首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiogenesis, the recruitment of new blood vessels, is an essential component of tumor progression. Malignant brain tumors are highly vascularized and their growth is angiogenesis-dependent. As such, inhibition of the sprouting of new capillaries from pre-existing blood vessels is one of the most promising antiglioma therapeutic approaches. Numerous classes of molecules have been implicated in regulating angiogenesis and, thus, novel agents that target and counteract angiogenesis are now being developed. The therapeutic trials of a number of angiogenesis inhibitors as antiglioma drugs are currently under intense investigation. Preliminary studies of angiogenic blockade in glioblastoma have been promising and several clinical trials are now underway to develop optimum treatment strategies for antiangiogenic agents. This review will cover state-of-the-art antiangiogenic targets for brain tumor treatment and discuss future challenges. An increased understanding of the angiogenic process, the diversity of its inducers and mediators, appropriate drug schedules and the use of these agents with other modalities may lead to radically new treatment regimens to achieve maximal efficacy.  相似文献   

2.
Anti-angiogenic agents for the treatment of brain tumors   总被引:3,自引:0,他引:3  
It is accepted that novel therapeutic approaches are needed for the majority of patients with malignant brain tumors. The vascularity of many primary brain tumors and the encouraging preclinical studies suggest that antiangiogenic agents have the potential to become an important component of multimodality treatment of patients with brain tumors. The understanding of the biology of angiogenesis is improving rapidly, offering the hope for more specific vascular targeting of brain tumor neovasculature. Neuroimaging techniques evaluating the angiogenic process and the impact of antiangiogenic agents will be an important tool for the rapid development of these novel therapeutic agents.  相似文献   

3.
Integrins are expressed in tumor cells and tumor endothelial cells, and likely play important roles in glioma angiogenesis and invasion. We investigated the anti‐glioma mechanisms of cilengitide (EMD121974), an αvβ3 integrin inhibitor, utilizing the novel invasive glioma models, J3T‐1 and J3T‐2. Immunohistochemical staining of cells in culture and brain tumors in rats revealed positive αvβ3 integrin expression in J3T‐2 cells and tumor endothelial cells, but not in J3T‐1 cells. Established J3T‐1 and J3T‐2 orthotopic gliomas in athymic rats were treated with cilengitide or solvent. J3T‐1 gliomas showed perivascular tumor cluster formation and angiogenesis, while J3T‐2 gliomas showed diffuse single‐cell infiltration without obvious angiogenesis. Cilengitide treatment resulted in a significantly decreased diameter of the J3T‐1 tumor vessel clusters and its core vessels when compared with controls, while an anti‐invasive effect was shown in the J3T‐2 glioma with a significant reduction of diffuse cell infiltration around the tumor center. The survival of cilengitide‐treated mice harboring J3T‐1 tumors was significantly longer than that of control animals (median survival: 57.5 days and 31.8 days, respectively, P < 0.005), while cilengitide had no effect on the survival of mice with J3T‐2 tumors (median survival: 48.9 days and 48.5, P = 0.69). Our results indicate that cilengitide exerts a phenotypic anti‐tumor effect by inhibiting angiogenesis and glioma cell invasion. These two mechanisms are clearly shown by the experimental treatment of two different animal invasive glioma models.  相似文献   

4.
Brain tumors are a heterogeneous group of neoplasms with different origins, pathobiologies, treatments and prognoses. The collective contributions from the fields of neuro-oncology, neurosurgery, radiation oncology, neurology, neuropathology, neuroradiology and molecular biology have all led to significant advances in the treatment of certain brain tumors. Ideas from these fields, under the cooperative umbrella of clinical cancer trial consortia, have been tested in large-scale studies. As a result, patient survivals have increased markedly for these tumor types. Unfortunately, there are certain brain tumors in childhood, such as the diffuse intrinsic pontine glioma and atypical teratoid rhabdoid tumor, for which survival advantages have not been found. This review will discuss the current and possible future therapies of the most common pediatric brain tumors and highlight some of the novel imaging modalities that are used pre- and intraoperatively.  相似文献   

5.
Gliomas are the most common form of primary brain tumors and are associated with a poor clinical outcome. The molecular mechanisms that contribute to gliomagenesis have become increasingly clear in recent years, yet much remains to be learned. This is particularly true for the role of microRNAs in gliomagenesis, as an appreciation for the significance of aberrant miRNA expression in human cancer has only emerged in the last 5 years. It is now evident that microRNAs regulate a wide variety of tumorigenic processes including cellular proliferation, differentiation, angiogenesis, invasion, and apoptosis. Here we review the current state of knowledge related to the role of microRNAs in glial tumor development. This is a rapidly evolving field and it is likely that we have only begun to appreciate the involvement of microRNAs in relation to glioma formation, and the therapeutic potential of microRNAs to improve outcome for glioma patients.  相似文献   

6.
Given the extensive histomorphological heterogeneity of high‐grade gliomas, in terms of extent of invasiveness, angiogenesis, and necrosis and the poor prognosis for patients despite the advancements made in therapeutic management. The identification of genes associated with these phenotypes will permit a better definition of glioma heterogeneity, which may ultimately lead to better treatment strategies. CXCR4, a cell surface chemokine receptor, is implicated in the growth, invasion, angiogenesis and metastasis in a wide range of malignant tumors, including gliomas. It is overexpressed in glioma cells according to tumor grade and in glioma tumor initiating cells. There have been various reports suggesting that CXCR4 is required for tumor proliferation, invasion, angiogenesis, and modulation of the immune response. It may also serve as a prognostic factor in characterizing subsets of glioblastoma multiforme, as patients with CXCR4‐positive gliomas seem to have poorer prognosis after surgery. Aim of this review was to analyze the current literature on biological effects of CXCR4 activity and its role in glioma pathogenesis. A better understanding of CXCR4 pathway in glioma will lead to further investigation of CXCR4 as a novel putative therapeutic target. GLIA 2014;62:1015–1023  相似文献   

7.
In the normal adult brain, blood vessel formation is tightly down-regulated. However, pathologic processes such as brain tumors can increase the proportion of endothelial cells involved in angiogenesis. When this process is initiated, a complex series of timed events result in new vessel formation. In this review, we will describe the process of angiogenesis in the central nervous system. We will discuss the roles of Vascular Endothelial Growth Factor (VEGF), Fibroblast Growth Factor (FGF), Angiopoietins, Platelet Derived Growth Factor (PDGF), and integrins in angiogenesis. We will also look into their significance in disease processes such as neoplasms, arteriovenous malformations (AVM), and Moyamoya disease.  相似文献   

8.
The cellular and molecular mechanisms of tumor angiogenesis and its prospects for anti-angiogenic cancer therapy are major issues in almost all current concepts of both cancer biology and targeted cancer therapy. Currently, (1) sprouting angiogenesis, (2) vascular co-option, (3) vascular intussusception, (4) vasculogenic mimicry, (5) bone marrow-derived vasculogenesis, (6) cancer stem-like cell-derived vasculogenesis and (7) myeloid cell-driven angiogenesis are all considered to contribute to tumor angiogenesis. Many of these processes have been described in developmental angiogenesis; however, the relative contribution and relevance of these in human brain cancer remain unclear. Preclinical tumor models support a role for sprouting angiogenesis, vascular co-option and myeloid cell-derived angiogenesis in glioma vascularization, whereas a role for the other four mechanisms remains controversial and rather enigmatic. The anti-angiogenesis drug Avastin (Bevacizumab), which targets VEGF, has become one of the most popular cancer drugs in the world. Anti-angiogenic therapy may lead to vascular normalization and as such facilitate conventional cytotoxic chemotherapy. However, preclinical and clinical studies suggest that anti-VEGF therapy using bevacizumab may also lead to a pro-migratory phenotype in therapy resistant glioblastomas and thus actively promote tumor invasion and recurrent tumor growth. This review focusses on (1) mechanisms of tumor angiogenesis in human malignant glioma that are of particular relevance for targeted therapy and (2) controversial issues in tumor angiogenesis such as cancer stem-like cell-derived vasculogenesis and bone-marrow-derived vasculogenesis.  相似文献   

9.
New molecular targets in malignant gliomas   总被引:2,自引:0,他引:2  
PURPOSE OF REVIEW: The purpose of this review is to provide an update on the identification of novel molecular targets in neurooncology and their translation into clinical practice. RECENT FINDINGS: Basic research is providing novel insights into the complex molecular pathways involved in the pathogenesis of malignant glioma transformation and progression. By unraveling the intricate signaling cascades responsible for sustained proliferation, angiogenesis, invasion and resistance to apoptosis in glioma, we are now confronted with an ever-expanding list of molecular targets. Clinical studies using single targeted therapies have been disappointing, therefore providing the impetus for novel combination drug trials. The potential for combination regimens brings the challenge of testing an exponentially growing number of treatments. Success will depend on an integration of novel treatment regimens and innovative trial designs combined with careful patient selection based on the results of molecular profiling of tumor tissue. SUMMARY: Technologic advances in oncogenomics, proteomics and functional genomic screens (such as synthetic lethality) are providing mechanisms to rapidly identify the critical targets whose inactivation will lead to a substantive tumor growth arrest. Tumor tissue biomarkers that identify those tumors most likely to respond to a specific inhibitor are needed as a mechanism toward tailoring therapy to the individual patient with malignant glioma.  相似文献   

10.
High-grade brain tumors are heterogeneous with respect to the composition of bona fide tumors cells and with respect to a range of intermingling parenchymal cells. Glioblastomas harbor multiple cell types, some with increased tumorigenicity and stem cell-like capacity. The stem-like cells may be the cells of origin for tumor relapse. However, the tumor-associated parenchymal cells-such as vascular cells, microglia, peripheral immune cells, and neural precursor cells-also play a vital role in controlling the course of pathology. In this review, we describe the multiple interactions of bulk glioma cells and glioma stem cells with parenchymal cell populations and highlight the pathological impact and signaling pathways known for these types of cell-cell communication. The tumor-vasculature not only nourishes glioblastomas, but also provides a specialized niche for these stem-like cells. In addition, microglial cells, which can contribute up to 30% of a brain tumor mass, play a role in glioblastoma cell invasion. Moreover, non-neoplastic astrocytes can be converted into a reactive phenotype by the glioma microenvironment and can then secrete a number of factors which influences tumor biology. The young brain may have the capacity to inhibit gliomagenesis by the endogenous neural stem and progenitor cells, which secrete tumor suppressive factors. The factors, pathways, and interactions described in this review provide a new prospective on the cell biology of primary brain tumors, which may ultimately generate new treatment modalities. However, our picture of the multiple interactions between parenchymal and tumor cells is still incomplete. ? 2011 Wiley-Liss, Inc.  相似文献   

11.
The recently published comprehensive profiles of genomic alterations in glioma have led to a refinement in our understanding of the molecular events that underlie this cancer. Using state-of-the-art genomic tools, several laboratories have created and characterized accurate genetically engineered mouse models of glioma based on specific genetic alterations observed in human tumors. These in vivo brain tumor models faithfully recapitulate the histopathology, etiology, and biology of gliomas and provide an exceptional experimental system to discover novel therapeutic targets and test therapeutic agents. This review focuses on mouse models of glioma with a special emphasis on genetically engineered models developed around key genetic glioma signature mutations in the PDGFR, EGFR, and NF1 genes and pathways. The resulting animal models have provided insight into many fundamental and mechanistic facets of tumor initiation, maintenance and resistance to therapeutic intervention and will continue to do so in the future.  相似文献   

12.
Glutamate and the biology of gliomas   总被引:2,自引:0,他引:2  
de Groot J  Sontheimer H 《Glia》2011,59(8):1181-1189
Several important and previously unrecognized roles for the neurotransmitter glutamate in the biology of primary brain tumors have recently been elucidated. Glutamate is produced and released from glioma cells via the system x(c) (-) cystine glutamate transporter as a byproduct of glutathione synthesis. Glutamate appears to play a central role in the malignant phenotype of glioma via multiple mechanisms. By binding to peritumoral neuronal glutamate receptors, glutamate is responsible for seizure induction and similarly causes excitotoxicity, which aids the expansion of tumor cells into the space vacated by destroyed tissue. Glutamate also activates ionotropic and metabotropic glutamate receptors on glioma cells in a paracrine and autocrine manner. α-Amino-3-hydroxy-5-methyl-4-isoaxazolepropionate acid (AMPA) glutamate receptors lack the GluR2 subunit rendering them Ca(2+) permeable and capable of activating the AKT and MAPK pathways. Furthermore, these receptors are critical in aiding the invasion of glioma cells into normal brain. AMPA-Rs accumulate at focal adhesion sites where they may indirectly mediate interactions between the extracellular matrix and integrins. Glutamate receptor stimulation results in activation of focal adhesion kinase, which is critical to the regulation of growth factor and integrin-stimulated cell motility and invasion. The multitude of effects of glutamate on glioma biology supports the rationale for pharmacological targeting of glutamate receptors and transporters. Several ongoing and recently completed clinical trials are exploring the therapeutic potential of interrupting glutamate-mediated brain tumor growth.  相似文献   

13.
An outstanding characteristic of gliomas is their infiltration into brain parenchyma, a property that impairs complete surgical resection; consequently, these tumors might recur, resulting in a high mortality rate. Gliomas invade along preferential routes, such as those along white matter tracts and in the perineuronal and perivascular spaces. Brain extracellular components and their partners and modulators play a crucial role in glioma cell invasion. This review presents an extensive survey of the literature, showing how the brain extracellular matrix (ECM) is modulated during the glioma infiltration process. We explore aspects of ECM interaction with glioma cells, reviewing the main glycosaminoglycans, glycoproteins and proteoglycans. We discuss the roles of ECM‐binding proteins, including CD44, RHAMM, integrins and axonal guidance molecules, and highlight the role of proteases and glycosidases in glioma infiltration; in binding and release chemokines, cytokines and growth factors ; and in generating new bioactive ECM fragments. We also consider the roles of cytoskeletal signaling, angiogenesis, miRNAs and the glial‐to‐mesenchymal transition linked to glioma invasion. We closely discuss therapeutic approaches based on the modulation of the extracellular matrix, targeting the control of glioma infiltration, its relative failure in clinical trials, and potential means to overcome this difficulty.  相似文献   

14.
High-grade brain tumors are heterogeneous with respect to the composition of bona fide tumor cells and with respect to a range of intermingling parenchymal cells. Glioblastomas harbor multiple cell types, some with increased tumorigenicity and stem cell-like capacity. The stem-like cells maybe the cells of origin for tumor relapse. However, the tumor-associated parenchymal cells such as vascular cells,microglia, peripheral immune cells, and neural precursor cells also play a vital role in controlling the course of pathology.In this review, we describe the multiple interactions of bulk glioma cells and glioma stem cells with parenchymal cell populations and highlight the pathological impact as well as signaling pathways known for these types of cell-cell communication. The tumor-vasculature not only nourishes glioblastomas, but also provides a specialized niche for these stem-like cells. In addition, microglial cells,which can contribute up to 30% of a brain tumor mass,play a role in glioblastoma cell invasion. Moreover, non-neoplastic astrocytes can be converted into a reactive phenotype by the glioma microenvironment and can then secrete a number of factors which influences tumor biology. The young brain may have the capacity to inhibit gliomagenesis by the endogenous neural precursor cells, which secrete tumor suppressive factors. The factors, pathways, and interactions described in this review provide a new prospective on the cell biology of primary brain tumors, which may ultimately generate new treatment modalities. However, our picture of the multiple interactions between parenchymal and tumor cells is still incomplete.  相似文献   

15.
Infiltration of cancer cells into normal tissue is a hallmark of malignant gliomas and compromises treatment options. A lack of appropriate models limits the study of this invasion in vivo, which makes it difficult to fully understand its anatomy and the role of dynamic interactions with structures of the normal brain. We developed a novel methodology by utilizing multiphoton laser scanning microscopy (MPLSM) to image the movement of glioma cells deep within the normal brain of live mice in real time. This allowed us to track the invasion of individual RFP‐expressing GL261 cells in relation to perfused vasculature or GFP‐labeled endothelial cells repetitively over days, up to a depth of 0.5 mm. Glioma cells moved faster and more efficiently when the abluminal site of a blood vessel was utilized for invasion. Cells that invaded perivascularly were frequently found next to (a) multiple capillary structures where microvessels run parallel to each other, (b) capillary loops or glomeruloid‐like bodies, and (c) dilated capillaries. Dynamic MPLSM for more than 48 h revealed that single invasive glioma cells induced intussusceptive microvascular growth and capillary loop formation, specifically at the microvascular site with which they had contact. As the main tumor grew by cooption of existing brain vessels, these peritumoral vascular changes may create a beneficial environment for glioma growth. In conclusion, our study revealed new mechanisms of peritumoral angiogenesis and invasion in gliomas, providing an explanation for their interdependence. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Patients with malignant primary and metastatic brain tumors have a poor prognosis, despite developments in diagnostic and therapeutic modalities. Therefore in the past decade a search for new therapeutic possibilities has started. The inhibition of angiogenesis, the sprouting of new capillaries from preexisting vasculature, which is an absolute requirement for the growth of tumors beyond a size of a few cubic millimeters, is one of the most promising approaches with which to influence tumor growth. This review focuses on the critical role of angiogenesis in the development of normal brain and the blood-brain barrier. We discuss the importance of angiogenesis in the formation of malignant brain tumors and in blood-brain barrier function in these tumors and possible consequences of altered blood-brain barrier properties for antiangiogenic therapy. Furthermore, results of current clinical trials with antiangiogenic drugs are reviewed, and clinical perspectives of antiangiogenic therapy in malignant brain tumors are outlined. Received: 25 May 1999 Accepted: 7 January 2000  相似文献   

17.
Primary brain tumors, particularly glioblastomas (GB), remain a challenge for oncology. An element of the malignant brain tumors' aggressive behavior is the fact that GB are among the most densely vascularized tumors. To determine some of the molecular regulations occuring at the brain tumor endothelium level during tumoral progression would be an asset in understanding brain tumor biology. Caveolin-1 is an essential structural constituent of caveolae that has been implicated in mitogenic signaling, oncogenesis, and angiogenesis. In this work we investigated regulation of caveolin-1 expression in brain endothelial cells (ECs) under angiogenic conditions. In vitro, brain EC caveolin-1 is down-regulated by angiogenic factors treament and by hypoxia. Coculture of brain ECs with tumoral cells induced a similar down-regulation. In addition, activation of the p42/44 MAP kinase is demonstrated. By using an in vivo brain tumor model, we purified ECs from gliomas as well as from normal brain to investigate possible regulation of caveolin-1 expression in tumoral brain vasculature. We show that caveolin-1 expression is strikingly down-regulated in glioma ECs, whereas an increase of phosphorylated caveolin-1 is observed. Whole-brain radiation treatment, a classical way in which GB is currently being treated, resulted in increased caveolin-1 expression in tumor isolated ECs. The level of tumor cells spreading around newly formed blood vessels was also elevated. The regulation of caveolin-1 expression in tumoral ECs may reflect the tumoral vasculature state and correlates with angiogenesis kinetics.  相似文献   

18.
Gliomas are highly invasive, lethal brain tumors. Tumor-associated proteases play an important role in glioma progression. Annexin A2 is overexpressed in many cancers and correlates with increased plasmin activity on the tumor cell surface, which mediates degradation of extracellular matrix and promotes neoangiogenesis to facilitate tumor growth. In this study, we used two glioma cell lines, mouse GL261-EGFP and rat C6/LacZ, as well as stable clones transfected with an annexin A2 knockdown construct. We find that the annexin A2 knockdown decreased glioma cell migration in vitro and decreased membrane-bound plasmin activity. In vivo, we injected the glioma cells into the rodent brain and followed glioma progression. Knockdown of annexin A2 in glioma cells decreased tumor size and slowed tumor progression, as evidenced by decreased invasion, angiogenesis, and proliferation, as well as increased apoptosis in the tumor tissue of the annexin A2 knockdown group. Moreover, we report that the levels of expression of annexin A2 in human glioma samples correlate with their degree of malignancy. Together, our findings demonstrate that inhibition of annexin A2 expression in glioma cells could become a new target for glioma therapy.  相似文献   

19.
Blood vessels in brain tumors, particularly glioblastomas, have been shown to express CD90. CD90+ cells in and around blood vessels in cancers including brain tumors have been identified as endothelial cells, cancer stem cells, fibroblasts or pericytes. In this study, we aimed to determine the nature or type(s) of cells that express CD90 in human brain tumors as well as an experimental rat glioma model by double immunofluorescence staining. The majority of CD90+ cells in human glioblastoma tissue expressed CD31, CD34 and von Willebrand factor, suggesting that they were endothelial cells. Vasculatures in a metastatic brain tumor and meningioma also expressed CD90. CD90+ cells often formed glomeruloid structures, typical of angiogenesis in malignant tumors, not only in glioblastoma but also in metastatic tumors. Some cells in the middle and outer layers of the vasculatures expressed CD90. Similar results were obtained in the rat glioma model. There were cells expressing both α‐smooth muscle actin and CD90 in the middle layer of blood vessels, indicating that smooth muscle cells and/or pericytes may express CD90. CD90+ vasculatures were surrounded by tumor‐associated macrophages (TAMs). Thus, in addition to endothelial cells, some other types of cells, such as smooth muscle cells, pericytes and fibroblasts constituting the vasculature walls in brain tumors expressed CD90. Because CD90 has been shown to interact with integrins expressed by circulating monocytes, CD90 might be involved in angiogenesis through recruitment and functional regulation of TAMs in tumors. CD90+ vasculatures may also interact with tumor cells through interactions with integrins. Because CD90 was not expressed by vasculatures in normal brain tissue, it might be a possible therapeutic target to suppress angiogenesis and tumor growth.  相似文献   

20.
Karl H. Plate  Werner Risau 《Glia》1995,15(3):339-347
One event that accompanies glioma progression is the upregulation of angiogenesis. Low-grade gliomas are moderately vascularized tumors whereas high-grade gliomas show prominent microvascular proliferations and areas of high vascular density. To analyze the molecular mechanisms underlying glioma angiogenesis, we studied the expression of vascular endothelial growth factor (VEGF) and its tyrosine kinase receptors VEGFR-1 and VEGFR-2 during normal brain development and glioma-induced angiogenesis. Our results suggest a paracrine control of angiogenesis and endothelial cell proliferation that is tightly regulated and transient in the embryonic brain, switched off in the normal adult brain, and turned on in tumor cells (VEGF) and the host vasculature (VEGFR-1 and ?2) during tumor progression. It is unknown how VEGF and VEGF receptors are upregulated during glioma angiogenesis, but there is recent evidence that VEGF as well as endogenous inhibitors of angiogenesis could be under control of the tumor suppressor genes p53 and VHL. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号