首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Human monocytes (M phi) exposed to 0.5-20 micrograms/ml of cyclosporine (CsA) produced levels of prostaglandins of the E series (PGE) that were 2-3-fold greater than control M phi cultured in medium alone. Maximal PGE levels were obtained at 24-48 hr incubation, and the failure to observe a linear increase of PGE levels at higher CsA concentrations appeared partially related to cytotoxic effects. CsA was considerably less effective than phorbol myristate acetate or bacterial lipopolysaccharide in increasing PGE production, but the PGE levels achieved with CsA approximated those known to suppress immune responsiveness. Other experiments showed that, although the increased PGE production with CsA was indomethacin-sensitive, CsA mostly functioned to increase the availability of free arachidonic acid (AA) instead of accelerating AA conversion by the cyclooxygenase pathway. Thus CsA can alter M phi physiology, and these alterations might inhibit quite early events during the induction phase of immune responses.  相似文献   

5.
Aseptic loosening of orthopaedic implants is precipitated by wear debris-induced osteolysis. Central to this process are the pro-inflammatory mediators that are produced in response to wear by the fibroblastic cells, which comprise the majority of periprosthetic membranes. Since this pro-inflammatory cascade is mediated by a plethora of factors with redundant functions, it is imperative to establish a hierarchy. Two well-known fibroblast derived pro-inflammatory factors that stimulate wear debris-induced osteoclastic resorption are prostaglandin E2 (PGE2) and IL-6. However, their relationship to each other in this process is poorly defined. Here we show immunohistochemistry of retrieval membranes indicating that COX-2 is the principal cyclooxygenase responsible for PGE2 production in fibroblasts around failed implants. We also performed in vitro experiments with fibroblasts derived from wild-type (WT), COX-1 (-/-) and COX-2 (-/-) mice, which demonstrated that COX-2 is required for Ti wear debris-induced PGE2 production. Interestingly, COX-2 was also required for IL-6 production in these assays, which could be rescued by the addition of exogenous PGE2 (10(-6) M). Pharmacology studies that utilized the COX-1 selective inhibitor SC 560, the COX-2 selective inhibitor celecoxib, and the nonselective COX inhibitor indomethacin confirmed these results. Taken together, these results indicate that selective inhibition of prostaglandin signaling could favorably impact aseptic loosening beyond its direct effects on PGE2 synthesis, in that it inhibits downstream pro-inflammatory/pro-osteoclastic cytokine production.  相似文献   

6.
7.
8.
Involvement of IL-8 in COX-2-mediated bone metastases from breast cancer   总被引:7,自引:0,他引:7  
BACKGROUND: Cyclooxygenase-2 (COX-2) overexpression by a primary tumor correlates with poor prognosis in breast cancer, including early spread to bone. Interleukin-8 (IL-8) stimulates osteoclastogenesis and resorption of bone, and elevated IL-8 levels predict early metastatic spread of breast cancer. The purpose of this study was to test our hypothesis that tumors that overexpress COX-2 induce IL-8 production. MATERIALS AND METHODS: We cotransfected MCF-10A (nonmalignant breast epithelial) cells, as well as MDA-231 (highly metastatic human breast cancer) cell lines with a pSG5-COX-2 vector and pEF1a-Luc-IRES-Neo vector (luciferase reporter). COX-2 overexpression was confirmed by Western blot and PGE2 (a product of the COX-2 pathway) immunoassay. IL-8 production was measured by immunoassay. In vivo testing used a nude mouse model to measure COX-2 and IL-8 production from breast cancer cells that had metastasized to bone (bone-seeking clones (BSCs)). Long bone metastases were localized and quantified by luciferase imaging (Xenogen IVIS system) and X-ray. BSCs were isolated and cultured and then tested for the production of PGE2 and IL-8. RESULTS: COX-2 overexpression caused a 4- to 5-fold increase in IL-8 production in both MCF-10A and MDA-231 cells in vitro. In vivo, we observed that the MDA-231-BSC (metastatic cells isolated from bone metastases) produced significantly greater levels of both PGE2 and IL-8 compared to the parental MDA-231 cells (P < 0.01). In contrast to the results obtained with these estrogen receptor-negative cell lines, COX-2 expression failed to induce IL-8 in the MCF-7 estrogen receptor-positive breast cancer cell line. Treatment with the COX-2 inhibitor NS-398 at a low 1-mu[scap]M dose reduced the production of IL-8 in COX-2-transfected MDA-231 cells by 30%, thus confirming the involvement of COX-2 in IL-8 induction. CONCLUSION: COX-2 expression induced formation of PGE2 and IL-8 in breast cancer cells. Since PGE2 and IL-8 stimulate osteoclasts to resorb bone, COX-2 inhibition is a potential target for treatment to prevent bone metastases.  相似文献   

9.
BACKGROUND: Omega-3 fatty acids (n-3 FA) demonstrate significant anti-inflammatory properties thought to occur through three principal mechanisms; (1) displacement of arachidonic acid from the cellular membrane, (2) differential prostaglandin E2 (PGE2) and LTB4 production, and (3) molecular level alterations such as diminished nuclear factor kappa B and AP-1 activation. Recently, n-3 FA have been demonstrated to significantly decrease nitric oxide (NO) production in a lipopolysaccharide (LPS)-stimulated M Phi model. We hypothesized that decreased NO production by n-3 FA occurs through inhibition of cyclooxygenase-2 (COX-2) derived PGE2 and that repletion of the system with PGE2 would obliterate these effects. Selective COX-2 inhibitor (L-748,731) experiments and separate PGE2 repletion studies were used to test this hypothesis. METHODS: NO production was assessed following 24 h with or without LPS/PGE2 in the presence of n-3 FA, L-748,731 (a selective COX-2 inhibitor), or combination (n-3 FA + L-748,731) treatment. Western blots were used to assess inducible NO synthase protein expression. RESULTS: Independently or in the presence of LPS, treatment with a COX-2 inhibitor significantly increased NO production compared with control, n-3 FA, and combination treatment. NO production in combination treatment is slightly increased compared to n-3 FA treatment. In control cells treated with LPS, PGE2 repletion resulted in a significant decrease in NO. All other treatment groups repleted with PGE2 demonstrated no significant alterations in NO production. Inducible NO synthase protein expression levels were similar to NO production across all treatments. CONCLUSION: These experiments disproved our original hypothesis that the decrease in NO production associated with n-3 FA treatment occurs through a COX-2 derived PGE2 dependent mechanism. Eliminating COX-2 derived PGE2 by a selective inhibitor actually increased NO production. Exogenous PGE2 repletion did not restore the system. Therefore, mechanisms other than n-3 FA associated alterations in COX-2 derived PGE2 are likely involved in decreasing NO production in LPS stimulated M Phi.  相似文献   

10.
OBJECTIVE: To determine the capacity of human subchondral osteoarthritic osteoblasts (Ob) to produce interleukin (IL)-1beta, IL-6, transforming growth factor-beta (TGF-beta) and prostaglandin E(2) (PGE(2)), and determine if a relationship exists between IL-1beta, TGF-beta, PGE(2) and IL-6 production. METHODS: We measured the abundance of IL-1beta, IL-6, TGF-beta and PGE(2) using very sensitive ELISA in conditioned-media of human primary subchondral Ob from normal individuals and osteoarthritic patients. Selective inhibition of IL-6 or IL-6 receptor signaling was performed to determine its effect on PGE(2) production whereas the inhibiton of PGE(2) production was performed to determine its effect on IL-6 production. The expression of bone cell markers and urokinase plasminogen activator (uPA) activity was also determined. RESULTS: Osteoarthritic Ob produced all these factors with greater variability than normal cells. Interestingly, the production of IL-6 and PGE(2) by osteoarthritic Ob separated patients into two subgroups, those whose Ob produced levels comparable to normal (low producers) and those whose Ob produced higher levels (high producers). In those cells classified as high osteoarthritic Ob, PGE(2) and IL-6 levels were increased two- to three-fold and five- to six-fold, respectively, compared with normal. In contrast, while using their IL-6 and PGE(2) production to separate osteoarthritic Ob into low and high producers, we found that IL-1beta levels were similar in normal and all osteoarthritic Ob. Using the same criteria, TGF-beta levels were increased in all osteoarthritic Ob compared with normal. Reducing PGE(2) synthesis by Indomethacin [a cyclo-oxygenase (COX) -1 and -2 inhibitor] reduced IL-6 levels in all osteoarthritic Ob, whereas Naproxen (a more selective COX-2 inhbitor) reduced PGE(2) and IL-6 levels only in the high osteoarthritic group. Conversely, PGE(2) addition to osteoarthritic Ob enhanced IL-6 production in both groups. Moreover, the addition of parathyroid hormone also stimulated IL-6 production to similar normal levels in both osteoarthritic groups. In contrast, using an antibody against IL-6 or IL-6 receptors did not reduce PGE(2) levels in either group. The evaluation of alkaline phosphatase activity, osteocalcin release, collagen type I and uPA activity in osteoarthritic Ob failed to show any differences between these cells regardless to which subgroup they were assigned. CONCLUSIONS: These results indicate that IL-6 and PGE(2) production by subchondral Ob can discriminate two subgroups of osteoarthritic patients that cannot otherwise be separated by their expression of cell markers, and that endogenous PGE(2) levels influence IL-6 synthesis in osteoarthritic Ob.  相似文献   

11.
Acute pancreatitis is characterized by local inflammation and cytokine production, and release is thought to contribute to this process. Nuclear factor (NF)-κB activation and cytokine production are linked and inhibition of NF-κB has been shown to decrease the severity of pancreatitis. We have shown that inhibition of COX-2 ameliorates pancreatitis; however, the mechanism by which this effect occurs is unclear. Swiss Webster mice were injected intraperitoneally with either saline (control) or caerulein (CAE; 50 mg/kg) hourly for 8 hours; mice receiving CAE were further subdivided to receive saline or the cyclooxygenase-2 (COX-2) selective inhibitor (SC-58125; 10 mg, intraperitoneally) at the time of the first injection of CAE. Pancreata were harvested, histologic sections were scored, and protein was extracted to determine cytokine (interleukin [IL]-6, IL-1β) levels and NF-κB subunits by ELISA and NF-κB activation by gel shift. In addition, serum was collected for measurement of cytokines. COX-2 inhibition resulted in decreased inflammation and a decrease in NF-κB activation. IL-6 and IL-1β levels after COX-2 inhibition, however, remained elevated to levels equivalent to those of mice with histologic inflammation after CAE alone. COX-2 inhibition decreases inflammation as well as late-phase NF-κB activation but does not diminish levels of inflammatory cytokines, thus suggesting a two-phase activator of NF-κB. The attenuation of inflammation, despite unaltered cytokine levels, suggests that cytokines may not be critical for the inflammatory phase of pancreatitis. This paper was presented, in part, at the Annual Meeting of the Society for Surgery of the Alimentary Tract, May 18–22, 2003, Orlando, Florida, and published in abstract form (Gastroenterology 2003;124:A501, A804). This work was supported by grants from the National Institutes of Health (RO1 DK48498, PO1 DK35608, and T32 DK07639).  相似文献   

12.

Purpose

Cordycepin, a nucleoside derivative isolated from Cordyceps, has been reported to exert anti-inflammatory, antitumor, antidiabetic and renoprotective effects. Osteoarthritis (OA) is a degenerative joint disease with an inflammatory component that drives the degradation of cartilage extracellular matrix. This study aimed to assess the effects of cordycepin on human OA chondrocytes.

Methods

In this study, human OA chondrocytes were pretreated with cordycepin at 10, 50 or 100 μM and subsequently stimulated with interleukin-1β (IL-1β) (5 ng/ml) for 24 h. Production of prostaglandin E2 (PGE2) and nitric oxide (NO) were evaluated by the Griess reaction and an enzyme-linked immunosorbent assay (ELISA). Gene expression of matrix metalloproteinase (MMP)-13, IL-6, inducible nitric oxide synthase (iNOS) and cyclo-oxygenase (COX-2) was measured by real-time polymerase chain reaction (PCR). MMP-13 and IL-6 proteins in culture medium were determined using cytokine-specific ELISA. Western immunoblotting was used to analyse the iNOS and COX-2 protein production in culture medium. Nuclear factor kappa-B (NF-κB) activity regulation was explored using Western immunoblotting.

Results

Pretreatment with cordycepin significantly inhibited the production of PGE2 and NO induced by IL-1β. Cordycepin also significantly decreased the IL-1β-stimulated gene expression and production of MMP-13, IL-6, iNOS and COX-2 in OA chondrocytes. Pretreatment with cordycepin attenuated IL-1β-induced activation of NF-κB by suppressing degradation of its inhibitory protein nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α) in the cytoplasm.

Conclusions

We show for the first time the anti-inflammatory activity of cordycepin in human OA chondrocytes. Thus, with this unique profile of actions, cordycepin may prove to be a potentially attractive and new therapeutic/preventive agent for OA.  相似文献   

13.
COX-2 induces IL-11 production in human breast cancer cells   总被引:12,自引:0,他引:12  
BACKGROUND: Cyclooxygenase-2 (COX-2) is overexpressed in 40% of human invasive breast cancers. Interleukin-11 (IL-11), a potent mediator of osteoclastogenesis, is involved in breast cancer metastasis to bone. Since breast cancers that overexpress COX-2 are associated with a higher rate of metastasis to bone, we hypothesized that COX-2 expression in tumor cells would induce IL-11. MATERIALS AND METHODS: We transfected MCF-7 (poorly metastatic) and MDA-231 (highly metastatic) human breast cancer cell lines with COX-2 expression vectors. COX-2 overexpression was confirmed by Western blot and PGE(2) immunoassay, and IL-11 production was measured by immunoassay. We also used a nude mouse model to study COX-2 and IL-11 production from breast cancer cells that metastasized to bone. The bone-seeking clones (BSC) were isolated and cultured from the long bone metastases. RESULTS: COX-2 transfection caused an approximately 5- to 6-fold increase in IL-11 production in both MCF-7 and MDA-231 cells. MDA-435S-COX2-BSC (cells isolated from bone metastasis) produced elevated levels of IL-11 and PGE2 (an important mediator of COX-2) as compared to the parental MDA-435S-COX2 cells. Furthermore, a treatment with low 1- to 2-microm concentration NS-398 or Celecoxib significantly reduced the production of IL-11 in COX-2-transfected MDA-231 cells, thus confirming the involvement of COX-2 in IL-11 induction. CONCLUSION: COX-2-mediated production of IL-11 in breast cancer cells may be vital to the development of osteolytic bone metastases in patients with breast cancer, and a COX-2 inhibitor may be useful in inhibiting this process.  相似文献   

14.
Aseptic loosening is a major complication of prosthetic joint surgery and is manifested as chronic inflammation, pain, and osteolysis at the bone implant interface. The osteolysis is believed to be driven by a host inflammatory response to wear debris generated from the implant. In our current study, we use a selective inhibitor (celecoxib) of cyclo-oxygenase 2 (COX-2) and mice that lack either COX-1 (COX-1-/-) or COX-2 (COX-2-/-) to show that COX-2, but not COX-1, plays an important role in wear debris-induced osteolysis. Titanium (Ti) wear debris was implanted surgically onto the calvaria of the mice. An intense inflammatory reaction and extensive bone resorption, which closely resembles that observed in patients with aseptic loosening, developed within 10 days of implantation in wild-type and COX-1-/- mice. COX-2 and prostaglandin E2 (PGE2) production increased in the calvaria and inflammatory tissue overlying it after Ti implantation. Celecoxib (25 mg/kg per day) significantly reduced the inflammation, the local PGE2 production, and osteolysis. In comparison with wild-type and COX-1-/- mice, COX-2-/- mice implanted with Ti had a significantly reduced calvarial bone resorption response, independent of the inflammatory response, and significantly fewer osteoclasts were formed from cultures of their bone marrow cells. These results provide direct evidence that COX-2 is an important mediator of wear debris-induced osteolysis and suggests that COX-2 inhibitors are potential therapeutic agents for the prevention of wear debris-induced osteolysis.  相似文献   

15.
BACKGROUND: Gender influences morbidity and mortality after injury. Hormonal differences are important; however, the role of prostaglandins as mediators in immune dysfunction relating to gender differences after trauma is unclear. We hypothesized that gender-dependent differences in PGE(2) receptor expression and signaling may be involved in immune-related differences. This study determined prostaglandin receptor subtype (EP1-EP4) expression following injury and determined whether gender differences influence EP receptor expression. MATERIALS AND METHODS: BALB/c male and female mice (estrus and pro-estrus) (n = 6 per group) were subjected to femur fracture and 40% hemorrhage (trauma) or sham injury (anesthesia). Seven days later, the splenic macrophages were harvested and stimulated with lipopolysaccharide (Escherichia coli serotype O55:B5). After 6 h mRNA samples were collected for EP receptor mRNA expression and at 24 h supernatants were collected for PGE(2), TNF-alpha, and IL-6 production. RESULTS: The expression of EP2-4 receptors was higher in female pro-estrus mice compared with male mice. EP1 receptor expression was higher in males than pro-estrus females. There was decreased expression of all four receptors after trauma in female estrus compared with control estrus mice. Macrophage PGE(2), TNF-alpha, and IL-6 production was significantly increased in injured female mice compared with female controls but there were no differences in injured male mice compared with male controls. PGE(2) and TNF-alpha production by traumatized male mice were significantly less than that produced by traumatized pro-estrus females. CONCLUSIONS: These data suggest gender-related differences in response to traumatic injury and that alterations in specific EP receptor subtypes may be involved in immune dysfunction after injury. Studies to evaluate targeted modulation of these receptor subtypes may provide further insights to gender-specific differences in the immune response after injury.  相似文献   

16.
BACKGROUND: Inhibition of cyclooxygenase-2 with a reduction of prostaglandin E(2)production by the specific antagonist NS-398 has been shown to have beneficial effects on immune function and survival in a trauma model. Immune function after experimental hemorrhagic shock and subsequent sepsis may be gender-related, with enhanced immunity and better survival in females. However, it remains unclear if the observed effect of NS-398 treatment is gender-related following hemorrhagic shock and subsequent sepsis. METHODS: Male and female CBA/J mice (age: 2-3 months) were subjected to hemorrhagic shock (35 +/- 5 mm Hg for 90 min and fluid resuscitation) or sham operation. At resuscitation and after 20 and 40 h each received either NS-398 10 mg/kg or placebo i.p. At 48 h after resuscitation, either splenocytes and peritoneal macrophages (pM phi) were harvested (n = 8 per group), or polymicrobial sepsis was induced by cecal ligation and puncture (CLP). Following CLP, either 10-day survival (n = 15 per group) was determined or pM phi and splenocytes were harvested 4 h after CLP (n = 8 per group). Cytokine release of pM phi, and splenocyte proliferation and responsiveness in vitro were assessed. RESULTS: Treatment with NS-398 led to lower PGE(2) levels as compared to placebo-treated animals, reaching significance (p < 0.05) in males. Placebo-treated males had significantly depressed proinflammatory immune response (IL-1, IL-6, IL-2, IFN-gamma) after hemorrhagic shock and experienced further suppression by CLP (all, p < 0.05). In contrast, young females displayed unchanged cytokine release after hemorrhagic shock, but a comparable suppression following CLP. Treatment with NS-398 did not influence cytokine release nor survival. CONCLUSIONS: Despite a significant reduction of PGE(2) concentration, NS-398 treatment has no beneficial effects on cytokine release and survival in this model of hemorrhage and subsequent sepsis.  相似文献   

17.
Chronic metabolic acidosis induces net Ca efflux from bone; this osteoclastic bone resorption is mediated by increased osteoblastic prostaglandin synthesis. Cyclooxygenase, the rate-limiting enzyme in prostaglandin synthesis, is present in both constitutive (COX-1) and inducible (COX-2) forms. We report here that acidosis increases both osteoblastic RNA and protein levels for COX-2 and that genetic deficiency or pharmacologic inhibition of COX-2 significantly reduces acid-induced Ca efflux from bone. INTRODUCTION: Incubation of neonatal mouse calvariae in medium simulating physiologic metabolic acidosis induces an increase in osteoblastic prostaglandin E2 (PGE2) release and net calcium (Ca) efflux from bone. Increased PGE2 is necessary for acid-induced bone resorption, because inhibition of cyclooxygenase activity with indomethacin significantly decreases not only PGE2 production but also Ca release. Cyclooxygenase is present in both constitutive (COX-1) and inducible (COX-2) forms. Because COX-2 activity has been implicated in several forms of pathological bone resorption, we tested the hypothesis that COX-2 is critical for acid-induced, cell-mediated bone Ca efflux. MATERIALS AND METHODS: To determine the effect of metabolic acidosis on COX-2 RNA and protein, primary cells isolated from neonatal CD-1 mouse calvariae were cultured in neutral (Ntl) or physiologically acidic medium (Met). RNA levels for COX-2 and COX-1 were measured by quantitative real-time PCR. Levels of COX-2 and COX-1 protein were measured by immunoblot analysis. To determine the effect of acidosis on bone Ca efflux in genetically deficient COX-2 mice, mice heterozygous for the COX-2 knockout (strain B6;129S7-Ptgs2(tm1Jed)/J) were used as breeders, and neonatal calvariae were cultured in Ntl or Met. To determine the effects of the specific COX-2 inhibitor, NS398, on acid-induced bone resorption, CD-1 calvariae were incubated in Ntl or Met with or without NS398 (1 microM). Medium PGE2 was assayed by ELISA. RESULTS: Incubation of mouse calvarial cells in Met significantly increased COX-2 RNA and protein levels without a change in COX-1. Increased COX-2 protein levels in response to Met were also observed in cultured calvariae. Acid-induced, cell-mediated Ca efflux from B6;129S7-Ptgs2(tm1Jed)/J calvariae was dependent on genotype. From 0 to 24 h, when physicochemical Ca efflux predominates, Met significantly increased net Ca efflux in all genotypes. After 24 h, when cell-mediated Ca efflux predominates, Met induced greater Ca efflux from (+/+) than from (+/-), and there was no increase from (-/-). In calvariae from CD-1 mice, NS398 significantly inhibited both the acid-induced increase in PGE2 and Ca release. CONCLUSIONS: The specific acid-induced increase in COX-2 RNA and protein levels and the dependency of the increased Ca efflux on COX-2 activity, as determined by both genetic deficiency and pharmacologic inhibition, show that COX-2 is critical for acid-induced, cell-mediated bone resorption.  相似文献   

18.
19.
The PGD(2) metabolite 15-deoxy-delta12,14 PGJ(2) (15d-PGJ(2)), a potent peroxisome proliferator-activated receptor gamma (PPARgamma) activator, has recently received attention for its potential antiinflammatory effects, but its effect on the cyclooxygenase-2 (COX-2) production is still under debate. We investigated the effect of 15d-PGJ(2) on COX-2 and prostaglandin E(2) (PGE(2)) production in the absence or the presence of interleukin-1beta (IL-1beta) in human osteoarthritic chondrocytes.Data showed that, as expected, IL-1beta induced both COX-2 and PGE(2) production. The addition of 15d-PGJ(2) completely blocked (by 93%) the IL-1beta-induced PGE(2) synthesis, whereas COX-2 level was only partially reduced (by 72%). Interestingly in the absence of any COX-2 inducer, 15d-PGJ(2) up-regulated COX-2 expression without concomitant elevation of PGE(2) synthesis. This study showed that the PPARgamma agonist, 15d-PGJ(2), exerts a dual effect on COX-2 production. The mechanisms by which 15d-PGJ(2) favors COX-2 production will be discussed.  相似文献   

20.
Fukushima H  Jimi E  Okamoto F  Motokawa W  Okabe K 《BONE》2005,36(2):267-275
Periodontitis, an inflammatory disorder of the supporting tissue of teeth, is one of the most common infectious diseases in humans. Periodontal pathogens promote inflammatory cytokines such as interleukin-1 (IL-1) and prostaglandin E2 (PGE2), resulting in alveolar bone destruction. In the present study, we examined the cellular and molecular mechanisms of IL-1-induced osteoclastogenesis using a coculture system of human periodontal ligament (PDL) cells and mouse spleen cells. IL-1alpha induced tartrate-resistant acid phosphatase positive (TRAP+) cell formation in a dose-dependent manner. IL-1alpha up-regulated receptor activator of NF-kappaB ligand (RANKL) and down-regulated osteoprotegerin (OPG) mRNA expression in PDL cells. The addition of cell-permeable PKI, an inhibitor of the cAMP/PKA signaling pathway, to the cocultures 8 h after the IL-1alpha stimulation inhibited IL-1alpha-induced TRAP+ cell formation. IL-1alpha-induced TRAP+ cell formation was completely blocked by either NS398, a selective inhibitor of cyclooxygenase (COX)-2, or PD98059, a specific inhibitor of extracellular signal-regulated kinase (ERK). Pretreatment with NS398 and PD98059 also inhibited both the up-regulation of RANKL and the down-regulation of OPG expression by IL-1alpha in PDL cells. IL-1alpha activated ERK phosphorylation and PD98059 greatly inhibited both COX-2 mRNA expression and PGE(2) production induced by IL-1alpha in PDL cells. In contrast, NEMO binding domain (NBD) peptide, a specific inhibitor of NF-kappaB signaling, did not affect COX2, RANKL, or OPG mRNA expression induced by IL-1alpha. These results suggest that IL-1alpha stimulates osteoclast formation by increasing the expression level of RANKL versus OPG via ERK-dependent PGE2 production in PDL cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号