首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CD150 receptor is expressed on activated T and B lymphocytes, dendritic cells, and monocytes. A TxYxxV/I motif in the CD150 cytoplasmic tail can bind different SH2-containing molecules, including tyrosine and inositol phosphatases, Src family kinases, and adaptor molecules. To analyze CD150-initiated signal transduction pathways, we used DT40 B-cell sublines deficient in these molecules. CD150 ligation on DT40 transfectants induced the extracellular signal-regulated kinase (ERK) pathway, which required SH2-containing inositol phosphatase (SHIP) but not SH2 domain protein 1A (SH2D1A). CD150-mediated Akt phosphorylation required Syk and SH2D1A, was negatively regulated by Lyn and Btk, but was SHIP independent. Lyn directly phosphorylated Y327 in CD150, but the Akt pathway did not depend on CD150 tyrosine phosphorylation and CD150-SHP-2 association. Analysis of CD150 and SH2D1A expression in non-Hodgkin and Hodgkin lymphomas revealed stages of B-cell differentiation where these molecules are expressed alone or coexpressed. Signaling studies in Hodgkin disease cell lines showed that CD150 is linked to the ERK and Akt pathways in neoplastic B cells. Our data support the hypothesis that CD150 and SH2D1A are coexpressed during a narrow window of B-cell maturation and SH2D1A may be involved in regulation of B-cell differentiation via switching of CD150-mediated signaling pathways.  相似文献   

2.
T-cell activation requires cooperative signals generated by the T-cell antigen receptor zeta-chain complex (TCR zeta-CD3) and the costimulatory antigen CD28. CD28 interacts with three intracellular proteins-phosphatidylinositol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase ITK (formerly TSK or EMT), and the complex between growth factor receptor-bound protein 2 and son of sevenless guanine nucleotide exchange protein (GRB-2-SOS). PI 3-kinase and GRB-2 bind to the CD28 phosphotyrosine-based Tyr-Met-Asn-Met motif by means of intrinsic Src-homology 2 (SH2) domains. The requirement for tyrosine phosphorylation of the Tyr-Met-Asn-Met motif for SH2 domain binding implicates an intervening protein-tyrosine kinase in the recruitment of PI 3-kinase and GRB-2 by CD28. Candidate kinases include p56Lck, p59Fyn, zeta-chain-associated 70-kDa protein (ZAP-70), and ITK. In this study, we demonstrate in coexpression studies that p56Lck and p59Fyn phosphorylate CD28 primarily at Tyr-191 of the Tyr-Met-Asn-Met motif, inducing a 3- to 8-fold increase in p85 (subunit of PI 3-kinase) and GRB-2 SH2 binding to CD28. Phosphatase digestion of CD28 eliminated binding. In contrast to Src kinases, ZAP-70 and ITK failed to induce these events. Further, ITK binding to CD28 was dependent on the presence of p56Lck and is thus likely to act downstream of p56Lck/p59Fyn in a signaling cascade. p56Lck is therefore likely to be a central switch in T-cell activation, with the dual function of regulating CD28-mediated costimulation as well as TCR-CD3-CD4 signaling.  相似文献   

3.
Inhibitory killer Ig-like receptors (KIR), expressed by human natural killer cells and effector memory CD8(+) T-cell subsets, bind HLA-C molecules and suppress cell activation through recruitment of the Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1). To further analyze the still largely unclear role of inhibitory KIR receptors on CD4(+) T cells, KIR2DL1 transfectants were obtained from a CD4(+) T-cell line and primary cells. Transfection of CD4(+) T cells with KIR2DL1 dramatically increased the T-cell receptor (TCR)-induced production of interleukin-2 independently of ligand binding but inhibited TCR-induced activation after ligation. KIR-mediated costimulation of TCR activation involves intact KIR2DL1-ITIM phosphorylation, SHP-2 recruitment, and PKC- phosphorylation. Synapses leading to activation were characterized by an increase in the recruitment of p-Tyr, SHP-2, and p-PKC-, but not of SHP-1. Interaction of KIR2DL1 with its ligand led to a strong synaptic accumulation of KIR2DL1 and the recruitment of SHP-1/2, inhibiting TCR-induced interleukin-2 production. KIR2DL1 may induce 2 opposite signaling outputs in CD4(+) T cells, depending on whether the KIR receptor is bound to its ligand. These data highlight unexpected aspects of the regulation of T cells by KIR2DL1 receptors, the therapeutic manipulation of which is currently being evaluated.  相似文献   

4.
CD150 (signaling lymphocyte activation molecule [SLAM]) is a self-ligand cell surface glycoprotein expressed on T cells, B cells, macrophages, and dendritic cells. To further explore the role of CD150 signaling in costimulation and T(H)1 priming we have generated a panel of rat antimouse CD150 monoclonal antibodies. CD150 cell surface expression is up-regulated with rapid kinetics in activated T cells and lipopolysaccharide/interferon gamma (IFN-gamma)-activated macrophages. Anti-CD150 triggering induces strong costimulation of T cells triggered through CD3. DNA synthesis of murine T cells induced by anti-CD150 is not dependent on SLAM-associated protein (SAP, SH2D1A), because anti-CD150 induces similar levels of DNA synthesis in SAP(-/-) T cells. Antibodies to CD150 also enhance IFN-gamma production both in wild-type and SAP(-/-) T cells during primary stimulation. The level of IFN-gamma production is higher in SAP(-/-) T cells than in wild-type T cells. Anti-CD150 antibodies also synergize with interleukin 12 (IL-12) treatment in up-regulation of IL-12 receptor beta(2) mRNA during T(H)1 priming, and inhibit primary T(H)2 polarization in an IFN-gamma-dependent fashion. Cross-linking CD150 on CD4 T cells induces rapid serine phosphorylation of Akt/PKB. We speculate that this is an important pathway contributing to CD150-mediated T-cell proliferation.  相似文献   

5.
Sayós J  Martín M  Chen A  Simarro M  Howie D  Morra M  Engel P  Terhorst C 《Blood》2001,97(12):3867-3874
X-linked lymphoproliferative disease (XLP) is a rare immune disorder commonly triggered by infection with Epstein-Barr virus. Major disease manifestations include fatal acute infectious mononucleosis, B-cell lymphoma, and progressive dys-gammaglobulinemia. SAP/SH2D1A, the product of the gene mutated in XLP, is a small protein that comprises a single SH2 domain and a short tail of 26 amino acids. SAP binds to a specific motif in the cytoplasmic tails of the cell surface receptors SLAM and 2B4, where it blocks recruitment of the phosphatase SHP-2. Here it is reported that Ly-9 and CD84, 2 related glycoproteins differentially expressed on hematopoietic cells, also recruit SAP. Interactions between SAP and Ly-9 or CD84 were analyzed using a novel yeast 2-hybrid system, by COS cell transfections and in lymphoid cells. Recruitment of SAP is most efficient when the specific tyrosine residues in the cytoplasmic tails of Ly-9 or CD84 are phosphorylated. It is concluded that in activated T cells, the SAP protein binds to and regulates signal transduction events initiated through the engagement of SLAM, 2B4, CD84, and Ly-9. This suggests that combinations of dysfunctional signaling pathways initiated by these 4 cell surface receptors may cause the complex phenotypes of XLP. (Blood. 2001;97:3867-3874)  相似文献   

6.
To define the T-cell receptor signal transduction motif, we have transfected human and murine T-cell lines with a chimeric receptor consisting of the extracellular and transmembrane domains of human CD8 alpha and the membrane-proximal portion of CD3 zeta containing at its C terminus either an 18-amino acid segment (NQLYNELNLGRREEYDVL) or alanine-scanning point mutant derivatives. Crosslinking of the extracellular domain of the chimera is sufficient to initiate Ca2+ flux, interleukin 2 production, and tyrosine phosphorylation of cellular proteins including the chimera. Subsequently, the chimera becomes associated with several tyrosine-phosphorylated proteins, among them the 70-kDa protein tyrosine kinase ZAP70. Mutational data identify the T-cell activation motif as Y(X)2L(X)7Y(X)2L and show that each of the four designated residues is necessary for the above activation events. Recombinant protein containing the two tandem SH2 domains derived from ZAP70 binds to a synthetic peptide corresponding to the above 18-amino acid motif but only when both tyrosines are phosphorylated; in contrast, little or no binding is observed to monophosphorylated or nonphosphorylated analogues. These results imply that after receptor crosslinking in T cells, and by inference also in B cells and mast cells, the motif is phosphorylated on both tyrosine residues, thereafter serving as a docking site for protein tyrosine kinases containing tandem SH2 domains.  相似文献   

7.
Newman DK  Hamilton C  Newman PJ 《Blood》2001,97(8):2351-2357
Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1, CD31) is a 130-kd member of the immunoglobulin gene superfamily that is expressed on the surface of platelets, endothelial cells, myeloid cells, and certain lymphocyte subsets. PECAM-1 has recently been shown to contain functional immunoreceptor tyrosine-based inhibitory motifs (ITIMs) within its cytoplasmic domain, and co-ligation of PECAM-1 with the T-cell antigen receptor (TCR) results in tyrosine phosphorylation of PECAM-1, recruitment of Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2), and attenuation of TCR-mediated cellular signaling. To determine the molecular basis of PECAM-1 inhibitory signaling in lymphocytes, the study sought to (1) establish the importance of the PECAM-1 ITIMs for its inhibitory activity, (2) determine the relative importance of SHP-2 versus SHP-1 in mediating the inhibitory effect of PECAM-1, and (3) identify the protein tyrosine kinases required for PECAM-1 tyrosine phosphorylation in T cells. Co-ligation of wild-type PECAM-1 with the B-cell antigen receptor expressed on chicken DT40 B cells resulted in a marked reduction of calcium mobilization-similar to previous observations in T cells. In contrast, co-ligation of an ITIM-less form of PECAM-1 had no inhibitory effect. Furthermore, wild-type PECAM-1 was unable to attenuate calcium mobilization in SHP-2-deficient DT40 variants despite abundant levels of SHP-1 in these cells. Finally, PECAM-1 failed to become tyrosine phosphorylated in p56(lck)-deficient Jurkat T cells. Together, these data provide important insights into the molecular requirements for PECAM-1 regulation of antigen receptor signaling.  相似文献   

8.
9.
We previously found that the adapter protein Gab1 (110 kD) is tyrosine-phosphorylated and forms a complex with SHP-2 and PI-3 kinase upon stimulation through either the interleukin-3 receptor (IL-3R) or gp130, the common receptor subunit of IL-6-family cytokines. In this report, we identified another adapter molecule (100 kD) interacting with SHP-2 and PI-3 kinase in response to various stimuli. The molecule displays striking homology to Gab1 at the amino acid level; thus, we named it Gab2. It contains a PH domain, proline-rich sequences, and tyrosine residues that bind to SH2 domains when they are phosphorylated. Gab1 is phosphorylated on tyrosine upon stimulation through the thrombopoietin receptor (TPOR), stem cell factor receptor (SCFR), and T-cell and B-cell antigen receptors (TCR and BCR, respectively), in addition to IL-3R and gp130. Tyrosine phosphorylation of Gab2 was induced by stimulation through gp130, IL-2R, IL-3R, TPOR, SCFR, and TCR. Gab1 and Gab2 were shown to be substrates for SHP-2 in vitro. Overexpression of Gab2 enhanced the gp130 or Src-related kinases-mediated ERK2 activation as that of Gab1 did. These data indicate that Gab-family molecules act as adapters for transmitting various signals.  相似文献   

10.
Eissmann P  Beauchamp L  Wooters J  Tilton JC  Long EO  Watzl C 《Blood》2005,105(12):4722-4729
Triggering of 2B4 (CD244) can induce natural killer (NK)-cell activation, costimulation, or even inhibition of NK-cell activity. Here, we investigate the molecular basis for the different signals generated by 2B4. We show that the first immunoreceptor tyrosine-based switch motif (ITSM) within the cytoplasmic tail of 2B4 is sufficient for 2B4-mediated NK-cell activation, whereas the third ITSM can negatively influence 2B4 signaling. We further identify signaling molecules that associate with 2B4. Signaling lymphocyte activation molecule-associated protein (SAP) can bind to all 4 ITSMs of 2B4 in a phosphorylation-dependent manner. The phosphorylated third ITSM can additionally recruit the phosphatases SHP-1, SHP-2, SHIP, and the inhibitory kinase Csk. SAP acts as an inhibitor of interactions between 2B4 and these negative regulatory molecules, explaining how 2B4 inhibits NK-cell activation in the absence of functional SAP, as occurs in cells from patients with X-linked lymphoproliferative syndrome (XLP). Recently, another function for SAP was proposed: SAP can recruit the kinase Fyn to the SLAM (CD150) immune receptor. We now show that Fyn can also associate with phosphorylated 2B4. Finally, we demonstrate that Fyn and Csk can both phosphorylate 2B4, suggesting a possible mechanism of 2B4 phosphorylation.  相似文献   

11.
The T-cell antigen receptor (TCR) consists of an antigen-binding heterodimer, termed Ti, which is noncovalently associated with the invariant CD3 subunits (gamma, delta, epsilon, zeta, and eta). The CD3 zeta and -eta subunits form either homodimeric or heterodimeric structures in turn associated with the other components of the TCR complex. This feature increases the structural complexity of TCRs by creating "isoforms." Both CD3 zeta and -eta are thought to play an important role in signal transduction triggered by antigen/major histocompatibility complex. To compare signaling functions of TCR isoforms, MA5.8, a CD3 zeta-eta- variant of the cytochrome c-specific, I-Ek-restricted T-cell hybridoma 2B4.11, was stably transfected with cDNAs encoding CD3 zeta and/or CD3 eta, and resulting clones were characterized. The findings indicate that signals inducing Ca2+ mobilization, phosphatidylinositol turnover, and interleukin 2 production are each transmitted by the above TCR isoforms. In contrast, tyrosine phosphorylation of the CD3 zeta subunit but not the CD3 eta subunit follows TCR stimulation. Given the general importance of tyrosine phosphorylation for receptor signaling, it is likely that this difference between TCR isoforms plays a regulatory role in T-lineage function by qualitatively or quantitatively altering signaling events.  相似文献   

12.
The T-cell antigen CD28 provides a costimulatory signal that is required for T-cell proliferation. T-cell receptor zeta/CD3 engagement without CD28 ligation leads to a state of nonresponsiveness/anergy, thereby implicating CD28 in the control of peripheral tolerance to foreign antigens or tumors. A key unresolved question has concerned the mechanism by which CD28 generates intracellular signals. Phosphatidylinositol 3-kinase (PI 3-kinase) is a lipid kinase with Src-homology 2 (SH2) domain(s) that binds to the platelet-derived growth factor receptor (PDGF-R), an interaction that is essential for signaling by growth factor. In this study, we demonstrate that CD28 binds to PI 3-kinase by means of a Y(P)MXM motif within its cytoplasmic tail. CD28-associated PI 3-kinase was detected by lipid kinase and HPLC analysis as well as by reconstitution experiments with baculoviral-expressed p85 subunit of PI 3-kinase. CD28 bound directly to the p85 subunit without the need for the associated p110 subunit. Site-directed mutagenesis and peptide competition analysis using Y(P)-MXM-containing peptides showed that PI 3-kinase bound to a Y(P)MXM motif within the CD28 cytoplasmic tail (residues 191-194). Mutation of the Y191 within the motif resulted in a complete loss of binding, while mutation of M194 caused partial loss of binding. Binding analysis showed that the CD28 Y(P)-MXM motif bound to the p85 C- and N-terminal SH2 domains with an affinity comparable to that observed for PDGF-R and insulin receptor substrate 1. In terms of signaling, CD28 ligation induced a dramatic increase in the recruitment and association of PI 3-kinase with the receptor. CD28 is likely to use PI 3-kinase as the second signal leading to T-cell proliferation, an event with implications for anergy and peripheral T-cell tolerance.  相似文献   

13.
Tyrosine phosphorylation of a 17-amino acid immunoreceptor tyrosine-based activation motif (ITAM), conserved in each of the signaling subunits of the T-cell antigen receptor (TCR), mediates the recruitment of ZAP-70 and syk protein-tyrosine kinases (PTKs) to the activated receptor. The interaction between the two tandemly arranged Src-homology 2 (SH2) domains of this family of PTKs and each of the phosphotyrosine-containing ITAMs was examined by real-time measurements of kinetic parameters. The association rate and equilibrium binding constants for the ZAP-70 and syk SH2 domains were determined for the CD3 epsilon ITAM. Both PTKs bound with ka and Kd values of 5 x 10(6) M-1.sec-1 and approximately 25 nM, respectively. Bindings to the other TCR ITAMs (zeta 1, zeta 2, gamma, and delta ITAMs) were comparable, although the zeta 3 ITAM bound approximately 2.5-fold less well. Studies of the affinity of a single functional SH2 domain of ZAP-70 provided evidence for the cooperative nature of binding of the dual SH2 domains. Mutation of either single SH2 domain decreased the Kd by > 100-fold. Finally, the critical features of the ITAM for syk binding were found to be similar to those required for ZAP-70 binding. These data provide insight into the mechanism by which the multisubunit TCR interacts with downstream effector molecules.  相似文献   

14.
T-cell antigens including CD2, CD4, CD6, CD8, and CD28 serve as coreceptors with the T-cell receptor (TCR)/CD3 complex in control of T-cell growth. The molecular basis by which these antigens fulfill this role has remained a major issue. An initial clue to this question came with our finding that the sensitivity of in vitro kinase labeling (specifically using protein-tyrosine kinase p56lck) allowed detection of a physical association between CD4-p56lck and the TCR/CD3 complexes. Another T-cell antigen, CD5, is structurally related to the macrophage scavenger receptor family and, as such, can directly stimulate and/or potentiate T-cell proliferation. In this study, we reveal that in Brij 96-based cell lysates, anti-CD5 antibodies coprecipitated TCR zeta chain (TCR zeta)/CD3 subunits as well as the protein-tyrosine kinases p56lck and p59fyn. Conversely, anti-CD3 antibody coprecipitated CD5, p56lck, and p59fyn. Indeed, anti-CD5 and anti-CD3 gel patterns were virtually identical, except for a difference in relative intensity of polypeptides. Anti-CD4 coprecipitated p56lck, p32, and CD3/TCR zeta subunits but precipitated less CD5, suggesting the existence of CD4-TCR zeta/CD3 complexes distinct from the CD5-TCR zeta/CD3 complexes. Consistent with the formation of a multimeric CD5-TCR zeta/CD3 complex, anti-CD5 crosslinking induced tyrosine phosphorylation of numerous T-cell substrates, similar to those phosphorylated by TCR zeta/CD3 ligation. Significantly, as for TCR zeta, CD5 was found to act as a tyrosine kinase substrate induced by TCR/CD3 ligation. The kinetics of phosphorylation of CD5 (t1/2 = 20 sec) was among the earliest of activation events, more rapid than seen for TCR zeta (t1/2 = 1 min). CD5 represents a likely TCR/CD3-associated substrate for protein-tyrosine kinases (p56lck or p59fyn) and an alternative signaling pathway within a multimeric TCR complex.  相似文献   

15.
β1 integrins play crucial roles in a variety of cell processes such as adhesion, migration, proliferation, and differentiation of lymphocytes. To understand the molecular mechanisms of these various biological effects, it is particularly important to analyze cell signaling through the β1 integrins. Our previous study showed that PLC-γ, pp125FAK (focal adhesion kinase), pp105, paxillin, p59fyn, p56lck, and ERK1/2 are phosphorylated in their tyrosine residues upon engagement of β1 integrins. We identified pp105 as Cas (Crk-associated substrate)-related protein and successfully cloned its cDNA. pp105 is a Cas homologue predominantly expressed in the cells of lymphoid lineage, which led us to designate it Cas-L. Like p130Cas, Cas-L contains a single SH3 domain and multiple SH2-binding sites (YXXP motif), which are suggested to bind SH2 domains of Crk, Nck, and SHPTP2. Subsequent studies revealed that pp125FAK binds Cas-L on its SH3 domain and phosphorylates its tyrosine residues upon β1 integrin stimulation. Since Cas-L is preferentially expressed in lymphocytes, it is conceivable that Cas-L plays an important role in lymphocyte-specific signals. We have shown that Cas-L is involved in the T-cell receptor (TCR)/CD3 signaling pathway as well as the β1 integrin signaling pathway. Cas-L is transiently phosphorylated following CD3 crosslinking and tyrosine-phosphorylated Cas-L binds to Crk and C3G. Furthermore, a Cas-L mutant (Cas-LΔSH3), which lacks the binding site for FAK, is still tyrosine-phosphorylated upon CD3 crosslinking but not upon β1 integrin crosslinking, suggesting that FAK is not involved in CD3-dependent Cas-L phosphorylation. Finally, we have identified a crucial role of Cas-L in β1 integrin-mediated T-cell co-stimulation. We have found that this co-stimulatory pathway is impaired in the Jurkat T-cell line, and that the expression level of Cas-L is reduced in the Jurkat cells compared to peripheral T-cells. The transfection of Cas-L cDNA into Jurkat cells restored the β1 integrin-mediated co-stimulation, while the transfection of Cas-LΔSH3 mutant failed to do so, which contrasts with the case of CD3-mediated signaling. These results indicate that Cas-L plays a key role, through the association and phosphorylation by FAK, in β1 integrin-mediated T-cell co-stimulation. Moreover, tyrosine phosphorylation of Cas-L is critical for T-cell receptor and β1 integrin-induced T-lymphocyte migration. Taken together, Cas-L might be the bi-modal docking protein which assembles the signals through β1 integrins and TCR/CD3, and which participates in a variety of T-cell functions. Received: August 24, 1999 / Accepted: August 31, 1999  相似文献   

16.
Paul SP  Taylor LS  Stansbury EK  McVicar DW 《Blood》2000,96(2):483-490
CD33 is a myeloid specific member of the sialic acid-binding receptor family and is expressed highly on myeloid progenitor cells but at much lower levels in differentiated cells. Human CD33 has two tyrosine residues in its cytoplasmic domain (Y340 and Y358). When phosphorylated, these tyrosines could function as docking sites for the phosphatases, SHP-1 and/or SHP-2, enabling CD33 to function as an inhibitory receptor. Here we demonstrate that CD33 is tyrosine phosphorylated in the presence of the phosphatase inhibitor, pervanadate, and recruits SHP-1 and SHP-2. Co-expression studies suggest that the Src-family kinase Lck is effective at phosphorylating Y340, but not Y358, suggesting that these residues may function in the selective recruitment of adapter molecules and have distinct functions. Further support for overlapping, but nonredundant, roles for Y340 and Y358 comes from peptide-binding studies that revealed the recruitment of both SHP-1 and SHP-2 to Y340 but only SHP-2 to Y358. Analysis using mutants of SHP-1 demonstrated that binding Y340 of CD33 was primarily to the amino Src homology-2 domain of SHP-1. The potential of CD33 to function as an inhibitory receptor was demonstrated by its ability to down-regulate CD64-induced calcium mobilization in U937. The dependence of this inhibition on SHP-1 was demonstrated by blocking CD33-mediated effects with dominant negative SHP-1. This result implies that CD33 is an inhibitory receptor and also that SHP-1 phosphatase has a significant role in mediating CD33 function. Further studies are essential to identify the receptor(s) that CD33 inhibits in vivo and its function in myeloid lineage development. (Blood. 2000;96:483-490)  相似文献   

17.
Nguyen P  Moisini I  Geiger TL 《Blood》2003,102(13):4320-4325
Recent preclinical and clinical trials have demonstrated the therapeutic potential of T lymphocytes redirected with genetically engineered T-cell receptor (TCR) surrogates against infected, cancerous, or autoreactive cells. These surrogate TCRs link a ligand-recognition domain to signaling regions from the TCR. We previously compared the function of surrogate TCRs that include TCR or TCR and CD28 signaling regions. We found that primary murine T cells modified to specifically target Kb-restricted CD8+ T cells using either Kb-zeta or Kb-CD28-zeta receptors had similar functional activities, although the CD28-zeta receptor showed a 2-fold to 4-fold decreased expression. We have now identified a previously unrecognized dileucine motif in the murine CD28 signaling domain that accounts for this reduced expression. Inactivation of this motif increased chimeric receptor surface expression 2- to 5-fold. T cells expressing the dileucine-mutated CD28-zeta chimeric receptor demonstrated enhanced proliferation, cytokine production, and cytolytic activities. Further, cells expressing this dileucine-mutated receptor were highly effective in eliminating antigen-specific CD8+ T lymphocytes in vivo. These results therefore identify a critical motif limiting the function of receptor-modified T lymphocytes, demonstrate that inactivation of this motif enhances chimeric receptor function, and illustrate a potential novel application of receptor-modified T lymphocytes in the induction of immune tolerance.  相似文献   

18.
19.
CD33 is a member of the sialic acid-binding immunoglobulin-like lectin (Siglec) family of inhibitory receptors and a therapeutic target for acute myeloid leukemia (AML). CD33 contains a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM), which can recruit SHP-1 and SHP-2. How CD33 expression is regulated is unclear. Suppressor of cytokine signaling 3 (SOCS3) is expressed in response to cytokines, LPS, and other PAMPs, and competes with SHP-1/2 binding to ITIMs of cytokine receptors, thereby inhibiting signaling. In this study, using peptide pull-down experiments, we found that SOCS3 can specifically bind to the phosphorylated ITIM of CD33. Additionally, following cross-linking SOCS3 can recruit the ECS E3 ligase resulting in accelerated proteasomal degradation of both CD33 and SOCS3. Our data suggest that the tyrosine motifs in CD33 are not important for internalization, while they are required for degradation. Moreover, SOCS3 inhibited the CD33-induced block on cytokine-induced proliferation. This is the first receptor shown to be degraded by SOCS3 and where SOCS3 and its target protein are degraded concomitantly. Our findings clearly suggest that during an inflammatory response, the inhibitory receptor CD33 is lost by this mechanism. Moreover, this has important clinical implications as tumors expressing SOCS3 may be refractory to alpha-CD33 therapy.  相似文献   

20.
The T-cell receptor (TCR) consists of a TCRαβ heterodimer, a TCRζ homodimer, and CD3γε and CD3δε heterodimers. The precise mechanism of T-cell triggering following TCR ligand engagement remains elusive. Previous studies reported that the cytoplasmic tail of CD3ε binds to the plasma membrane through a basic residue-rich stretch (BRS) and proposed that dissociation from the membrane is required for phosphorylation thereof. In this report we show that BRS motifs within the cytoplasmic tail of TCRζ mediate association with the plasma membrane and that TCR engagement results in TCRζ dissociation from the membrane. This dissociation requires phosphorylation of the TCRζ immunoreceptor tyrosine-based activation motifs by lymphocyte cell-specificprotein tyrosine kinase (Lck) but not ζ-chain-associated protein kinase 70 binding. Mutations of the TCRζ BRS motifs that disrupt this membrane association attenuate proximal and distal responses induced by TCR engagement. These mutations appear to alter the localization of TCRζ with respect to Lck as well as the mobility of the TCR complex. This study reveals that tyrosine phosphorylation of the TCRζ cytoplasmic domain regulates its association with the plasma membrane and highlights the functional importance of TCRζ BRS motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号