首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 171 毫秒
1.
目的观察不同发育时期小鼠胚胎心流出道心内膜垫的发育过程。方法对胚龄9-12d小鼠胚胎心脏连续切片进行HE染色和免疫组化染色。结果胚龄10d,流出道远端心胶质内开始观察到间充质细胞。胚龄11d,两侧流出道心内膜垫形成,心内膜垫内部分间充质细胞染色呈α-平滑肌肌动蛋白(α-SMA)阳性。胚龄12d,两侧流出道心内膜垫内部分间充质细胞聚集形成致密漩涡状结构,随着心内膜垫融合,两侧漩涡状结构融合。结论小鼠胚胎流出道心内膜垫形成于胚胎发育第11天,第12天融合,间充质细胞参与心内膜垫融合。  相似文献   

2.
目的探讨小鼠胚胎心脏房室管分隔、重塑过程中房室管心肌与心外膜的变化规律。方法选用抗心肌肌球蛋白轻链Ⅱa(MLC2a)抗体、抗心肌肌球蛋白轻链Ⅱ(MLC-2)抗体、抗转录因子Tbx3(Tbx3)抗体、抗淋巴增强因子1(Lef1)抗体,对25只胚龄10~15 d小鼠胚胎切片进行免疫组织化学和免疫荧光染色。结果胚龄10~15 d,房室管心肌呈MLC2a阳性、MLC-2阴性,同时表达Tbx3。胚龄11~12 d,心外膜形成。胚龄12~13 d,两侧房室管心内膜垫彼此接近并融合形成房室瓣,心外膜来源间充质细胞数量增加,部分表达Lef1。胚龄13 d开始,部分心外膜来源间充质细胞穿过心肌延伸入壁侧房室瓣。胚龄15 d,房室瓣膜基部直接与MLC2a阳性的房室管心肌相连。结论小鼠胚胎房室管心肌发育为成体心脏房室环瓣膜基部的心肌;心外膜通过产生间充质细胞参与房室瓣的形成。  相似文献   

3.
目的 探讨小鼠胚胎心神经嵴细胞的形成、分布模式及其在心血管系统发育过程中的作用。方法 选用抗细胞视黄酸结合蛋白1(CRABP1)、抗α-平滑肌肌动蛋白(α-SMA)、抗心肌肌球蛋白重链(MHC)、抗胰岛因子1(Isl-1)抗体,对45只胚龄8~12d小鼠胚胎连续切片进行免疫
组织化学染色。结果 胚龄8d,CRABP1在神经褶的外胚层未见阳性表达。胚龄8.5~9d,在心管与鳃弓水平,神经褶开始出现CRABP1阳性细胞,且有部分细胞从神经褶背侧分离进入邻近间充质。胚龄10d,神经管两侧间充质内的CRABP1阳性细胞迁移至鳃弓、弓动脉壁内皮周围以及流出道
心胶质内。胚龄11~12d,弓动脉内皮周围、流出道心内膜垫内CRABP1表达明显下降,但弓动脉管壁α-SMA阳性平滑肌细胞数量增加。主肺动脉隔及其分隔形成的升主动脉和肺动脉干管壁内均可见Isl-1阳性细胞,但未见CRABP1表达。结论 小鼠胚胎CRABP1阳性神经嵴细胞形成的时间窗
限定在胚龄8.5~9d。胚龄10d后,CRABP1阳性神经嵴细胞经过迁移,参与弓动脉中膜平滑肌和流出道心内膜垫的形成。CRABP1不能用于标记迁移后的神经嵴细胞。  相似文献   

4.
石锐  景雅  师亮  杨艳萍  刘慧霞  宋励 《解剖学报》2015,46(2):238-243
目的 探讨小鼠胚胎心脏工作心肌和传导系心肌在形态发生和分化过程中核纤层蛋白A(lamin A)、转录因子TBX3、缝隙连接蛋白43(Cx43)的表达特点。
方法 用抗α-平滑肌肌动蛋白(α-SMA)、抗心肌肌球蛋白重链(MHC)、抗α-横纹肌肌动蛋白(α-SCA)、抗胰岛因子1(ISL-1)、抗Cx43、抗lamin A和抗转录因子TBX3,对46只胚龄8~15d小鼠胚胎心脏连续石蜡切片进行免疫组织化学及免疫荧光染色。 结果 胚龄9d,TBX3在原始心管的表达集中在房室管壁。10d始,TBX3阳性的表达逐渐从房室管壁沿着静脉瓣延续至窦房结、右心房背侧壁和房间隔。胚龄12~13d,TBX3阳性表达结构构成了中枢传导系雏形,包括窦房结、左右静脉瓣、房间隔、房室管、房室结和房室束。Cx43首先在胚龄9d的左心室腹侧壁和部分小梁心肌出现弱阳性表达,随着发育,Cx43逐渐在TBX3阴性的心房、心室工作心肌表达。Lamin A首先出现在10d房室管心内膜垫间充质细胞和左心室部分小梁心肌,随后在右心室小梁心肌出现,至胚龄15d,心室和心房小梁心肌及房室瓣均可见lamin A阳性表达,但致密心肌和中枢传导系心肌持续呈阴性表达。 结论 中枢传导系统雏形在小鼠胚龄13d形成,呈TBX3阳性,Cx43阴性的互补性表达。致密心肌和中枢传导系心肌在15d仍为lamin A表达阴性,说明此部分心肌分化成熟较晚。  相似文献   

5.
目的探讨小鼠胚胎心脏流出道嵴内α-平滑肌肌动蛋白(α-SMA)阳性细胞的来源及流出道嵴融合时间充质细胞超微结构的变化。方法用抗α-SMA、抗α-横纹肌肌动蛋白(α-SCA)单克隆抗体、PlexinA2探针,对胚龄10~14d小鼠胚胎心脏切片进行免疫组织化学和原位杂交染色;透射电镜观察胚龄12.5d时小鼠心流出道嵴的融合过程。结果胚龄10~11d,小鼠神经管及其周围、动脉囊和弓动脉壁可见PlexinA2阳性细胞,并沿动脉囊壁迁入流出道嵴内,部分细胞同时表达α-SMA。胚龄12d,PlexinA2阳性细胞分布在脊神经节、咽前间充质、主肺动脉隔以及主、肺动脉壁。主肺动脉隔显α-SMA强阳性,但动脉壁仅见少量α-SMA阳性细胞。胚龄12.5d,流出道嵴内致密间充质细胞团形成并开始融合,PlexinA2表达较弱,α-SMA表达呈强阳性。在流出道嵴融合开始后,嵴表面的内皮细胞带形成继而断裂消失,由含微丝少、排列稀疏的间充质细胞取代。两侧致密细胞团逐渐靠拢、融合。有的间充质细胞内含较多线粒体和微丝,细胞之间形成细胞连接点;有的间充质细胞含微丝少,细胞膜间断融合。结论流出道心内膜垫内α-SMA阳性间充质细胞来自神经嵴;内皮细胞-间充质细胞转化可能参与了流出道嵴融合;致密细胞团内间充质细胞富含微丝束和细胞连接点或发生细胞膜融合有助于流出道嵴的融合。  相似文献   

6.
目的:探讨后第二生心区isll阳性细胞的分布规律以及小鼠胚胎心房的发育。方法:对胚龄9~15 d小鼠胚胎心石蜡切片进行α-平滑肌肌动蛋白(α-SMA)、心肌肌球蛋白重链(MHC)、isl1和Nkx2.5免疫组织化学显色。结果:胚龄9~12 d,isl1阳性细胞主要聚集于咽前间充质、心包腔背侧壁的脏壁中胚层、心背系膜以及窦房结、腔静脉瓣。此期心背侧间充质突(DMP)形成,并与房室管心内膜垫、原发隔融合。在胚龄13 d,isl1阳性细胞局限于心包腔的右腔静脉壁与窦房结。胚龄13~15 d,DMP与心包内腔静脉、冠状窦壁进行心肌化。结论:后第二生心区isl1阳性细胞在胚胎不同发育时期分布模式不同,参与心房的发育。DMP来源于后第二生心区,参与原发孔的封闭。DMP的心肌化是由于原发隔的心肌细胞迁移而完成。  相似文献   

7.
目的 探讨小鼠胚胎心传导系的发生机制。方法 用抗心肌肌球蛋白重链(MHC)、抗超极化激活环核苷酸门控阳离子通道4(HCN4)、抗缝隙连接蛋白43(CX43)和抗平足蛋白(podoplanin)抗体,对40只胚龄9~16d小鼠胚胎心进行连续石蜡切片并免疫组织化学或免疫荧光染色。结果 胚龄9d,较强的HCN4阳性表达集中在MHC阴性的静脉窦壁,随心脏发育,HCN4较强阳性表达逐渐向窦房结转移。胚龄11d开始,CX43阴性表达显示部位特异性。CX43阴性染色经窦房结沿右心房背侧壁和左、右静脉瓣向房室管背侧壁延伸。胚龄13d,左、右静脉瓣与房间隔底部融合后,进一步延续为房室管背侧壁发育中的CX43阴性染色的房室结,继而与室间隔顶部CX43阴性的房室束相连。胚龄9~10d,在MHC阳性心肌、心包腔背侧壁脏壁中胚层心肌前体细胞及静脉窦周间充质均显示podoplanin阳性表达。胚龄11~13d,podoplanin阳性间充质细胞沿心脏外表面扩展形成podoplanin阳性间皮样心外膜。结论 心脏发育早期,主起搏点位于静脉窦壁,起搏电位的产生早于收缩功能的发生。CX43阴性心肌是发育中的心传导系心肌,在胚龄11d即可观察到心传导系早期雏形。podoplanin参与促进心肌前体细胞向心肌细胞的分化。  相似文献   

8.
目的 探讨小鼠胚胎心传导系的发生机制. 方法 用抗心肌肌球蛋白重链(MHC)、抗超级化激活环核苷酸门控阳离子通道4(HCN4)、抗缝隙连接蛋白43( CX43)和抗平足蛋白(podoplanin)抗体,对40只胚龄9~16d小鼠胚胎心进行连续石蜡切片并免疫组织化学或免疫荧光染色. 结果 胚龄9d,较强的HCN4阳性表达集中在MHC阴性的静脉窦壁,随心脏发育,HCN4较强阳性表达逐渐向窦房结转移.胚龄11d开始,CX43阴性表达显示部位特异性.CX43阴性染色经窭房结沿右心房背侧壁和左、右静脉瓣向房室管背侧壁延伸.胚龄13d,左、右静脉瓣与房间隔底部融合后,进一步延续为房室管背侧壁发育中的CX43阴性染色的房室结,继而与室间隔顶部CX43阴性的房室束相连.胚龄9~ 10d,在MHC阳性心肌、心包腔背侧壁脏壁中胚层心肌前体细胞及静脉窦周间充质均显示podoplanin阳性表达.胚龄11 ~13d,podoplanin阳性间充质细胞沿心脏外表面扩展形成podoplanin阳性间皮样心外膜. 结论 心脏发育早期,主起搏点位于静脉窦壁,起搏电位的产生早于收缩功能的发生.CX43阴性心肌是发育中的心传导系心肌,在胚龄11d即可观察到心传导系早期雏形.podoplanin参与促进心肌前体细胞向心肌细胞的分化.  相似文献   

9.
目的 探讨呼吸内胚层与咽前间充质细胞发育的关系及对小鼠胚胎心流出道分隔的影响。方法 45只胚龄8~13d小鼠胚胎心连续石蜡切片,用抗胰岛因子1(ISL-1)、抗α-平滑肌肌动蛋白(α-SMA)、抗音猬因子(音速波状蛋白, Shh)、抗patched(Ptc1)、抗patched 2(Ptc2)、抗smoothened(Smo)及抗心肌肌球蛋白重链(MHC)抗体进行免疫组织化学及免疫荧光染色。 结果 胚龄8~9d,ISL-1阳性细胞分布在心包腔背侧壁及前肠两侧间充质,并延伸至原始心管动脉端,心管心肌显较强的Ptc1和Ptc2阳性表达。胚龄10~13d,呼吸内胚层向腹侧延伸,Ptc1和Ptc2呈较强表达,ISL-1阳性咽前间充质细胞围绕呼吸内胚层形成对称的特征性锥体形结构,经动脉囊背侧壁伸入动脉囊腔,形成主肺动脉隔。胚龄12d,主肺动脉隔ISL-1阳性表达基本消失,大部分细胞转变为α-SMA阳性细胞。 结论 呼吸内胚层的分化发育与咽前ISL-1阳性间充质细胞的发育聚集密切耦联。发育中的呼吸内胚层可能作为组织中心,通过Shh信号通路对ISL-1阳性细胞的聚集提供位置信息。呼吸内胚层的正常腹侧延伸不但可诱导ISL 1阳性细胞的正常迁移和流出道的正常分隔,对流出道的正常形态发生及有效的肺循环建立起重要作用。  相似文献   

10.
目的 探讨迁移中的细胞视黄酸结合蛋白1(CRABP1)阳性神经嵴细胞、胰岛因子1(ISL-1)、阳性心肌前体细胞与小鼠胚胎心流出道发育的关系.方法 36只胚龄8.5~13d小鼠胚胎心连续石蜡切片,选用抗α-平滑肌肌动蛋白(α-SMA)、抗心肌肌球蛋白重链(MHC)、抗转录因子ISL-1、抗CRABP1和抗磷酸化组蛋白H3(PHH3)抗体,进行免疫组织化学及免疫荧光染色.结果 胚龄8.5~10d,ISL-1阳性心肌前体细胞相继出现在心背系膜、原始咽两侧、头面部、鳃弓核心间充质和心包腔背侧壁间充质,构成心管流出道发育的第二生心区.胚龄11~13d,ISL-1阳性细胞在咽前方聚集,形成特征性锥体形结构,并向升主动脉、肺动脉干及主肺动脉隔延伸.胚龄9d前,神经嵴细胞散在分布于ISL-1阳性细胞之间,流出道远侧端可见少量CRABP1和ISL-1双阳性细胞.胚龄10d,CRABP1阳性神经嵴细胞分布在ISL-1阳性鳃弓核心间充质周围.随着发育,弓动脉等处的神经嵴细胞逐渐失去CRABP1表达,开始表达α-SMA.结论 ISL-1阳性第二生心区是动态结构,胚龄8.5~10d时,在神经嵴细胞配合下,向心管动脉端添加心肌细胞;胚龄11d后,开始向平滑肌方向分化,参与升主动脉、肺动脉干和主肺动脉隔的发育.  相似文献   

11.
目的探讨小鼠胚胎呼吸内胚层相关第二生心区(PSHF)发育与流出道远端形态发生的关系。方法用免疫蛋白印迹法检测抗胰岛因子-1(ISL-1)在80例胚龄10~14 d小鼠胚胎心脏标本的表达。另用抗ISL-1、抗α-平滑肌肌动蛋白(α-SMA)及抗心肌肌球蛋白重链(MHC)抗体,对36例胚龄11~13 d小鼠胚胎心连续石蜡切片进行免疫组织化学或免疫荧光染色。结果胚龄11~12 d是ISL-1蛋白在小鼠胚胎心脏表达的高峰时段。胚龄11 d,来自鳃弓或心包腔背侧壁等处PSHF的ISL-1阳性细胞延伸进入流出道远端管壁,流出道远端管壁则失去MHC表达,呈α-SMA阳性表达;来自PSHF的ISL-1阳性细胞则围绕呼吸内胚层呈对称性锥体结构分布,锥体顶端突入动脉囊腔呈ISL-1阳性突起。胚龄11.5 d,PSHF锥体顶端进入动脉囊头侧和尾侧管壁,形成流出道远端管壁上对称的ISL-1阳性柱结构;而动脉囊腔尚未分隔,流出道远端仍为单一管道。胚龄12 d,PSHF锥体突起失去ISL-1表达,呈较强的α-SMA表达。在PSHF锥体突起与流出道嵴融合前,两者之间出现主-肺动脉孔;两者融合后则形成α-SMA阳性的暂时性主-肺动脉隔,将动脉囊分隔成MHC阴性的心包内的主动脉和肺动脉。胚龄13 d,主-肺动脉隔逐渐消失,心包内主动脉和肺动脉分离。在MHC阴性的心包内大动脉管壁上出现了α-SMA阳性的平滑肌层,仍可见少量PSHF的ISL-1阳性细胞延伸进入心包内大动脉管壁。结论在小鼠胚胎发育11~13 d,PSHF将动脉囊分隔成心包内的主动脉和肺动脉,并参与心包内大动脉的侧面管壁和对侧面管壁的分化形成。  相似文献   

12.
目的 探讨人胚早期心流出道心肌和流出道心内膜垫内α-平滑肌肌动蛋白(α-SMA)的表达规律及其意义. 方法 32例C10~C16期[Carnegie分期法,受精后(22±1~37)d]人胚心连续切片,经抗α-SMA、抗α-横纹肌肌动蛋白(α-SCA)、抗肌球蛋白重链(MHC)抗体免疫组织化学染色,观察流出道重塑过程中α-SMA在心肌与心内膜垫内的表达规律. 结果 人胚发育C10~C15期,心包腔背侧脏壁上皮不断分化为心肌细胞添加至流出道远端,这些心肌细胞α-SMA的表达早于α-SCA和MHC.C16期,流出道嵴近心肌处出现α-SMA强阳性细胞,相邻的心肌细胞伸出突起与其相连.C12~C15期,α-SMA阳性细胞逐渐迁入流出道心内膜垫内,同时可见流出道内皮转为α-SMA阳性,向间充质细胞分化.不同来源的间充质细胞共同参与形成螺旋状流出道嵴. 结论 α-SMA可作为心肌细胞早期分化的标志;流出道嵴内α-SMA阳性细胞可能部分来自神经嵴,部分为正在向间充质细胞分化的内皮细胞.  相似文献   

13.
胰岛素增强子结合蛋白1在小鼠胚胎心的时空分布   总被引:1,自引:1,他引:0  
目的 观察转录因子胰岛素增强子结合蛋白1(ISL1)在小鼠胚胎心的表达与心、第二生心区及前肠内胚层的发育。 方法 胚龄8~13d小鼠胚胎心共18个,连续石蜡切片,用抗心肌肌球蛋白重链(MHC)、抗ISL1、抗增殖细胞核抗原(PCNA)和抗α-平滑肌肌动蛋白(α-SMA)抗体进行免疫组织化学染色、免疫荧光染色和Western blotting检测。 结果 胚龄9d,ISL1阳性心前体细胞进入流出道远端。胚龄10d,ISL1阳性细胞延伸入流出道近端及静脉窦心肌。胚龄11~12d,心内ISL1表达量逐渐增多并达高峰,动脉端ISL1阳性细胞分布于流出道远端壁、心包内主肺动脉壁及主肺动脉隔,静脉端ISL1阳性细胞主要限于窦房结和静脉瓣。动脉端前肠内胚层细胞索增至最长,周围前生心区ISL1阳性细胞密度也达高峰,并且明显多于后生心区。胚龄13d,心内及第二生心区ISL1阳性细胞显著减少,内胚层细胞索趋于消失。 结论 ISL1阳性细胞在小鼠胚胎心的表达主要集中在胚龄9~13d,其表达模式与第二生心区及前肠内胚层的发育密切相关。  相似文献   

14.
Bone morphogenetic proteins (BMPs) are considered to be significant factors in the morphogenesis of the endocardial cushions of the developing embryonic heart. Previous studies have suggested that they are involved in the epithelial–mesenchymal transformation and migration of the cells forming the cushions, or in triggering an apoptotic cascade in a sub-population of cushion cells. We investigated the expression and function of BMP2 and BMP4 proteins in the developing heart of the chick and mouse embryos. In the chick, by immunocytochemistry, we find expression of BMP2 protein in the endocardial cushions of the outflow tract (OT) and atrio-ventricular (AV) regions at embryonic days (ED) 5–6, as well as in adjacent myocardial layers. Immunoblotting indicated that such expression persisted through ED 4–7, but peaked at ED4–5 in the OT and 5–6 in the AV cushions. This temporal sequence correlated with the peaks of apoptotic cell death found previously in the OT and AV cushions of the chick embryo. At equivalent stages in mouse, no such expression of BMP2 was found in the cushions, although expression was detected in adjacent myocardial layers. In the case of BMP4, in both chick and mouse, expression was found only in the myocardia and not in the cushions. Furthermore, BMP-specific receptors were found in the cushions, but not the myocardia, in both the AV and OT regions of the chick embryo. These results provide circumstantial evidence to support the contention that BMPs, originating from the myocardium, could be significant in the induction of apoptosis in chick embryo cushion cells, and confirms that there is species-specific variation in the expression pattern of BMP proteins, as had been predicted from previous studies of mRNA expression. Culture media conditioned by the growth of tissues from various regions of the developing heart were tested for their ability to induce apoptosis in cushion cells in culture. It was found that medium derived from the myocardia induced significant levels of cell death in the cushion cells, and that BMP4 could be detected in such media; however, retroviral over-expression of constitutively active (CA) and dominant-negative (DN) isoforms of BMP-specific receptors 1A and 1B (BMPR-1A and BMPR-1B) in cultured cells of the AV cushions did not alter levels of apoptosis or cell proliferation. Similar over-expression in cultured endocardial cells resulted in a significant change in cell shape, from endothelial to fibroblastic, with BMPR-1A CA and BMPR-1B DN, suggesting an influence of these receptors on cell transformation and/or cell migration. Taken together, these results provide support for the contention that BMP2 and BMP4 are important factors in the phenotypic transformational events involved in the morphogenesis of the chick embryo endocardial cushions, and could be involved in the induction of apoptosis in the cushion cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号