 300-mm3 tumors within 4 weeks. CV787 could be a powerful therapeutic for human metastatic prostate cancer.  相似文献   

6.
7.
PURPOSE: Oncolytic adenoviruses are attractive therapeutics for cancer because they selectively replicate in tumors. However, targeting tumor metastasis remains a major challenge for current virotherapy for cancer. Oct-3/4 is specifically expressed in embryonic stem cells and tumor cells. Oct-3/4 highly expressed in cancer cells may be a potential target for cancer therapy. We developed an E1B-55 kDa-deleted adenovirus, designated Ad.9OC, driven by nine copies of Oct-3/4 response element for treating Oct-3/4-expressing metastatic bladder cancer. EXPERIMENTAL DESIGN: We examined the expression of Oct-3/4 in human bladder tumor tissues and bladder cancer cell lines. We also evaluated the cytolytic and antitumor effects of Ad.9OC on bladder cancer cells in vitro and in vivo. RESULTS: Oct-3/4 expression was detected in bladder cancer cell lines, as well as in human bladder tumor tissues. Notably, Oct-3/4 expression was higher in metastatic compared with nonmetastatic bladder cancer cells. Ad.9OC induced higher cytolytic activity in metastatic bladder cancer cells than in their nonmetastatic counterparts, whereas it did not cause cytotoxicity in normal cells. Pharmacologic and short hairpin RNA-mediated Oct-3/4 inhibition rendered bladder cancer cells more resistant to Ad.9OC-induced cytolysis. Replication of Ad.9OC was detected in murine bladder cancer cells and bladder tumor tissues. We also showed the effectiveness of Ad.9OC for treating bladder cancer in subcutaneous, as well as metastatic, bladder tumor models. CONCLUSIONS: Ad.9OC may have therapeutic potential for treating Oct-3/4-expressing tumors. Especially, metastatic bladder tumors are good target for Ad.9OC treatment. Because Oct-3/4 is expressed in a broad spectrum of cancers, Ad.9OC may be broadly applicable.  相似文献   

8.
Oncolytic virotherapy using adenoviruses has potential for therapeutic benefits in malignant mesothelioma. However, the downregulation of coxsackie virus/adenovirus receptor (CAR) expression is frequently a critical rate‐limiting factor that impedes the effectiveness of adenovirus serotype 5 (Ad5)‐based vectors in many cancer types. We evaluated CAR (Ad5 receptor) and CD46 (adenovirus serotype 35 [Ad35] receptor) expression in six human malignant mesothelioma cell lines. Very low CAR expression was observed in MSTO‐211H and NCI‐H2052 cells, whereas the other cell lines showed strong expression. In contrast, CD46 was highly expressed in all mesothelioma cell lines. On this basis, we replaced the CAR binding sequence of Ad5 with the CD46 binding sequence of Ad35 in the replication‐defective adenoviruses and the tumor‐specific midkine promoter‐regulated oncolytic adenoviruses. By this fiber modification, the infectivity, virus progeny production, and in vitro cytocidal effects of the adenoviruses were significantly enhanced in low CAR‐expressing MSTO‐211H and NCI‐H2052 cells, also resulting in similar or even higher levels in high CAR‐expressing mesothelioma cell lines. In MSTO‐211H xenograft models, the fiber‐modified oncolytic adenovirus significantly enhanced antitumor effect compared to its equivalent Ad5‐based vector. Our data demonstrate that Ad35 fiber modification of binding tropism in a midkine promoter‐regulated oncolytic Ad5 vector confers transductional targeting to oncolytic adenoviruses, thereby facilitating more effective treatment of malignant mesothelioma.  相似文献   

9.
目的:构建并制备survivin及hTERT双启动子调控的条件复制腺病毒,探讨其特异性溶瘤作用。方法:PCR方法分别扩增肿瘤特异性survivin及hTERT启动子,分别克隆入腺病毒载体pXCl的两个复制必需基因E1A和E1B序列上游启动子区,构建出双肿瘤特异性启动子调控的条件复制腺病毒载体pXCl-SP—TP;脂质体法与pBHGE3骨架质粒共转染293E细胞进行重组腺病毒包装,稀释法测定腺病毒滴度;应用MTT、活细胞计数等方法观察其对肝癌细胞HepG2的特异性溶瘤作用并以正常人的血管内皮细胞ECV304作为对照。结果:测序及双酶切鉴定结果证实,成功构建了双肿瘤特异性启动子调控复制腺病毒载体;在293E细胞中获得了重组腺病毒Ad—sP—TP,滴度测定显示病毒滴度达到3.9×10^10TCID50/ml;MTT结果显示,Ad—sP—TP可有效抑制肝癌细胞增殖而对正常细胞无增殖抑制作用;活细胞计数及细胞形态观察结果显示,重组腺病毒在肝癌细胞中选择性复制并发挥溶细胞作用。结论:双启动子调控的腺病毒具有显著的溶瘤作用但对正常人血管内皮细胞不发挥溶细胞作用,实验结果为肝癌靶向治疗提供了更为良好的条件复制型病毒载体及新的治疗策略。  相似文献   

10.
Adenoviruses mediated cancer gene therapies are widely investigated and show a promising effect on cancer treatment. However, efficient gene transfer varies among different cancer cell lines based on the expression of coxsakie adenovirus receptor (CAR). Hep27, a member of dehydrogenase/reductase (SDR) family, can bind to Mdm2, resulting in the attenuation of Mdm2-mediated p53 degradation. Here we constructed a fiber chimeric adenovirus carrying hep27 gene (F5/35-ZD55-Hep27), in which the fiber protein of 5-serotype adenovirus (Ad5) was substituted by that of 35-serotype adenovirus (Ad35), aiming to facilitate the infection for renal cancer cells and develop the role of hep27 in cancer therapy. We evaluated the CAR and CD46 (a membrane cofactor protein for Ad35) expression in four kinds of renal cancer cells and assessed the relationship between receptors and infection efficiency. 5/35 fiber-modified adenovirus had a much promising infectivity compared with Ad5-based vector in renal cancer cells. F5/35-ZD55-Hep27 had enhanced antitumor activity against human renal cancer cells compared to the other groups. Further, hep27 mediated p53 and cleaved-PARP upregulation and mdm2 downregulation was involved and caused increased apoptosis. Moreover, F5/35-ZD55-Hep27 significantly suppressed tumor growth in subcutaneous renal cancer cell xenograft models. Our data demonstrated that 5/35 fiber-modified adenovirus F5/35-ZD55-Hep27 transferred into renal cancers efficiently and increased p53 to induce cancer cell apoptosis. Thus 5/35 fiber-modified adenoviral vector F5/35-ZD55-Hep27 might a promising vector and antitumor reagent for renal cancer gene therapy.  相似文献   

11.
12.
To overcome the limited clinical efficacy of conditionally replicative adenoviruses (CRAds), we investigated the effects of combination therapy with gemcitabine (GEM) and the hTERT-promoter-dependent CRAd (hTERT-CRAd), Ad5/3hTERTE1. This combination therapy exhibited enhanced cytotoxic effects on pancreatic cancer both in vitro and in vivo. Furthermore, we revealed that this enhancement effect was due to the multiple bidirectional interactions between hTERT-CRAd and GEM. The GEM-sensitizing effect of E1 expression derived from hTERT-CRAd, and the enhancement effect by GEM on hTERT promoter activity which led to the increase of adenovirus E1 and viral infectivity. This combination therapy may be a promising therapeutic approach for pancreatic cancer.  相似文献   

13.
Ren XW  Liang M  Meng X  Ye X  Ma H  Zhao Y  Guo J  Cai N  Chen HZ  Ye SL  Hu F 《Cancer gene therapy》2006,13(2):159-168
We constructed a novel hepatocellular carcinoma-specific conditionally replicative adenovirus (CRAd). This adenovirus, designated Ad.HS4.AFP.E1A/TRAIL, expresses E1A to mediate viral replication and TRAIL to enhance HCC-killing efficacy under the control of a modified AFP promoter. An insulator HS-4 was placed in front of the AFP promoter to enhance the fidelity of the heterologous promoter. This virus was shown to have specific cytolytic activity in AFP-expressing HCC cells in vitro. Furthermore, the replication efficiency of Ad.HS4.AFP.E1A/TRAIL correlated well with AFP expression of the host cells, showing a 100-fold and 1 000 000-fold decrease in the low-and non-AFP-expressing HCC cells, respectively, compared to the high AFP-expressing HCC cells. An increase in mRNA of TRAIL and the elevated Caspase-3 activity were also observed in Ad.HS4.AFP.E1A/TRAIL-infected HCC cells. These results indicated that TRAIL expression from the viral vector activated the Caspase-3 enzymatic capacity and the HCC cells were sensitive to TRAIL. In vivo, Ad.HS4.AFP.E1A/TRAIL effectively prevented the growth of low AFP-expressing BEL-7404 xenografts. These results indicate that Ad.HS4.AFP.E1A/TRAIL could provide a new strategy of gene therapy for HCC.  相似文献   

14.
15.
Zou W  Luo C  Zhang Z  Liu J  Gu J  Pei Z  Qian C  Liu X 《Oncogene》2004,23(2):457-464
  相似文献   

16.
Glioblastoma multiforme (GBM) is the most aggressive brain tumor, and patients rarely survive for more than 2 years. Gene therapy may offer new treatment options and improve the prognosis for patients with GBM. Adenovirus-mediated gene therapy strategies for brain tumors have been limited by inefficient gene transfer due to low expression of the adenovirus serotype 5 (Ad5) receptor. We have used an adenovirus vector that specifically replicates in tumor cells and uses an Ad5 capsid and the adenovirus serotype (Ad35) fiber for efficient infection of malignant tumor cells. This vector also expresses adenovirus E1A and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a tumor-specific manner. Here, we show that this oncolytic vector (Ad5/Ad35.IR-E1A/TRAIL) efficiently infects the GBM tumor cell lines SF767, T98G, and U-87 MG. Tumor cell killing was markedly enhanced with Ad5/Ad35.IR-E1A/TRAIL compared with wild-type Ad5 and Ad35 virus or Ad5/Ad35.IR-E1A- vectors without TRAIL expression in vitro. In vivo experiments using s.c. xenografted U-87 MG cells in NOD/SCID mice showed a significant growth delay of tumors after i.t. injection of Ad5/Ad35.IR-E1A/TRAIL, whereas adenovirus wild-type injections showed only marginal or no effect. Our findings indicate that the use of a capsid-modified adenoviral vector, in combination with TRAIL expression, is a promising novel approach for gene therapy of glioblastoma.  相似文献   

17.

Background

To develop a novel therapeutic strategy for human pancreatic cancer using a midkine promoter-based conditionally replicating adenovirus.

Methods

We examined midkine mRNA expression and midkine protein expression by seven human pancreatic cancer cell lines (AsPC-1, BxPC-3, CFPAC-1, HPAC, MIAPaCa-2, PANC-1, and Suit-2), as well as by non-cancerous pancreatic tissue and pancreatic cancers. Midkine promoter activity was measured in cancer cell lines by the dual luciferase reporter assay. Adenoviral transduction efficiency was assessed by fluorescent staining of cancer cell lines using adenovirus type 5 containing the green fluorescent protein gene (Ad5GFP). Replication of adenovirus type 5 containing the 0.6 kb midkne promoter (Ad5MK) was assessed by the detection of E1 protein in cancer cell lines. The cytotoxicity of Ad5MK for cancer cells was evaluated from the extent of growth inhibition after viral infection. Infection and replication were also assessed in nude mice with subcutaneous Suit-2 tumors by intratumoral injection of Ad5MK, Ad5GFP, or vehicle. E1a mRNA expression in the treated tumors and expression of the replication-specific adenoviral hexon protein were evaluated. Finally, the anti-tumor activity of Ad5MK against intraperitoneal xenografts of Suit-2 pancreatic cancer cells was examined after intraperitoneal injection of the virus.

Results

Both midkine mRNA expression and midkine protein expression were strong in AsPC-1 and CFPAC-1 cell liens, moderate in BxPC-3, HPAC, and Suit-2 cell lines, and weak in PANC-1 and MIAPaCa-2 cell lines. Expression of midkine mRNA was significantly stronger in pancreatic cancers than in non-cancerous pancreatic tissues. The relative luciferase activity mediated by the 0.6 kb midkne fragment in AsPC-1, PANC-1, and Suit-2 cell lines was approximately 6 to 20 times greater than that in midkne-negative MIAPaCa-2 cell lines. Pancreatic cancer cell lines exhibited a heterogeneous adenoviral transduction profile. E1A expression was higher in cell lines with strong midkine expression than in cell lines with weak midkine expression. Ad5MK showed much greater cytotoxicity for midkine-expressing Suit-2 and PANC-1 cell lines than for midkine-negative MIAPaCa-2 cell lines. In the Suit-2 subcutaneous xenograft model, expression of E1A was detected in Ad5MK-treated tumors, but not in untreated and Ad5GFP-treated tumors. In the Suit-2 intraperitoneal xenograft model, the Ad5MK group survived for significantly longer than the Ad5GFP, PBS, and untreated groups.

Conclusion

Ad5MK has an anti-tumor effect against human pancreatic cancer cell lines that express midkine mRNA. Midkine promoter-based conditionally replicative adenovirus might be a promising new gene therapy for pancreatic cancer.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号