首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haines L  Currie PD 《Journal of anatomy》2001,199(PT 1-2):205-209
Two different modes are utilised by vertebrate species to generate the appendicular muscle present within fins and limbs. Primitive Chondricthyan or cartilaginous fishes use a primitive mode of muscle formation to generate the muscle of the fins. Direct epithelial myotomal extensions invade the fin and generate the fin muscles while remaining in contact with the myotome. Embryos of amniotes such as chick and mouse use a similar mechanism to that deployed in the bony teleost species, zebrafish. Migratory mesenchymal myoblasts delaminate from fin/limb level somites, migrate to the fin/limb field and differentiate entirely within the context of the fin/limb bud. Migratory fin and limb myoblasts express identical genes suggesting that they possess both morphogenetic and molecular identity. We conclude that the mechanisms controlling tetrapod limb muscle formation arose prior to the Sarcopterygian or tetrapod radiation.  相似文献   

2.
Two different modes are utilised by vertebrate species to generate the appendicular muscle present within fins and limbs. Primitive Chondricthyan or cartilaginous fishes use a primitive mode of muscle formation to generate the muscle of the fins. Direct epithelial myotomal extensions invade the fin and generate the fin muscles while remaining in contact with the myotome. Embryos of amniotes such as chick and mouse use a similar mechanism to that deployed in the bony teleost species, zebrafish. Migratory mesenchymal myoblasts delaminate from fin/limb level somites, migrate to the fin/limb field and differentiate entirely within the context of the fin/limb bud. Migratory fin and limb myoblasts express identical genes suggesting that they possess both morphogenetic and molecular identity. We conclude that the mechanisms controlling tetrapod limb muscle formation arose prior to the Sarcopterygian or tetrapod radiation.  相似文献   

3.
Tetrapod limbs are a key innovation implicated in the evolutionary success of the clade. Although musculoskeletal evolution of the pectoral appendage across the fins-to-limbs transition is fairly well documented, that of the pelvic appendage is much less so. The skeletal elements of the pelvic appendage in some tetrapodomorph fish and the earliest tetrapods are relatively smaller and/or qualitatively less similar to those of crown tetrapods than those of the pectoral appendage. However, comparative and developmental works have suggested that the musculature of the tetrapod forelimb and hindlimb was initially very similar, constituting a “similarity bottleneck” at the fins-to-limbs transition. Here, we used extant phylogenetic bracketing and phylogenetic character optimization to reconstruct pelvic appendicular muscle anatomy in several key taxa spanning the fins-to-limbs and water-to-land transitions. Our results support the hypothesis that transformation of the pelvic appendages from fin-like to limb-like lagged behind that of the pectoral appendages. Compared to similar reconstructions of the pectoral appendages, the pelvic appendages of the earliest tetrapods had fewer muscles, particularly in the distal limb (shank). In addition, our results suggest that the first tetrapods had a greater number of muscle-muscle topological correspondences between the pectoral and pelvic appendages than tetrapodomorph fish had. However, ancestral crown-group tetrapods appear to have had an even greater number of similar muscles (both in terms of number and as a percentage of the total number of muscles), indicating that the main topological similarity bottleneck between the paired appendages may have occurred at the origin of the tetrapod crown group. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. Anat Rec, 303:218–234, 2020. © 2018 American Association for Anatomy  相似文献   

4.
The myotome in gnathostome vertebrates, which gives rise to the trunk skeletal muscles, consists of epaxial (dorsal) and hypaxial (ventral) portions, separated by the horizontal myoseptum. The hypaxial portion contains some highly derived musculature that is functionally as well as morphologically well differentiated in all the gnathostome species. In contrast, the trunk muscles of agnathan lampreys lack these distinctions and any semblance of limb muscles. Therefore, the lamprey myotomes probably represent a primitive condition compared with gnathostomes. In this review, we compare the patterns of expression of some muscle-specific genes between the lamprey and gnathostomes. Although the cellular and tissue morphology of lamprey myotomes seems uniform and undifferentiated, some of the muscle-specific genes are expressed in a spatially restricted manner. The lamprey Pax3/7 gene, a cognate of gnathostome Pax3, is expressed only at the lateral edge of the myotomes and in the hypobranchial muscle, which we presume is homologous to the gnathostome hypobranchial muscle. Thus, the emergence of some part of a hypaxial-specific gene regulatory cascade might have evolved before the agnathan/gnathostome divergence, or before the evolutionary separation of epaxial and hypaxial muscles.  相似文献   

5.
The main aim of the present work is to synthesize the information obtained from our dissections of the pectoral and forelimb muscles of representative members of the major extant taxa of limbed amphibians and reptiles and from our review of the literature, in order to provide an account of the comparative anatomy, homologies and evolution of these muscles in the Tetrapoda. The pectoral and forelimb musculature of all these major taxa conform to a general pattern that seems to have been acquired very early in the evolutionary history of tetrapods. Although some muscles are missing in certain taxa, and a clear departure from this general pattern is obviously present in derived groups such as birds, the same overall configuration is easily distinguishable in these taxa. Among the most notable anatomical differences between the groups, one that seems to have relevant evolutionary and functional implications, concerns the distal insertion points of the forearm musculature. In tetrapods, the muscles of the radial and ulnar complexes of the forearm are pleisomorphically mainly inserted onto the radius/ulna or onto the more proximal carpal bones, but in mammals some of these muscles insert more distally onto bones such as the metacarpals. Interestingly, a similar trend towards a more distal insertion of these muscles is also found in some non‐mammalian tetrapod taxa, such as some anurans (e.g. Phyllomedusa). This may be correlated with the acquisition of more subtle digital movement abilities in these latter taxa.  相似文献   

6.
The body masses of cats (Mammalia, Carnivora, Felidae) span a ~300‐fold range from the smallest to largest species. Despite this range, felid musculoskeletal anatomy remains remarkably conservative, including the maintenance of a crouched limb posture at unusually large sizes. The forelimbs in felids are important for body support and other aspects of locomotion, as well as climbing and prey capture, with the assistance of the vertebral (and hindlimb) muscles. Here, we examine the scaling of the anterior postcranial musculature across felids to assess scaling patterns between different species spanning the range of felid body sizes. The muscle architecture (lengths and masses of the muscle‐tendon unit components) for the forelimb, cervical and thoracic muscles was quantified to analyse how the muscles scale with body mass. Our results demonstrate that physiological cross‐sectional areas of the forelimb muscles scale positively with increasing body mass (i.e. becoming relatively larger). Many significantly allometric variables pertain to shoulder support, whereas the rest of the limb muscles become relatively weaker in larger felid species. However, when phylogenetic relationships were corrected for, most of these significant relationships disappeared, leaving no significantly allometric muscle metrics. The majority of cervical and thoracic muscle metrics are not significantly allometric, despite there being many allometric skeletal elements in these regions. When forelimb muscle data were considered in isolation or in combination with those of the vertebral muscles in principal components analyses and MANOVAs, there was no significant discrimination among species by either size or locomotory mode. Our results support the inference that larger felid species have relatively weaker anterior postcranial musculature compared with smaller species, due to an absence of significant positive allometry of forelimb or vertebral muscle architecture. This difference in strength is consistent with behavioural changes in larger felids, such as a reduction of maximal speed and other aspects of locomotor abilities.  相似文献   

7.
Local field potentials (LFPs) in primary motor cortex include significant information about reach target location and upper limb movement kinematics. Some evidence suggests that they may be a more robust, longer-lasting signal than action potentials (spikes). Here we assess whether LFPs can also be used to decode upper limb muscle activity, a complex movement-related signal. We record electromyograms from both proximal and distal upper limb muscles from monkeys performing a variety of reach-to-grasp and isometric wrist force tasks. We show that LFPs can be used to decode activity from both proximal and distal muscles with performance rivaling that of spikes. Thus, motor cortical LFPs include information about more aspects of movement than has been previously demonstrated. This provides further evidence suggesting that LFPs could provide a highly informative, long-lasting signal source for neural prostheses.  相似文献   

8.
Muscle weakness is consistently associated with falls in the elderly people, typically when present along with other risk factors. However, it remains unknown whether and how muscle weakness alone affects balance. This hampers development of more effective fall prevention strategies. Clinical observations suggest that the amount and distribution of muscle weakness influences balance control. We therefore investigated balance corrections in patients with either predominantly proximal (limb girdle muscular dystrophy (LGMD); n=8) or distal (distal spinal muscular atrophy; n=5) leg weakness, and 27 matched healthy controls. Balance was perturbed using surface tilt rotations that were delivered randomly in eight directions. Balance measures were full body kinematics and surface electromyographic activity (EMG) of leg, arm, and trunk muscles. Both patient groups were more unstable than controls, as reflected by greater excursions of the centre of mass (COM), especially in the pitch (anterior–posterior (AP)) plane. COM displacements were greater in distal weakness patients. Patients with distal weakness had excessive and unstable trunk, knee and ankle movements, and this was present following both forward and backward directed balance perturbations, possibly reflecting the greater use of distal leg muscles in these directions. In contrast, the less weak proximal weakness patients demonstrated unstable trunk and ankle movements only for backward directed balance perturbations. Both patient groups used arm movements to compensate for their instability. We conclude that primarily distal but also proximal muscle weakness leads to significant postural instability. This observation, together with the retained ability of patients to use compensatory arm movements, provides targets that may be amenable to improvement with therapeutic intervention.  相似文献   

9.
We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional area (PCSA) was estimated. Data were normalized assuming geometric similarity to allow for comparison of animals of different size/species. Muscle mass scaled closely to (body mass)(1.0) and fascicle length scaled closely to (body mass)(0.3) in most species. However, human hindlimb muscles were heavy and had short fascicles per unit body mass when compared with non-human apes. Gibbon hindlimb anatomy shared some features with human hindlimbs that were not observed in the non-human great apes: limb circumferences tapered from proximal-to-distal, fascicle lengths were short per unit body mass and tendons were relatively long. Non-human great ape hindlimb muscles were, by contrast, characterized by long fascicles arranged in parallel, with little/no tendon of insertion. Such an arrangement of muscle architecture would be useful for locomotion in a three dimensionally complex arboreal environment.  相似文献   

10.
We provide quantitative anatomical data on the muscle-tendon architecture of the hare pelvic limb (specifically muscle mass, fascicle length, pennation angle, tendon mass and length). In addition, moment arms of major pelvic limb muscles were measured. Maximum isometric force and power of muscles, the moment of force about a joint, and tendon stress and strain were estimated. Data are compared with published data for other cursorial mammals such as the horse and dog, and a non-specialised Lagamorph, the rabbit. The pelvic limb of the hare was found to contain substantial amounts of hip extensor and adductor/abductor muscle volume, which is likely to be required for power production and stability during rapid turning. A proximal to distal reduction in muscle volume and fascicle length was also observed, as is the case in other cursorial quadrupeds, along with a reduction in distal limb mass via the replacement of muscle volume by long distal limb tendons, capable of storing large amounts of elastic energy. The majority of hare pelvic limb muscle moment arms varied with joint position, giving the hare the capacity to vary muscle function with limb posture and presumably different locomotor activities.  相似文献   

11.
The pump-perfused rat hindlimb model, in various forms, has been in use for several decades. There are many applications for this model, owing to the ability to control the content and rate of perfusion. In the context of exercise physiology this model has been put to particularly good use. In this report we summarize some of the central surgical differences between different versions of the pump-perfused rat hindlimb model, including the double hindlimb + trunk, double hindlimb alone, single hindlimb, and distal hindlimb-alone models. We also summarize specific elements of the perfusion medium and measurement of force used in our lab during assessment of muscle metabolic and contractile responses, and illustrate some of the differences from the in vivo condition that merit consideration. We then provide specific examples of how the single pump-perfused hindlimb and distal hindlimb-alone versions of this model have been used to study muscle function and energy metabolism. In this context we show how this model can be used to permit the experimenter to manipulate and control the rate of O(2)delivery and to add specific compounds that inhibit a particular aspect of muscle metabolism, such that in combination with measurements of the flux of specific substances across the muscle and/or fast-freezing of muscle after contractions, more can be understood about the metabolic state of the contracting muscles.  相似文献   

12.
We provide quantitative anatomical data on the muscle-tendon units of the equine pelvic limb. Specifically, we recorded muscle mass, fascicle length, pennation angle, tendon mass and tendon rest length. Physiological cross sectional area was then determined and maximum isometric force estimated. There was proximal-to-distal reduction in muscle volume and fascicle length. Proximal limb tendons were few and, where present, were relatively short. By contrast, distal limb tendons were numerous and long in comparison to mean muscle fascicle length, increasing potential for elastic energy storage. When compared with published data on thoracic limb muscles, proximal pelvic limb muscles were larger in volume and had shorter fascicles. Distal limb muscle architecture was similar in thoracic and pelvic limbs with the exception of flexor digitorum lateralis (lateral head of the deep digital flexor), the architecture of which was similar to that of the pelvic and thoracic limb superficial digital flexors, suggesting a functional similarity.  相似文献   

13.
Anatomical and behavioural work on primates has shown bilateral innervation of axial and proximal limb muscles, and contralateral control of distal limb muscles. The following study examined if a clear boundary exists between the distal and proximal upper limb muscles that are controlled contralaterally or bilaterally. The right motor cortical area representing the upper limb was stimulated, while surface EMG was recorded bilaterally from various upper limb muscles during rest and phasic voluntary contractions. Peak-to-peak amplitude of motor evoked potential (MEP) was measured for each muscle on both sides. The ratio R = (ipsilateral MEP: contralateral MEP) was calculated for seven pairs of muscles. For each of the seven pairs, R was less than 1.0, implying that for each muscle and subject, the contralateral control is stronger. The boundary where R changed from almost zero to a clearly measurable magnitude depended on the subject. Ipsilateral MEPs from trapezius and pectoralis could be recorded with a small background contraction from almost all subjects; on the other hand, in deltoid and biceps brachii, ipsilateral MEPs were observed only with bimanual phasic contractions. The forearm and hand muscles, in general, did not show any ipsilateral MEPs. Major differences between subjects lay in the presence or the absence of ipsilateral MEPs in biceps brachii and deltoid, without defining a sharp boundary between proximal and distal muscles.  相似文献   

14.
Researchers often attempt to use limb proportions to ascertain the locomotor repertoires of fossil hominins. This can be problematic as there are few skeletons in the fossil record that preserve both a full forelimb and hindlimb; therefore, estimates of full limb lengths are typically associated with substantial error. In this study, two‐block partial least squares analyses were used to examine covariation between forelimb and hindlimb elements in extant hominoids and fossil hominins. This has the benefit of including both forelimb and hindlimb in a type of functional analysis without necessitating an accurate length estimate. There is a high degree of covariation between forelimb and hindlimb segments in the mixed species sample, particularly in the proximal ulna, distal humerus, and proximal/distal femur and that shape covariation is significantly correlated with intermembral indices in the extant taxa. Overall, the fossil hominins most closely resembled modern humans with the exception of analyses utilizing the distal femur where some occupied a unique morphological position; thus, some fossil hominins likely possessed locomotor capabilities similar to modern humans, whereas others likely represent a unique morphological compromise between terrestrial bipedality and other positional behaviors not present among extant hominoids. Anat Rec, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The arms and legs of man are evolutionarily derived from the paired fins of primitive jawed fish. Few evolutionary changes have attracted as much attention as the origin of tetrapod limbs from the paired fins of ancestral fish. The hindlimbs of tetrapods are derived from the pelvic fins of ancestral fish. These evolutionary origins can be seen in the examination of shared gene and protein expression patterns during the development of pelvic fins and tetrapod hindlimbs. The pelvic fins of fish express key limb positioning, limb bud induction and limb outgrowth genes in a similar manner to that seen in hindlimb development of higher vertebrates. We are now at a point where many of the key players in the development of pelvic fins and vertebrate hindlimbs have been identified and we can now readily examine and compare mechanisms between species. This is yielding fascinating insights into how the developmental programme has altered during evolution and how that relates to anatomical change. The role of pelvic fins has also drastically changed over evolutionary history, from playing a minor role during swimming to developing into robust weight-bearing limbs. In addition, the pelvic fins/hindlimbs have been lost repeatedly in diverse species over evolutionary time. Here we review the evolution of pelvic fins and hindlimbs within the context of the changes in anatomical structure and the molecular mechanisms involved.  相似文献   

16.
The cloaca acts as a common chamber into which gastrointestinal and urogenital tracts converge in lower vertebrates. The distal end of the cloaca is guarded by a ring of cloacal muscles or sphincters, the equivalent of perineal muscles in mammals. It has recently been shown that the development of the cloacal musculature depends on hindlimb muscle formation. The signaling molecules responsible for the outward migration of hindlimb myogenic precursors are not known. Based on the expression studies for CXCR4 and SDF‐1, we hypothesized a role of this signaling pair during cloacal muscle precursor migration. The aim of our study was to investigate the role of SDF‐1/CXCR4 during cloacal muscle precursor migration in the chicken embryos. We show that SDF‐1 is expressed in the cloacal region, and by experimentally manipulating the SDF‐1/CXCR4 signaling, we can show that SDF‐1 guides the migration of CXCR4‐expressing cloacal muscle precursors. Developmental Dynamics 239:1622–1631, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Summary This study investigated the effect of initial stance configuration on automatic postural responses in humans. Subjects were tested in both bipedal and quadrupedal stance postures. The postural responses to horizontal translations of the supporting surface were measured in terms of the forces at the ground, movement of the body segments, and electromyographic (EMG) activity. Postural responses to the same perturbations changed with initial stance posture; these responses were biomechanically appropriate for restoring centre of mass. A change in stance configuration prior to platform movement led to a change in both the spatial and temporal organization of evoked muscle activation. Specifically, for the same direction of platform movement, during bipedal stance muscles on one side of the lower limb were activated in a distal to proximal sequence; during quadrupedal stance, muscles on the opposite side of the lower limb were activated and in a proximal to distal sequence. The most significant finding was an asymmetry in the use of the upper limbs and the lower limbs during postural corrections in quadrupedal stance. Whereas antagonists of the upper limb were either co-activated or co-inhibited, depending on the direction of translation, lower limb antagonists were reciprocally activated and inhibited. Human subjects in a quadrupedal stance posture used the lower limbs as levers, protracting or retracting the hips in order to propel the trunk back to its original position with respect to the hands and feet. Postural responses of the subjects during quadrupedal stance were remarkably similar to those of cats subjected to similar perturbations of the supporting surface. Furthermore, the same predominance of lower limb correction is characteristic of both species, suggesting that the standing cat is a good model for studying postural control in humans.  相似文献   

18.
Summary The segmental distribution of body weight and the proportions of skin, muscle, and bone are compared for three genera of the Macropodidae (Potorous, Dendrolagus, and Macropus) and one genus of the Petauridae (Pseudocheirus). Potorous and Macropus possess high proportions of muscle mass to total body weight, high concentrations of musculature in the lumbar extensors, thigh, and tail, and disproportionate ratios of forelimb: hindlimb bone and forelimb: hindlimb muscle which correspond to disproportions of intermembral length. These species converge with high-speed terrestrial runners in some traits and remain distinctive in others. Macropus, larger, more muscular, and faster than Potorous, appears to store and return energy to the hopping cycle more efficiently. Dendrolagus has less than three-fourths the musculature of the other macropod genera, low proportions of the back extensor muscles compared to the other macropods, and relatively more equal ratios of forelimb: hindlimb bone and forelimb: hindlimb muscle. This species converges with slow-moving arboreal climbers such as Pseudocheirus. These data on body mass and tissue proportions translate directly into center of gravity, strength-to-weight ratio, and muscular (kinetic) chains, key elements of macropod evolution. The geometric similarity of muscle between smaller potoroids and larger macropodids, an assumption critical to allometric comparison, is not confirmed.  相似文献   

19.
The distribution of Type I and Type II fibers, as determined from histochemical estimation of myofibrillar ATPase activity, was studied within and among the locomotory muscles of the forelimb, trunk, and hindlimb of three mongrel dogs. All Type II fibers had high oxidative capacities as estimated from the histochemical assay for reduced nicotinamide adenine dinucleotide tetrazolium reductase, so they were not further divided into subpopulations. Furthermore, Type I and Type II fibers had similar oxidative potentials as indicated by both histochemistry and biochemistry. Type I fiber populations ranged between 14% and 100% in the muscles sampled. The highest percentages of Type I fibers were found in deep muscles of physiological extensor groups in the arm and thigh that serve to resist gravity (antigravity muscles) when the dog is in the quadrupedal standing position. More superficial muscles in these same groups had fewer Type I fibers. The patterns of Type I fiber distribution among muscles in the antigravity groups of the forearm and leg were the opposite of those in the arm and thigh, with the more superficial muscles of the distal limb segments having more Type I fibers than the deeper muscles. In all limb segments, muscle groups that do not serve to resist gravity did not show as much intermuscular variation. Type I fiber populations in these muscles did not exceed 50%. A stratification of fiber types also existed within muscles, both in extensor and flexor groups, with the deeper portions of the muscles having more Type I fibers than the more superficial portions.  相似文献   

20.
Individuals with a history of non-specific low back pain (LBP) while in a quiescent pain period demonstrate altered automatic postural responses (APRs) characterized by reduced trunk torque contributions and increased co-activation of trunk musculature. However, it is unknown whether these changes preceded or resulted from pain. To further delineate the relationship between cyclic pain recurrence and APRs, we quantified postural responses following multi-directional support surface translations, in individuals with non-specific LBP, following an active pain episode. Sixteen subjects with and 16 without LBP stood on two force plates that were translated unexpectedly in 12 directions. Net joint torques of the ankles, knees (sagittal only), hips, and trunk, in the frontal and sagittal planes, were quantified and the activation of 12 muscles of the lower limb unilaterally and the dorsal and ventral trunk, bilaterally, were recorded using surface electromyography (EMG). Peaks and latencies to peak joint torques, rates of torque development (slopes), and integrated EMGs characterizing baseline and active muscle contributions were analyzed for group by perturbation direction (torques) and group by perturbation by epoch interaction (EMG) effects. In general, the LBP cohort demonstrated APRs that were of similar torque magnitude and rate but peaked earlier compared to individuals without LBP. Individuals with LBP also demonstrated increased muscle activity following perturbation directions in which the muscle was acting as a prime mover and reduced muscle activity in opposing directions, proximally and distally, with some proximal asymmetries. These altered postural responses may reflect increased muscle spindle sensitivity. Given that these motor alterations are demonstrated proximally and distally, they likely reflect the influence of central nervous system processing in this cohort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号