首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The central regulation of the food intake is organized by a long-loop mechanism involving humoral signals and afferent neuronal pathways to the hypothalamus, obligatory processing in hypothalamic neuronal circuits, and descending commands through vagal and spinal neurons to the body. Receptors sensitive to glucose metabolism, body fat reserves, distension of the stomach, as well as neuropeptide and cannabinoid receptors have been identified and localized in the hypothalamus. Five groups of cells in the hypothalamus--arcuate, paraventricular, ventromedial and dorsomedial nuclei, and the dorsolateral hypothalamic area--contain neurons with either anorexic actions (alpha-MSH, CART peptide, corticotropin-releasing hormone, urocortin III, cholecystokinin, glucagon-like peptides) or that stimulate food intake (neuropeptide Y, agouti-related peptide, orexins, melanin concentrating hormone, galanin). Intrahypothalamic neuronal circuits exist between these peptidergic neurons including the arcuate-paraventricular and arcuate-dorsolateral hypothalamic projections. Circulating substances carrying signals connected to changes in body food homeostasis and energy balance (leptin, ghrelin, insulin, glucose) enter the hypothalamus mainly through the arcuate nucleus. Neurons in the medulla oblongata that express leptin and insulin receptors, as well as neuropeptide mediators project to the hypothalamus. Vica versa, hypothalamic neurons give rise to projections to autonomic centers in the brainstem and the spinal cord with potential for stimulation or inhibition of food intake, energy balance and ingestion behavior.  相似文献   

5.
Release of α-melanocyte-stimulating hormone (α-MSH) synthesized in the hypothalamus is regulated by monoaminergic neuronal systems. An endogenous dopaminergic system inhibits α-MSH release (1, 2) whilst serotoninergic systems exert a biphasic effect on peptide release (3). The toxic effects of neonatal peripheral administration of monosodium glutamate on hypothalamic neurons containing proopiomelanocortin- (POMC-) derived peptides (4, 5) suggest additionally the presence of glutamate receptors on or indirectly influencing the POMC neuron. By comparison of the effect of the excitatory amino-acid agonists N-methyl-D-aspartate (NMDA), quisqualate and kainate on the release of α-MSH from superfused slices of rat hypothalamus, we have demonstrated a stimulatory glutamergic action on α-MSH release mediated through NMDA-type receptors.  相似文献   

6.
Central neural control of complex feeding behaviour is likely to be influenced by a number of factors including homeostatic responses to peripheral nutrient status, cortical integration of feeding-related cues and the underlying reward value of food. We have used retrogradely transported neurotropic viruses, as tools to map chains of synaptically-connected neurons, in conjunction with neurochemical markers of feeding-related peptides to expand the blueprint of the circuitries that underlie these different components of feeding behaviour. We have identified projections to insular and anterior cingulate cortex, extending from the arcuate nucleus through synaptic relays in the lateral hypothalamic area and midline thalamic nuclei. Cortically projecting neurons from the hypothalamic arcuate nucleus were found predominantly in its lateral aspects and contained anorexigenic peptides with no representation amongst more medially-positioned neurons containing orexigenic peptides. Largely overlapping pathways were shown to project multisynaptically to the shell of the nucleus accumbens but those with origins in the arcuate nucleus had either orexigenic or anorexigenic phenotypes. Similar to the cortical projections, those relaying to the nucleus accumbens in the lateral hypothalamus contained the orexigenic peptides orexin-A and melanin-concentrating hormone in ∼30% of cases. Common to the neural pathways directed to all three virally-injected areas were nodes of synaptic relays in the lateral hypothalamus and midline thalamic nuclei. These regions are well positioned to integrate sensory information about energy homeostasis and the reward value of food in the passage of this information to the 'ingestive cortex'.  相似文献   

7.
Systemic or central administration of growth-hormone secretagogues (GHS) induces dense Fos expression in the arcuate nucleus but little or no Fos expression in the ventromedial hypothalamic nucleus, although both sites show intense expression of mRNA for the GHS receptor. Here, we recorded the electrical activity of single neurons from the arcuate nucleus and from the ventromedial hypothalamic nucleus in a rat hypothalamic slice preparation, and compared responses of these two populations to GHS. At both sites, the predominant neuronal response to GHS was a long-lasting excitation, indicating that GHS receptors at both sites are functional and similarly coupled to electrical excitation. We also tested neurons at both sites for their responses to neuropeptide Y and to somatostatin; at both sites the predominant response to each of these peptides was inhibitory. The arcuate cells that are activated by GHS include neuropeptide Y cells and growth hormone-releasing hormone cells. It seems possible that neuropeptide Y released in the ventromedial hypothalamus from the terminals of arcuate neurons counteracts the activation of ventromedial hypothalamic neurons by GHS in vivo, or that somatostatin released following liberation of growth hormone may do so.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Whether the decrease in food intake that occurs at the onset of anorexia in tumor bearing (TB) rats is related to a change in the hypothalamic neuropeptide Y (NPY) system was tested by comparing NPY expression in sham operated Fischer Control and anorectic TB rats. Coronal cryocut sections of their fixed brain were processed by the peroxidase-antiperoxidase method with NPY polyclonal antibodies. NPY-immunoreactive fibers were widely distributed throughout the forebrain, but were most prominent in the hypothalamic paraventricular, suprachiasmatic, arcuate and periventricular nuclei. NPY-immunoreactive neurons were visualized in Control and anorectic TB rats in the preoptic region, the arcuate nucleus, and occasionally in the lateral hypothalamus. Semiquantitative image analysis showed a significant decrease in the NPY immunostaining in some hypothalamic nuclei of the anorectic TB rats, most prominently in the supraoptic nucleus, the parvocellular portion of the paraventricular nucleus, and, to a lesser extent, the suprachiasmatic and arcuate nuclei. No changes in NPY innervation were seen in the ventromedial nucleus and the lateral hypothalamus. The data support the hypothesis of an altered hypothalamic NPY system at the onset of anorexia in TB rats and also reveal the hypothalamic nuclei through which NPY influences food intake.  相似文献   

16.
Food intake during the rest phase promotes circadian desynchrony, which has been associated with metabolic diseases. However, the link between circadian rhythm and metabolic alterations is not well understood. To investigate this issue, we explored the circadian rhythm of c‐Fos immunoreactivity (IR) in rats fed during the day, during the night or with free access to food for 3 weeks. The analysis was focused on the hypothalamic nuclei, which are interconnected and involved in the control of energy homeostasis and/or arousal: lateral hypothalamus (LH), perifornical area, arcuate, ventrolateral pre‐optic (VLPO) and tuberomammillary nuclei. The results show that food intake during the rest phase flattened the circadian c‐Fos expression in the LH and perifornical area, and induced a phase shift in the VLPO area. In addition, c‐Fos expression was analyzed in the orexin and melanin‐concentrating hormone (MCH) neurons of the LH, which are involved in the control of food intake and arousal, and in α‐melanin‐stimulating hormone and neuropeptide Y (NPY) cells in the arcuate nucleus, all of which are involved in feeding–fasting cycles, energy homeostasis and sending projections to the LH. The results indicate that feeding during the rest phase decreased orexin neuron activation in the light in comparison with the other groups. Feeding during this phase also flattened the activity rhythm of MCH and α‐melanin‐stimulating hormone neurons and increased NPY IR when the light was turned on. This evidence indicates that mealtime differentially affected the hypothalamic nuclei under investigation leading to a circadian conflict that might account for metabolic impairment.  相似文献   

17.
Gamma-amino butyric acid (GABA)A receptor stimulation in the nucleus accumbens shell produces intense hyperphagia in rats and increases Fos expression in the lateral hypothalamus. To explore the involvement of hypothalamic orexin/hypocretin- or melanin concentrating hormone-immunoreactive neurons in this effect, the GABAA agonist, muscimol (0, 50 ng), was infused directly into the nucleus accumbens shell of rats; 90 min later, their brains were collected and subsequently processed for immunohistochemistry. A group exposed to a novel environment was included to evaluate the specificity of Fos expression changes with regard to general arousal. Alternating sections through the hypothalamus were double-stained for orexin/hypocretin-Fos or melanin concentrating hormone-Fos combinations. Intra-accumbens shell muscimol treatment significantly increased the percentage of orexin/hypocretin-containing neurons expressing Fos in the lateral, but not medial, portion of the perifornical/lateral hypothalamic area. Regardless of treatment condition, greater percentages of orexin/hypocretin-containing neurons in the medial portion of the hypothalamus expressed Fos relative to cells located more laterally. None of the manipulations increased Fos expression in melanin concentrating hormone-immunoreactive neurons. Muscimol treatment also markedly increased Fos expression in the arcuate nucleus, which connects reciprocally to the lateral/perifornical hypothalamic area. Thus, orexin/hypocretin-containing neurons in lateral sectors of the hypothalamus, along with cells in the arcuate nucleus, display phasic increases in Fos expression after an orexigenic pharmacological manipulation of the nucleus accumbens shell, but to a lesser degree after the heightened arousal associated with exposure to a novel environment.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号