首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
余红艳  罗津 《中国当代医药》2014,21(19):195-196
近年来,包合物和脂质体作为药物的载体被广泛用于药物制剂领域,各自发挥着自身的优势。将环糊精包合物应用于脂质体给药系统——这一新型的药物载体,能够更好地提高靶向给药效果。本文通过概述包合物及脂质体的优势,阐明包合物脂质体这一新型给药系统能提高药物的载药量,增加脂质体的稳定性,对提高药物的吸收和临床疗效等方面具有重要意义,对于靶向给药系统的进一步发展具有新的参考价值。  相似文献   

2.
The present investigation was aimed at targeting indinavir, a protease inhibitor to cells of mononuclear phagocyte system (MPS) via mannosylated liposomes. β-d-1-thiomannopyranoside residues were covalently coupled with dimyristoyl phosphatidylethanolamine (DMPE) to generate mannosylated-DMPE (Man-DMPE) conjugate which was further incorporated with disteroyl phosphatidyl choline and cholesterol to prepare mannosylated liposomes. The optimized mannosylated liposomes were nanometric in size (142?±?2.8?nm) with optimum entrapment efficiency (88.7?±?2.3%). Less than 20% cumulative drug release was observed from the prepared formulations in 24?h in phosphate buffer saline (pH 7.4). Cellular uptake studies performed on J774.A1 macrophage cell line via flow cytometric analysis depicted enhanced uptake of mannosylated liposomes as compared to plain liposomes. Annexin-V-fluorescein isothiocyanate/propidium iodide apoptosis assay delineated marginal cytotoxicity in macrophages from the developed formulation. Plasma and tissue distribution studies performed to assess the drug reach to macrophage rich regions depicted a significant level (P?<?0.05) of indinavir in macrophage rich tissues like liver, spleen, and lungs from mannosylated liposomes as compared to plain liposomes and free drug. The conducted studies suggest the potential of indinavir loaded mannosylated liposomes for anti-human immunodeficiency virus therapy.  相似文献   

3.
Photodynamic therapy is a clinically approved treatment for cancer and noncancer diseases. This modality utilises light-activatable chemicals (photosensitising agents) to capture photons and use light energy for the production of cytotoxic reactive molecular species. Most photosensitisers that are in use clinically or in preclinical development are hydrophobic and tend to aggregate in the aqueous environment, which limits their delivery and photosensitising efficiency. Liposomal delivery of photosensitisers will often overcome or decrease these problems. In addition, as with chemotherapeutic agents, liposomal formulations of photo-sensitising agents may help to achieve better selectivity for tumour tissue compared with normal tissue. Over the past years, liposomal photosensitisers have emerged as therapeutic agents in many experimental studies, and have obtained approval for clinical applications. Recent progress in liposomal technology further opens up the possibility of generating more selectively targeted photosensitisers encapsulated in liposomes. This review will cover progress in the use of liposomal photosensitisers, summarise current liposomal formulations, and project future directions for the liposomal delivery of photosensitising agents.  相似文献   

4.
The use of a physiological carrier to deliver therapeutics throughout the body to both improve their efficacy while minimising inevitable adverse side effects, is an extremely fascinating perspective. The behaviour of erythrocytes as a delivery system for several classes of molecules (i.e., proteins, including enzymes and peptides, therapeutic agents in the form of nucleotide analogues, glucocorticoid analogues) has been studied extensively as they possess several properties, which make them unique and useful carriers. Furthermore, the possibility of using carrier erythrocytes for selective drug targeting to differentiated macrophages increases the opportunities to treat intracellular pathogens and to develop new drugs. Finally, the availability of an apparatus that permits the encapsulation of drugs into autologous erythrocytes has made this technology available in many clinical settings and co-mpetitive with other drug delivery systems.  相似文献   

5.
Hyaluronic acid has good biocompatibility, biodegradability, and nonimmunogenicity. In addition, it has the ability to recognize specific receptors that are overexpressed on the surface of tumor cells, and cancer drugs can be targeted to the tumor cells to better kill them. Therefore, hyaluronic acid has attracted much attention as drug delivery vehicle. Herein, the application of hyaluronic acid as carrier in drug delivery was analyzed and summarized in detail. It showed that hyaluronic acid would have broad prospects for drug delivery.  相似文献   

6.
Introduction: In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism by which intestinal absorption of peptides and proteins is promoted.

Areas covered: The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two most important barriers (extensive enzymatic degradation and poor transmucosal permeability). This paper also gives a clear-cut idea about advantages and drawbacks of using different lipidic colloidal carriers ((micro)emulsions, solid lipid core particles and liposomes) for oral delivery of peptides and proteins.

Expert opinion: Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve the design and development of lipid-based DDS with the desired bioavailability and therapeutic profile.  相似文献   

7.
叶酸受体在许多恶性肿瘤细胞表面过度表达,而在正常细胞中则几乎不表达或只有少量表达。利用叶酸受体表达的特性,通过将叶酸修饰于药物载体表面,可使药物靶向输送至叶酸受体过度表达的肿瘤细胞中,从而避免对正常细胞产生毒性,提高药物疗效;而纳米给药系统因粒径较小等原因可使药物在肿瘤部位浓集。本文对近年来叶酸受体介导的靶向纳米给药系统进行了综述。  相似文献   

8.
Boddy  Alan  Aarons  Leon  Petrak  Karel 《Pharmaceutical research》1989,6(5):367-372
Physiological models have often been used to investigate the processes involved in drug targeting. Such a model is used to investigate some aspects of drug targeting, including the pharmacodynamics of therapeutic and toxic effects. A simple pharmacodynamic model is incorporated in a three-compartment pharmacokinetic model. Conventional administration and drug targeting are compared at steady state for the same degree of therapeutic effect. The efficiency of drug targeting is quantified as the ratio (TA) of the rates of administration of free drug or of a drug–carrier complex required to achieve this effect. Also, the ratios of drug concentrations in the toxicity compartment (DTI) or of the consequent degree of toxic effects (TI) are used to compare conventional administration with drug targeting. The kinetic characteristics of the drug–carrier complex, rate of elimination, and rate of free drug release, influence TA but not DTI or TI. The importance of these characteristics depends on the cost and toxicity of the drug–carrier complex or of the carrier alone. The pharmacodynamics of the free drug in both the target and the toxicity compartments have an important influence on TI but not on TA or DTI. As the pharmacological selectivity of the drug increases, so does TI. However, a drug with good pharmacological selectivity may not be suitable for drug targeting. TI is also very dependent on the shape of the effect–concentration curves, particularly that for toxicity. While TA increases as the rate of elimination of free drug from either central or target compartments increases, TI may actually be reduced if release of free drug is not confined to the target compartment.  相似文献   

9.
Due to their low bioavailability, many naturally occurring proteins can not be used in their native form in diseases caused by insufficient amounts or inactive variants of those proteins. The strategy of delivering proteins to biological compartments using carriers represents the most promising approach to improve protein bioavailability. A large variety of systems have been developed to protect and deliver proteins, based on lipids, polymers or conjugates. Here we present the current progress of the carriers design criteria with the help of recent specific examples in the literature ranging from conventional liposomes to polymeric nanoreactors, with sizes from micrometer to nanometer scale, and having various morphologies. The design and optimisation of carriers in the dual way of addressing questions of a particular application and of keeping them very flexible and reliable for general applications represent an important step in protein delivery approaches, which influence considerably the therapeutic efficacy. We examine several options currently under exploration for creating suitable protein carriers, discuss their advantages and limitations that induced the need to develop alternative ways to deliver proteins to biological compartments. We consider that only tailored systems can serve to improve proteins bioavailability, and thus solve specific pathological situations. This can be accomplished by developing nanocarriers and nanoreactors based on biocompatible, biodegradable and non-toxic polymer systems, adapted sizes and surface properties, and multifunctionality to cope with the complexity of the in-vivo biological conditions.  相似文献   

10.
Background: Magnetic vehicles are very attractive for delivery of therapeutic agents as they can be targeted to specific locations in the body through the application of a magnetic field gradient. The magnetic localization of a therapeutic agent results in the concentration of the therapy at the target site consequently reducing or eliminating the systemic drug side effects. Objective: The aim of this review is to provide an update on the progress made in the development of the magnetic targeting technique addressing characteristics of the magnetic carriers and limitations of the current targeting magnet systems. Methods: This review discusses fundamental requirements for the optimal formulation of the magnetic carrier, current applications and potentially new approaches for the magnetically mediated, site-specific localization of therapeutic agents, including drugs, genes and cells. Results/conclusion: More efficient targeting magnetic systems in combination with prolonged circulation lifespan and carriers' surface recognition properties will improve the targeting efficiency of magnetic nanocarriers and enhance therapeutic agent availability at the molecular site of agent action. The main future magnetic targeting applications were categorized emphasizing the most promising directions and possible strategies for improving the magnetic targeting technique.  相似文献   

11.
Abstract

Currently, with the rapid development of nanotechnology, novel drug delivery systems (DDSs) have made rapid progress, in which nanocarriers play an important role in the tumour treatment. In view of the conventional chemotherapeutic drugs with many restrictions such as nonspecific systemic toxicity, short half-life and low concentration in the tumour sites, stimuli-responsive DDSs can deliver anti-tumour drugs targeting to the specific sites of tumours. Owing to precise stimuli response, stimuli-responsive DDSs can control drug release, so as to improve the curative effects, reduce the damage of normal tissues and organs, and decrease the side effects of traditional anticancer drugs. At present, according to the physicochemical properties and structures of nanomaterials, they can be divided into three categories: (1) endogenous stimuli-responsive materials, including pH, enzyme and redox responsive materials; (2) exogenous stimuli-responsive materials, such as temperature, light, ultrasound and magnetic field responsive materials; (3) multi-stimuli responsive materials. This review mainly focuses on the researches and developments of these novel stimuli-responsive DDSs based on above-mentioned nanomaterials and their clinical applications.  相似文献   

12.
Objectives The aim of this study was to develop paclitaxel liposomes for a lung targeting delivery system. Methods The liposomes composed of Tween‐80/HSPC/cholesterol (0.03 : 3.84 : 3.84, mol/mol), containing paclitaxel and lipids (1 : 40, mol/mol), were prepared by a combination of solid dispersion and effervescent techniques, and then subjected to ultrasonication. The pharmacokinetics and biodistribution of liposomal and injectable formulation of paclitaxel in dogs were studied after intravenous administration. Key findings The mean diameter, polydispersity index, zeta‐potential and entrapment efficiency of the liposomes were 501.60 ± 15.43 nm, 0.28 ± 0.02, ?20.93 ± 0.06 mV and 95.17 ± 0.32%, respectively. The liposomal formulation kept stable for at least 3 months at 6 ± 2°C and didn't cause haemolysis. The liposome carrier decreased the area under the curve and terminal half‐life of paclitaxel compared with paclitaxel injection ranging from 0.352 ± 0.031 mg/l*h and 0.0671 ± 0.144 h to 0.748 ± 0.062 mg/l*h and 1.978 ± 0.518 h, respectively. The paclitaxel liposomes produced a drug concentration in the lung that was markedly higher than that in other organs or tissues and was about 15‐fold of that of paclitaxel injection at 2 h. Conclusions To sum up, these results demonstrated that the paclitaxel liposomes are an effective lung targeted carrier in the treatment of lung cancer.  相似文献   

13.
Rheumatoid arthritis (RA) is a severe immune-mediated disease characterized by chronically progressive inflammation and destruction of joints and associated structures. Significant advances in our understanding of its pathophysiology and early diagnosis have led to improved therapy and better outcome. Nevertheless, a number of details in the pathogenesis of RA are still unknown and thus the disease cannot be cured at present. Therefore, current therapy aims at accomplishing complete and long-lasting remission. However, this goal is only achieved in a small proportion of patients, and partial remission and frequent relapses are a common problem. A significant number of patients still do not respond at all to available treatments. In addition, all antirheumatic and immune-modulating drugs developed so far carry a considerable risk of adverse effects, some of which can be severe or even life threatening. This is due, at least in part, to a lack of specificity of most drugs for the target tissue, and to a high volume of distribution for systemic application, which, together with rapid clearance of most drugs, requires frequent application of high dosages. Targeted drug delivery and prolongation of bioavailability would alleviate this issue significantly. This article, therefore, reviews a selection of studies that report promising strategies for joint specific delivery of antiarthritic drugs.  相似文献   

14.
Introduction: The toxicity of chemotherapeutic agents, resulting from their low pharmacological index, introduces considerable discomfort and risk to cancer patients. Among several strategies to reduce the toxicity of chemotherapeutic agents, targeted drug delivery is the most promising one.

Areas covered: Liposomes, micelles, albumin-based, polymeric, dendritic and lipid core nanoparticles have been used as carriers to concentrate anticancer drugs in neoplastic tissues, and clinical studies of those preparations are reviewed. In most clinical studies, drug delivery systems reduced drug toxicity. Lipid core nanoparticles (LDE) that bind to cell lipoprotein receptors have the ability to concentrate in neoplastic tissues and were the first artificial non-liposomal system shown in in vivo studies to possess targeting properties. The toxicity reduction achieved by LDE as vehicle of carmustine, etoposide and paclitaxel was singularly strong.

Expert opinion: The reduced toxicity offered by drug delivery systems has expanded treatment population that may benefit from chemotherapy including feeble, overtreated and elderly patients that would otherwise be offered palliative therapy. Drug delivery systems may either prolong the duration of treatments or allow increases in drug dose.  相似文献   


15.
树突状细胞在免疫系统对抗原的捕获、处理及提呈过程中发挥极为重要的作用,疫苗的靶向传递主要通过各种功能性载体微粒进行。研究表明,载体微粒大小、表面电荷以及树突状细胞表面不同受体设计的特异性靶向给药系统对疫苗在抗肿瘤免疫治疗中的应用具有重要意义。本文着重阐述了近年来树突状细胞靶向给药系统的研究进展,为进一步研究设计高效靶向肿瘤疫苗制剂提供参考。  相似文献   

16.
本文将脂质体递药系统按结构、组成和功能分成普通脂质体、多囊脂质体、长循环脂质体、热敏脂质体和免疫脂质体5类,分别介绍其应用和临床研究进展。  相似文献   

17.
Developing a new drug molecule is not only time-consuming and expensive, but also mostly a failing process. However, improving bioavailability, targetability, efficacy or safety of old drugs could be more effective way to use them in clinic. For these purposes, so many strategies including individualising drug therapy, nanoparticle-based drug delivery systems, drug conjugates, therapeutic drug monitoring, stimuli-sensitive targeted therapy are investigated intensely. Depending on the desired application or targeted site, nanoparticles can be administrated as orally, locally, topically and systemically. Currently, the Food and Drug Administration and the European Medicines Agency approved nanoparticles are mostly aimed to treat cancer. Although some of these formulations were approved by Food and Drug Administration and/or European Medicines Agency to use in clinic, most of them have fell down to pass either pre-clinical or clinical trials. To have high approval rate, failure reasons need to be better understand.  相似文献   

18.
Controlled drug delivery systems (DDS) have several advantages compared to the traditional forms of drugs. A drug is transported to the place of action, hence, its influence on vital tissues and undesirable side effects can be minimized. Accumulation of therapeutic compounds in the target site increases and, consequently, the required doses of drugs are lower. This modern form of therapy is especially important when there is a discrepancy between the dose or the concentration of a drug and its therapeutic results or toxic effects. Cell-specific targeting can be accomplished by attaching drugs to specially designed carriers. Various nanostructures, including liposomes, polymers, dendrimers, silicon or carbon materials, and magnetic nanoparticles, have been tested as carriers in drug delivery systems. In this review, the aforementioned nanocarriers and their connections with drugs are analyzed. Special attention is paid to the functionalization of magnetic nanoparticles as carriers in DDS. Then, the advantages and disadvantages of using magnetic nanoparticles as DDS are discussed.  相似文献   

19.
Despite all scientists efforts exerted over the past years, the ocular delivery of drugs remains a great challenge due to several barriers and hurdles faced by this kind of administration. The exploitation of gelatin that has a long history of safe use in pharmaceuticals and which is considered as a GRAS (Generally Regarded As Safe) material by the FDA was not fully achieved in this field. This review summarizes the recent studies and findings where gelatin-based micro- and nanoparticles were used for successful ocular delivery aiming at drawing the attention of researchers and scientists to this valuable biomaterial that has not been fully explored.  相似文献   

20.
Importance of the field: Antibiotic resistance is a serious problem that continues to challenge the healthcare sectors and has become increasingly alarming in the past few years. To face this emerging global crisis, there is a need to find a new class of antibiotics that act on new microbial targets and/or harness existing antibiotics by developing new drug-targeting strategies.

Areas covered in this review: This review: explores an innovative drug-delivery strategy of using hen egg lysozyme as a carrier to enable water solubilization and to allow specific targeting to the microbial cells of a water-insoluble antimicrobial agent with a powerful killing action; addresses potentials for lysozyme in antibiotics drug targeting; and provides insight for the future direction of this highly prospective technology.

What the reader will gain: The unique features and advantages of lysozyme-based drug delivery system are highlighted. The efficiency of lysozyme in solubilization and delivery of lipophilic antibiotics, to reformulate drugs that may fail clinical trials owing to low solubility, is emphasized.

Take home message: Fewer pharmaceutical companies are inventing new antibiotics because of long development times and high failure rates. Combining lysozyme with a powerful old antibiotic may open doors to revolutionizing medicine, particularly in the treatment of deadly infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号