首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND CONTEXT: Spinal cord injury is a devastating condition in which clinical disability results from demyelination of white matter tracts. Changes in glial-axonal signaling, and enhanced Ca(2+) channel activity with excessive accumulation of intracellular Ca(2+), is a common phenomenon after hypoxia/ischemia or mechanical trauma to spinal cord dorsal column white matter tracts leading to irreversible injury. PURPOSE: In the present study we examined the role of Na(+)-Ca(2+) exchanger (NCX) at physiological temperatures after hypoxia/ischemia and compressive injury to spinal cord dorsal column white matter in vitro. STUDY DESIGN: A 30-mm length of dorsal column was isolated from the spinal cord of adult rats, pinned in an in vitro recording chamber (maintained at 37 degrees C) and injured by exposure to a hypoxic atmosphere for 60 minutes or compressed with a modified aneurysm clip (2-gm closing force) for 15 seconds. The functional integrity of the dorsal column was monitored electrophysiologically by quantitatively measuring the compound action potential (CAP) with glass microelectrodes. RESULTS: The mean CAP decreased to 49.5 +/- 5.7% and 49.4 +/- 2.6% of control (p<.05) after hypoxia/ischemia and compressive injury, respectively. KB-R7943, a potent, selective NCX reverse mode inhibitor, significantly promoted greater recovery of CAP amplitude to 82.0 +/- 10.0% and 70.8 +/- 10.7% of control (p<.05) after hypoxic/ischemic or compressive injury to dorsal column white matter, respectively, when applied at 10 microM concentration. Bepridil (Research Biochemical Inc., Natick, MA, USA) (a less selective NCX inhibitor), when applied at 10 microM and 50 microM concentration promoted CAP amplitude recovery only to 46.8 +/- 7.8% and 29.9 +/- 3.3% of control, respectively, after hypoxic/ischemic injury to dorsal column white matter. Western blot analysis identified NCX presence with positive immunolabeling of 160 kD and 120 kD NCX proteins in the spinal cord white matter. CONCLUSION: In conclusion, at physiological temperature NCX activation plays an important role in intracellular calcium overload after hypoxic/ischemic and compressive injury to spinal cord dorsal column white matter in vitro.  相似文献   

2.
BACKGROUND: Volatile anesthetics relax airway smooth muscle (ASM) by altering intracellular Ca2+ concentration ([Ca2+]i). The authors hypothesized that relaxation is produced by decreasing sarcoplasmic reticulum Ca2+ content via increased Ca2+ "leak" through both inositol trisphosphate (IP3) and ryanodine receptor channels. METHODS: Enzymatically dissociated porcine ASM cells were exposed to acetylcholine in the presence or absence of 2 minimum alveolar concentration (MAC) halothane, and IP3 levels were measured using radioimmunoreceptor assay. Other cells were loaded with the Ca2+ indicator fluo-3 and imaged using real-time confocal microscopy. RESULTS: Halothane increased IP3 concentrations in the presence and absence of acetylcholine. Inhibition of phospholipase C blunted the IP3 response to halothane. Exposure to 2 MAC halothane induced a transient [Ca2+]i response, suggesting depletion of sarcoplasmic reticulum Ca2+. Exposure to 20 microM Xestospongin D, a cell-permeant IP3 receptor antagonist, resulted in a 45+/-13% decrease in the [Ca2+]i response to halothane compared with halothane exposure alone. In permeabilized cells, Xestospongin D or 0.5 mg/ml heparin decreased the [Ca2+]i response to halothane by 65+/-13% and 68+/-22%, respectively, compared with halothane alone. In both intact and permeabilized cells, 20 microM ryanodine blunted the [Ca2+]i response to halothane by 32+/-13% and 39+/-21%, respectively, compared with halothane alone. Simultaneous exposure to Xestospongin D and ryanodine completely inhibited the [Ca2+]i response to halothane. CONCLUSIONS: The authors conclude that halothane reduces sarcoplasmic reticulum Ca2+ content in ASM cells via increased Ca2+ leak through both IP3 receptor and ryanodine receptor channels. Effects on IP3 receptor channels are both direct and indirect via elevation of IP3 levels.  相似文献   

3.
The effects of N-methyl-D-aspartate (NMDA), glutamate, and glycine on the developmental axons of the neonatal rat spinal cord were investigated. Isolated dorsal column preparations from postnatal day (PN) 0 to 14 Long-Evans hooded rats (n = 119) were used in vitro. Compound action potentials (CAPs) were recorded from the cuneate and gracile fasciculi with a glass micropipette electrode. NMDA (100 microM) significantly increased CAP amplitude in PN 0-6 cords by 21.5 +/- 9.2% (mean +/- standard error of the mean, p < 0.001, n = 8) and in PN 7-14 cords by 6.7 +/- 6.6% (p < 0.001, n = 10). NMDA (10 microM) significantly increased the CAP amplitude by 6.3 +/- 2.9% in PN 0-6 cords (p < 0.01, n = 10). The increase of CAP amplitude induced by NMDA (100 microM) in PN 0-6 cords was significantly greater than that in PN 7-14 cords (p < 0.005). Glutamate (100 microM) significantly increased the CAP amplitude by 8.8 +/- 8.1% in PN 0-6 cords (p < 0.001, n = 29) and 6.7 +/- 7.5% in PN 7-14 cords (p < 0.01, n = 14), and glutamate (10 microM) significantly increased by 6.3 +/- 2.9% in PN 0-6 cords (p < 0.01, n = 21). The amplitudes induced by glutamate (100 microM or 10 microM) did not significantly differ between PN 0-6 and PN 7-14 cords. Application of glycine (100 microM) did not significantly alter CAP amplitudes induced by NMDA (100 microM or 10 microM) and glutamate (100 microM or 10 microM). D(-)-2-amino-5-phosphonopentanoic acid (NMDA receptor antagonist) blocked the effects of NMDA and glutamate. These results suggest that NMDA receptor is present on afferent dorsal column axons and may modulate axonal excitability, especially during the 1st week after birth.  相似文献   

4.
Background: Volatile anesthetics relax airway smooth muscle (ASM) by altering intracellular Ca2+ concentration ([Ca2+]i). The authors hypothesized that relaxation is produced by decreasing sarcoplasmic reticulum Ca2+ content via increased Ca2+ "leak" through both inositol trisphosphate (IP3) and ryanodine receptor channels.

Methods: Enzymatically dissociated porcine ASM cells were exposed to acetylcholine in the presence or absence of 2 minimum alveolar concentration (MAC) halothane, and IP3 levels were measured using radioimmunoreceptor assay. Other cells were loaded with the Ca2+ indicator fluo-3 and imaged using real-time confocal microscopy.

Results: Halothane increased IP3 concentrations in the presence and absence of acetylcholine. Inhibition of phospholipase C blunted the IP3 response to halothane. Exposure to 2 MAC halothane induced a transient [Ca2+]i response, suggesting depletion of sarcoplasmic reticulum Ca2+. Exposure to 20 [mu]m Xestospongin D, a cell-permeant IP3 receptor antagonist, resulted in a 45 +/- 13% decrease in the [Ca2+]i response to halothane compared with halothane exposure alone. In permeabilized cells, Xestospongin D or 0.5 mg/ml heparin decreased the [Ca2+]i response to halothane by 65 +/- 13% and 68 +/- 22%, respectively, compared with halothane alone. In both intact and permeabilized cells, 20 [mu]m ryanodine blunted the [Ca2+]i response to halothane by 32 +/- 13% and 39 +/- 21%, respectively, compared with halothane alone. Simultaneous exposure to Xestospongin D and ryanodine completely inhibited the [Ca2+]i response to halothane.  相似文献   


5.
Role of calcineurin in calcium-mediated hypoxic injury to white matter.   总被引:4,自引:0,他引:4  
BACKGROUND CONTEXT: Calcium influx into cells is responsible for initiating the "final pathway" to cell death in neuronal tissue after traumatic or hypoxic injury. The specific pathways in this cascade are myriad and the importance each one plays is controversial. It is clear, though, that blocking individual pathways confers protection to these tissues. PURPOSE: In the present study we examined the role of Cyclosporin A (CsA), FK-506 and rapamycin in modulating the effects of Ca(2+) influx through their interactions with immunophilins and specifically the end result of calcineurin modulation. METHODS: Dorsal columns were isolated from the spinal cord of adult rats and injured by exposure to hypoxic conditions for 60 minutes. The samples were monitored electrophysiologically in an in vitro recording chamber (maintained at 37 C degrees ) during injury, and the compound action potential (CAP) was monitored with glass microelectrodes. The dorsal column was exposed to hypoxic Ringers solution alone or with the different immunosuppressants and compared with baseline readings. Functional recovery of the dorsal column was then assessed by recovery of the CAP. RESULTS: The mean CAP decreased to about 20% of baseline control levels during hypoxia and returned 53.8+/-7.6% of baseline (p<.05) after reoxygenation. CsA, an immunosuppressant known to inhibit calcineurin, promoted a significantly greater recovery of CAP amplitude to 76.8+/-5.2% and 72.1+/-13.2% of control (p<.05) after hypoxic injury and reoxygenation of dorsal column white matter when applied at concentrations of 1 microM and 10 microM, respectively. FK-506, which also inhibits calcineurin, was applied at a concentration of 0.1 microM, and promoted CAP amplitude recovery to 82.6+/-5.0% of control after hypoxic injury and reoxygenation of dorsal column white matter. The addition of rapamycin (1 microM), which binds to the same immunophilin as FK-506, to the FK-506 (0.1 microM) solution during hypoxic injury showed recovery of CAP amplitudes to only 56.9+/-6.7% of control. Electron microscopy revealed remarkable protection of axons and prevention of organelle disruption in segments treated with CsA and FK-506 during hypoxia when compared with hypoxic controls. CONCLUSION: In conclusion, both CsA and FK-506 confer in vitro protection to dorsal columns during hypoxic injury at physiological temperatures, and rapamycin blocks the protective effect of FK-506. Thus, calcineurin may play an important role in the physiology of neuronal injury.  相似文献   

6.
Background : Although propofol directly inhibits uterine smooth muscle contraction, the mechanisms of this effect are still unknown. The current study aimed to clarify the mechanisms of the inhibitory effect of propofol on oxytocin-induced uterine smooth muscle contraction by measuring (1) the concentration of intracellular free Ca2+ ([Ca2+]i) simultaneously with muscle tension, (2) the amount of intracellular inositol 1,4,5-triphosphate ([IP3]i), and (3) voltage-dependent Ca2+ channel (VDCC) activity.

Methods : Uterine smooth muscle tissues were obtained from pregnant rats (in late gestation). [Ca2+]i with isometric tension was monitored by the 500-nm light emission ratio of preloaded Ca2+ indicator fura-2. [IP3]i and VDCC activity were measured by radioimmunoassay and patch clamp techniques, respectively. The uterine smooth muscle was stimulated by 20 nm oxytocin and exposed to propofol (10-7 ~ 10-4 m).

Results : Propofol had significant inhibitory effects on oxytocin-induced uterine smooth muscle contraction and increased [Ca2+]i in pregnant rats in a dose-dependent manner, without affecting the agonist-receptor binding affinity. Propofol inhibited the increase in [IP3]i induced by oxytocin. Propofol also inhibited VDCC activity in both activated and inactivated states. The solvent Intralipid(R) had no effects on these parameters.  相似文献   


7.
Background: Halothane directly inhibits contraction of airway smooth muscle, mainly by decreasing the intracellular concentration of free Ca2+ ([Ca2+]i). The role of intracellular Ca2+ stores, sarcoplasmic reticulum, is still unclear. We investigated the role of sarcoplasmic reticulum in the inhibitory effect of halothane on contraction of airway smooth muscle by measuring [Ca2+]i and intracellular concentration of inositol 1,4,5-triphosphate ([IP3]i), a second messenger for release of Ca2+ from sarcoplasmic reticulum.

Methods: [Ca2+]i was monitored by measuring the 500-nm light emission ratio (F340/F380) of a Ca2+ indicator fura-2 with isometric tension of canine tracheal smooth muscle strip. During Ca2+-free conditions, carbachol (10-5 M) was introduced with pretreatment of halothane (0-3%). During Ca2+-free conditions, 20 mM caffeine, a Ca (2+-induced) Ca2+ release channel opener, was introduced with or without halothane. We measured [IP3]i during exposure to carbachol and halothane by radioimmunoassay technique.

Results: Pretreatment with halothane significantly diminished carbachol-induced increases in [Ca2+]i by 77% and muscle tension by 83% in a dose-dependent manner. Simultaneous administration of halothane significantly enhanced caffeine-induced transient increases in [Ca2+] (i) and muscle tension in a dose-dependent manner, by 97% and 69%, respectively. Pretreatment with halothane abolished these responses. Rapid increase in [IP3]i produced by carbachol was significantly inhibited by 32% by halothane in a dose-dependent manner.  相似文献   


8.
Inositol 1,4,5-triphosphate (IP(3)) plays an important role in excitation-contraction coupling and malignant hyperthermia in skeletal muscle. We investigated whether sevoflurane affects IP(3) formation in L(6) skeletal muscle cells and studied the mechanisms that modulate IP(3). Sevoflurane stimulated IP(3) production from a basal level of 78.4 +/- 6.1 to 730.0 +/- 53.1 pmol. mg. protein(-1) in 2 mM of sevoflurane in a dose-dependent manner. A dose of 10 microM of U73122 (a phospholipase C antagonist) significantly decreased 0.8 mM of sevoflurane-stimulated IP(3) production from 387. 8 +/- 24.7 to 247.8 +/- 19.8 pmol. mg. protein(-1). A dose of 100 microM of (p-amylcinnamoyl) anthranilic acid (a PLA(2) antagonist) also significantly decreased sevoflurane-stimulated IP(3) production to 282.0 +/- 24.0 pmol. mg. protein(-1). Exposure to 1 microM of genistein and tyrphostin A23 (tyrosine kinase inhibitors) significantly decreased sevoflurane-stimulated IP(3) production to 241.0 +/- 35.3 and 267.4 +/- 32.9 pmol. mg. protein(-1). Sevoflurane-stimulated IP(3) production was significantly decreased by 10 microM of 8-(N,N-diethylamino) octyl-3,4-5-trimathoxybenzoate (an intracellular calcium antagonist) and 100 microM and 1 mM of guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS), a guanosine 5'triphosphate-binding protein inhibitor. Elevation of IP(3) production was significantly higher in halothane than in sevoflurane and isoflurane at the same concentration of 0.8 mM. We conclude that sevoflurane-stimulated IP(3) production involves phospholipase C, phospholipase A(2), tyrosine kinase, and guanosine 5'triphosphate-binding protein and the stimulation is associated with concentration of intracellular ionized calcium. Implications: Inhaled anesthetics increase intracellular ionized calcium in the skeletal muscle cell and the ionized calcium increase is partly released from the intracellular store by inositol 1,4,5-triphosphate (IP(3)) formation. IP(3) plays an important role in excitation-contraction coupling and malignant hyperthermia. We studied whether sevoflurane affects IP(3) formation and the mechanisms that modulate IP(3).  相似文献   

9.
Kudoh A  Kudoh E  Katagai H  Takazawa T 《Anesthesia and analgesia》2002,94(3):552-7; table of contents
Inositol 1,4,5-trisphosphate (IP(3)) is not only involved in the physiologic regulation of excitation-contraction coupling, but could also play a role in cardiac pathophysiology. We investigated the mechanism of ketamine modulation of norepinephrine (NE)-induced IP(3) formation in neonatal rat cardiomyocytes. Ketamine 1 and 10 microM significantly decreased the IP(3) response to 1 microM NE by 27% and 43%, respectively. One micromolar TMB-8 (an intracellular calcium antagonist) produced 42% more decreases in IP(3) production than produced by ketamine alone. One hundred micromolar anthranilic acid (a phospholipase A(2) inhibitor) significantly decreased NE (1 microM)-induced IP(3) formation, and the inhibition was further enhanced by ketamine. Ten micromolar U 73122 (a phospholipase C inhibitor) did not significantly affect NE-induced IP(3) in the presence or absence of ketamine. One micromolar ketamine significantly inhibited staurosporine (a nonselective protein kinase C antagonist)-, bisindolylmaleimide (a selective protein kinase C antagonist)-, and wortmannin (a phosphatidylinositide 3-kinase antagonist)-stimulated IP(3) formation. In conclusion, ketamine suppresses NE-induced IP(3) production, and the inhibition is caused through pathways including protein kinase C and a decrease in intracellular Ca(2+) concentrations. IMPLICATIONS: Ketamine inhibits norepinephrine-induced inositol 1,4,5-triphosphate formation in a dose-dependent manner via pathways that involve protein kinase C and a decrease in intracellular Ca(2+) concentrations.  相似文献   

10.
We investigated whether propofol inhibits Ca(2+) transients and left ventricular pressure (LVP) in intact beating guinea pig hearts at clinical concentrations and whether an inhibition of Ca(2+) transients by propofol results from an impairment of sarcolemmal or of sarcoplasmic reticulum (SR) function. By using a Langendorff's preparation, transmural left ventricular phasic intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured by the fluorescence ratio of indo-1 emission at 385 nm and 456 nm and was calibrated to Ca(2+) transients (in nM). The Ca(2+) transients during each contraction were defined as available [Ca(2+)](i). Sixty hearts were perfused with modified Krebs-Ringer's solution containing lipid vehicle and propofol (1 and 10 microM) in the absence and presence of ryanodine, thapsigargin, and nifedipine, while developed LVP and available [Ca(2+)](i) were recorded. Propofol (10 microM) decreased available [Ca(2+)](i) by 11.0% +/- 1.3% without decreasing developed LVP (% of control, P < 0.05). Propofol (10 microM) caused a leftward shift in the curve of developed LVP as a function of available [Ca(2+)](i). Propofol (10 microM) with nifedipine (1 microM), but not with ryanodine (1 microM) or thapsigargin (1 microM), decreased available [Ca(2+)](i) by 15.5% +/- 1.7% (P < 0.05). Propofol decreases available [Ca(2+)](i) without decreasing cardiac contraction, and it enhances myofilament Ca(2+) sensitivity in intact beating hearts at clinical concentrations. The inhibition of available [Ca(2+)](i) by propofol may be mainly mediated by an impairment of sarcoplasmic reticulum Ca(2+) handling rather than the sarcolemmal L-type Ca(2+) current. Implications: This is the first study of the effects of propofol on intracellular Ca(2+) concentration and myofilament Ca(2+) sensitivity under physiologic conditions in intact isolated beating guinea pig hearts.  相似文献   

11.
OBJECTIVE: To observe dynamic changes of intracellular calcium ([Ca(2+)]i) after spinal cord injury, and to study the relationship between the changes of [Ca(2+)]i and the functional damage of the spinal cord. METHODS: The rats were subjected to a spinal cord contusion by using a modified Allen's method. The [Ca(2+)]i in the injured segment of the spinal cord was measured by the technique of La(3+) blockage and atomic absorption spectroscopy at 1, 4, 8, 24, 72, and 168 hours after injury. The motor function on the inclined plane was measured at the same time. RESULTS: The spinal cord [Ca(2+)]i increased significantly (P<0.05 or P<0.01) aft er spinal cord injury. There was a significant correlation (P<0.05) between the changes of [Ca(2+)]i and the motor function. CONCLUSIONS: [Ca(2+)]i overload may play an important role in the pathogenesis of spinal cord injury.  相似文献   

12.
Cardiovascular disease is the leading cause of death in the diabetic population. However, molecular mechanisms underlying diabetic cardiomyopathy remain unclear. We analyzed Ca2+-induced Ca2+ release and excitation-contraction coupling in db/db obese type 2 diabetic mice and their control littermates. Echocardiography showed a systolic dysfunction in db/db mice. Two-photon microscopy identified intracellular calcium concentration ([Ca2+]i) transient decrease in cardiomyocytes within the whole heart, which was also found in isolated myocytes by confocal microscopy. Global [Ca2+]i transients are constituted of individual Ca2+ sparks. Ca2+ sparks in db/db cardiomyocytes were less frequent than in +/+ myocytes, partly because of a depression in sarcoplasmic reticulum Ca2+ load but also because of a reduced expression of ryanodine receptor Ca2+ channels (RyRs), revealed by [3H]ryanodine binding assay. Ca2+ efflux through Na+/Ca2+ exchanger was increased in db/db myocytes. Calcium current, I(Ca), triggers sarcoplasmic reticulum Ca2+ release and is also involved in sarcoplasmic reticulum Ca2+ refilling. Macroscopic I(Ca) was reduced in db/db cells, but single Ca2+ channel activity was similar, suggesting that diabetic myocytes express fewer functional Ca2+ channels, which was confirmed by Western blots. These results demonstrate that db/db mice show depressed cardiac function, at least in part, because of a general reduction in the membrane permeability to Ca2+. As less Ca2+ enters the cell through I(Ca), less Ca2+ is released through RyRs.  相似文献   

13.
The ischemia induced vasospasm of the renal arterial blood vessels mediated by alpha1-adrenoceptors is of importance for the loss of kidney function. This is based on reduced perfusion of the kidney cortex occurring in kidney transplant and organ preserving surgery. The present study considered the intracellular mechanism of the norepinephrine (NE) induced renal artery vasospasm by using swine renal artery smooth muscle ring. Norepinephrine and phenylephrine (PE) induced dose-dependent and fully reversible isometric contractions with a threshold concentration of 10 nM (n = 7) and 10 nM (n = 4), and an EC50 of 0.3 microM and 1 microM, respectively. The receptor was identified as alpha1A-subtype. The contraction was completely inhibited by verapamil (IC50 = 1.51 microM; n = 11) and diltiazem (IC50 = 9.49 microM; n = 8) and 85% by nifedipine (IC50 = 0.13 microM; n = 21). Blockade of the intracellular inositol- 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store by thapsigargin (1 microM, n = 7) or suppression of Ca2+ release from the intracellular Ca2+-sensitive Ca2+ store by ryanodine (100 microM, n = 4) inhibited the PE induced contraction by 39.5% and 47.6%, respectively. The results suggest a key role of voltage-dependent Ca2+ channels and intracellular Ca2+ stores in the alpha1A-adrenoceptor induced contraction of the renal artery.  相似文献   

14.
In an attempt to understand the cellular mechanisms underlying volatile anesthetic-induced myocardial depression, halothane-induced negative inotropy was investigated in an animal model through continuous monitoring of intracellular Ca2+ concentration [( Ca2+]i) in rat ventricular myocytes loaded with fura-2. Single cells were stimulated with 15 mM caffeine or 15 mM extracellular K+ (K+O) or were paced by extracellular glass suction pipette electrode. With each stimulus modality, halothane (0.6-1.5%) caused a significant (P less than 0.05) and dose-dependent depression of the Ca2+ transient. Caffeine and electrically stimulated Ca2+ transients were reduced, in 1.5% halothane, to 35 +/- 14 and 42 +/- 8% of control, respectively. Resting or basal [Ca2+]i was unaffected by halothane. Halothane did not elicit spontaneous Ca2+ transients in these cells. Single cells stimulated by trains of electrical stimuli at 1.0, 1.5, and 2.0 Hz showed a change in [Ca2+]i from prestimulus levels to a stimulated baseline steady state that appeared to increase with stimulus frequency. Halothane at 0.7% increased the change in resting to stimulated baseline [Ca2+]i and depressed net transients (P less than 0.05) at 1.0 and 1.5 Hz. In contrast, 0.1 microM ryanodine depressed the Ca2+ transients in myocytes stimulated by trains of stimuli, but did not potentiate the change in stimulated baseline [Ca2+]i at any pacing rate. The results are consistent with the hypothesis that halothane reduces Ca2+i availability by causing a net loss of Ca2+ from the sarcoplasmic reticulum. The results from experiments using onset of pacing to induce a sudden increase in Ca2+i load in previously quiescent myocytes suggest that halothane may act to limit sarcoplasmic reticulum and/or sarcolemmal uptake/extrusion mechanisms, as compared to ryanodine, which depletes sarcoplasmic reticulum Ca2+ stores without affecting reuptake and extrusion.  相似文献   

15.
BACKGROUND: Anesthetic preconditioning (APC) is well known to protect against myocardial ischemia-reperfusion injury. Studies also show the benefit of Na+-Ca2+ exchange inhibition on ischemia-reperfusion injury. The authors tested whether APC plus Na+-Ca2+ exchange inhibitors given just on reperfusion affords additive protection in intact hearts. METHODS: Cytosolic [Ca2+] was measured by fluorescence at the left ventricular wall of guinea pig isolated hearts using indo-1 dye. Sarcoplasmic reticular Ca2+-cycling proteins, i.e., Ca2+ release channel (ryanodine receptor [RyR2]), sarcoplasmic reticular Ca2+-pump adenosine triphosphatase (SERCA2a), and phospholamban were measured by Western blots. Hearts were assigned to seven groups (n = 8 each): (1) time control; (2) ischemia; (3, 4) 10 microM Na+-Ca2+ exchange inhibitor KB-R7943 (KBR) or 1 microM SEA0400 (SEA), given during the first 10 min of reperfusion; (5) APC initiated by sevoflurane (2.2%, 0.41 +/- 0.03 mm) given for 15 min and washed out for 15 min before ischemia-reperfusion; (6, 7) APC plus KBR or SEA. RESULTS: The authors found that APC reduced the increase in systolic [Ca2+], whereas KBR and SEA both reduced the increase in diastolic [Ca2+] on reperfusion. Each intervention improved recovery of left ventricular function. Moreover, APC plus KBR or SEA afforded better functional recovery than APC, KBR, or SEA alone (P < 0.05). Ischemia-reperfusion-induced degradation of major sarcoplasmic reticular Ca2+-cycling proteins was attenuated by APC, but not by KBR or SEA. CONCLUSIONS: APC plus Na+-Ca2+ exchange inhibition exerts additive protection in part by reducing systolic and diastolic Ca2+ overload, respectively, during ischemia-reperfusion. Less degradation of sarcoplasmic reticular Ca2+-cycling proteins may also contribute to cardiac protection.  相似文献   

16.
内皮素受体拮抗剂对损伤脊髓早期保护作用   总被引:5,自引:0,他引:5  
目的评价非选择性内皮素(ET)受体拮抗剂PD145065对损伤脊髓的保护作用,证实ET参与脊髓损伤(SCI)后继发损伤的假设并探讨其作用机制。方法压迫法致伤大鼠脊髓(50g,1min)。损伤前10min鞘内注射PD145065或生理盐水,观察脊髓血流(SCBF)、丙二醛(MDA)、细胞内钙([Ca2+]i)、伊文思兰(EB)及水含量变化。结果伤区SCBF在伤后5min即有明显下降,为基线的(75.23±9.21)%,2h降为(57.06±7.35)%;伤区邻近血流下降较慢,伤后30min降为(79.82±7.98)%。伤区及邻近区伤后4h?SCBF都未恢复。伤段脊髓组织中MDA、[Ca2+]i、EB和水含量均高于假手术组(P<0.05)。PD145065明显改善了伤区SCBF,消除了伤区邻近段SCBF的下降。PD145065预处理组脊髓中MDA、[Ca2+]i、EB和水含量均低于生理盐水组(P<0.05)。结论PD145065对损伤脊髓早期有明显保护作用,ET及其受体可能通过多种途径参与SCI后的继发损伤。临床应用ET受体拮抗剂对SCI可能有治疗作用。  相似文献   

17.
Feng Z  Wei C  Chen X  Wang J  Cheng H  Zhang X  Hong Q  Shi S  Fu B  Wei R 《Kidney international》2006,70(1):130-138
The increased resistance of the glomerulus as a result of contractile dysfunction of mesangial cells (MCs) is associated with reduction of glomerular filtration rate and development of glomerulosclerosis. Evidences show MCs contraction changes with intracellular Ca(2+) concentration ([Ca(2+)](i)). Here, we explore the mechanism of angiotensin II (AngII)-induced Ca(2+) oscillations and MCs contraction. Primary MCs from 3-month-old and 28-month-old rats were used for detection of Ca(2+) oscillations and MC planar area with confocal microscopy. AngII could induce typical Ca(2+) oscillations and contraction of MCs. This process was abolished by thapsigargin, 2-aminoethoxydiphenyl borate, or 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphorylcholine, and partially inhibited by ryanodine, but could not be inhibited in the absence of extracellular Ca(2+). Ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate (InsP(3)) receptors displayed a strong colocalization, which may contribute to the amplification of Ca(2+) response. MLC(20) phosphorylation and MC planar area were associated with AngII-induced Ca(2+) oscillations. The frequency of Ca(2+) oscillations was dependent on the AngII concentration and correlated with the MCs' contractive extent, which could be attenuated by KN-93. The amplitude reduction of oscillations correlated with the decrease in aging-related contraction. In conclusion, [Ca(2+)](i) response of MCs to AngII is characterized by repetitive spikes through the following repetitive cycles: Ca(2+) release by phospholipase C -InsP(3) pathway, Ca(2+) amplification by Ca(2+)-activated RyRs and Ca(2+) reuptake by the endoplasmic reticulum. MCs contraction can be modulated by oscillations not only in an AngII-induced frequency-dependent mode but also in an aging-related, amplitude-dependent mode.  相似文献   

18.
BACKGROUND: A multiplicity of hormonal, neural, and paracrine factors regulates preglomerular arterial tone by stimulating calcium entry or mobilization. We have previously provided evidence for capacitative (store-operated) Ca2+ entry in fresh renal vascular smooth muscle cells (VSMCs). Ryanodine-sensitive receptors (RyRs) have recently been identified in a variety of nonrenal vascular beds. METHODS: We isolated fresh rat preglomerular VSMCs with a magnetized microsphere/sieving technique; cytosolic Ca2+ ([Ca2+]i) was measured with fura-2 ratiometric fluorescence. RESULTS: Ryanodine (3 micromol/L) increased [Ca2+]i from 79 to 138 nmol/L (P = 0.01). Nifedipine (Nif), given before or after ryanodine, was without effect. The addition of calcium (1 mmol/L) to VSMCs in calcium-free buffer did not alter resting [Ca2+]i. In Ca-free buffer containing Nif, [Ca2+]i rose from 61 to 88 nmol/L after the addition of the Ca2+-ATPase inhibitor cyclopiazonic acid and to 159 nmol/L after the addition of Ca2+ (1 mmol/L). Mn2+ quenched the Ca/fura signal, confirming divalent cation entry. In Ca-free buffer with Nif, [Ca2+]i increased from 80 to 94 nmol/L with the addition of ryanodine and further to 166 nmol/L after the addition of Ca2+ (1 mmol/L). Mn2+ quenching was again shown. Thus, emptying of the sarcoplasmic reticulum (SR) with ryanodine stimulated capacitative Ca2+ entry. CONCLUSION: Preglomerular VSMCs have functional RyR, and a capacitative (store-operated) entry mechanism is activated by the depletion of SR Ca2+ with ryanodine, as is the case with inhibitors of SR Ca2+-ATPase.  相似文献   

19.
In the phospholipase-C (PLC) signaling system, Ca2+ is mobilized from intracellular Ca2+ stores by an action of inositol 1,4,5-trisphosphate (IP3). The depletion of IP3-sensitive Ca2+ stores activates a store-operated Ca2+ entry (SOCE). However, no direct evidence has been obtained about these signaling pathways in odontoblasts. In this study, we investigate the characteristics of the SOCE and IP3-mediated Ca2+ mobilizations in rat odontoblasts using fura-2 microfluorometry and a nystatin-perforated patch-clamp technique. In the absence of extracellular Ca2+ ([Ca2+]o), thapsigargin (TG) evoked a transient rise in intracellular Ca2+ concentration ([Ca2+]i). After TG treatment to deplete the store, the subsequent application of Ca2+ resulted in a rapid rise in [Ca2+]i caused by SOCE. In the absence of TG treatment, no SOCE was evoked. The Ca2+ influx was dependent on [Ca2+]o (KD = 1.29 mM) and was blocked by an IP3 receptor inhibitor, 2-aminoethoxydiphenyl borate (2-APB), as well as La3+ in a concentration-dependent manner (IC50 = 26 microM). In TG-treated cells, an elevation of [Ca2+]o from 0 to 2.5 mM elicited an inwardly rectifying current at hyperpolarizing potentials with a positive reversal potential. The currents were selective for Ca2+ over the other divalent cations (Ca2+ > Ba2+ > Sr2+ > Mn2+). In the absence of [Ca2+]o, carbachol, bradykinin, and 2-methylthioadenosine 5'triphosphate activated Ca2+ release from the store; these were inhibited by 2-APB. These results indicate that odontoblasts possessed Ca2+ signaling pathways through the activation of store-operated Ca2+ channels by the depletion of intracellular Ca2+ stores and through the IP3-induced Ca2+ release activated by PLC-coupled receptors.  相似文献   

20.
The protective effect of chlorpromazine on rat spinal cord injury was investigated using a dynamic impact model. A 10 g weight was dropped 5 cm on an impounder placed on the exposed spinal cord at the T-11 level. Changes in potassium concentration on the epidural surface of the injured spinal cord were measured using a combined impounder-K+ electrode assembly. Recovery of motor performance was estimated using the modified Tarlov score. In the injury control (no treatment) group, the recovery was slow. Animals were still paralyzed 4 weeks after injury and none of them could walk; the Tarlov score was 1.88 +/- 0.78 (S.D.). In contrast, the chlorpromazine-treated group (20 mg/kg i.p. 30 min prior to injury) recovered significantly in 4 weeks. Animals could either support body weight or walk with some deficit; the Tarlov score was 4.0 +/- 0.35. Chlorpromazine inhibited potassium efflux from the spinal cord after contusion. Possible mechanisms of protection of neural cells by chlorpromazine are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号