首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
2.
3.
We report that a deletion of 19 base pairs (bp) in intron 3 of the proteolipid protein (PLP/DM20) gene causes a neurological disease characterized by mild developmental delay, followed by progressive decline of acquired motor and cognitive milestones. The clinical features are associated with mild delay in myelination demonstrated by magnetic resonance imaging studies and with ongoing demyelination and axonal loss demonstrated by magnetic resonance spectroscopy. We demonstrate that the purine-rich 19bp element regulates PLP-specific splice site selection in transient transfections of chimeric constructs into cultured oligodendrocytes. Runs of 4 and 5 Gs centered in the 19bp element are critical for efficient PLP-specific splicing. The intronic element is sequence specific in oligodendrocytes and is not a repressor of PLP-specific splicing in nonglial cells. These data support the conclusion that deletion of the 19bp purine-rich region in PLP intron 3 causes a reduction in PLP message and protein, which affects myelin stability and axonal integrity.  相似文献   

4.
The myelin proteolipid protein (Plp) gene is expressed in oligodendrocytes and encodes the most abundant protein (approximately 50%) present in mature myelin from the central nervous system (CNS). Plp gene activity is low to nonexistent early in development but sharply increases, concurrently with the active myelination period of CNS development. Work from our laboratory suggests that the temporal regulation of Plp gene expression in mice is mediated by a positive regulatory element located within Plp intron 1 DNA. We have termed this regulatory element/region ASE (for antisilencer/enhancer). The ASE is situated approximately 1 kb downstream of exon 1 DNA and encompasses nearly 100 bp. To understand the mechanisms by which the ASE augments Plp gene expression in oligodendrocytes, Plp-lacZ constructs were generated and transfected into a mouse oligodendroglial cell line (N20.1). Results presented here demonstrate that upstream regulatory elements in the Plp promoter/5'-flanking DNA are not required for ASE activity; the ASE worked perfectly well when the thymidine kinase (TK) promoter was substituted for the Plp promoter. However, the relative location of the ASE appears to be important. When placed upstream of 2.4 kb of Plp 5'-flanking DNA, or downstream of the lacZ expression cassette, the ASE was no longer effective. Thus, the ASE might have to be in the context of the intron in order to function. To begin to identify the crucial nucleotides within the ASE, orthologous sequences from rat, human, cow, and pig Plp genes were swapped for the mouse sequence. Results presented here demonstrate that the orthologous sequence from rat can substitute for the mouse ASE, unlike those from human, cow, or pig.  相似文献   

5.
6.
7.
8.
The phosphoprotein synapsin I is expressed exclusively in neuronal cells. We are interested in elucidating the promoter sequences involved in cell type-specific expression of the synapsin I gene. The PC12 cell line expresses the 3.4 kb and 4.5 kb synapsin I mRNAs and is used to analyze cell type-specific gene expression. A series of deletion fragments of the rat synapsin I gene promoter were fused to the promoterless reporter gene encoding bacterial chloramphenicol acetyltransferase (CAT) for transfection analysis in PC12 cells and in HeLa cells, which do not express the gene. A -349 bp to +110 bp rat synapsin I promoter fragment contains a positive regulator, shown to be 33-times more active in PC12 cells than HeLa cells. Transfection of reporter plasmids containing up to 4.4 kb of rat synapsin I gene promoter sequences exhibit significantly reduced CAT activity in PC12 cells. The reduction in CAT expression was attributed to a negative regulator located between -349 bp and -1341 bp in the rat synapsin I promoter. Our results suggest that both positive and negative-acting sequence elements regulate cell type-specific expression of the rat synapsin I gene.  相似文献   

9.
10.
The myelin proteolipid protein gene (PLP1) encodes the most abundant protein present in myelin from the central nervous system (CNS). Its expression must be tightly controlled as evidenced by mutations that alter PLP1 dosage; both overexpression (elevated PLP1 copy number) and lack thereof (PLP1 deletion) result in X‐linked genetic disorders in man. However, not much is known about the mechanisms that govern expression of the human gene. To address this, transgenic mice were generated which utilize human PLP1 (hPLP1) sequences (proximal 6.2 kb of 5′‐flanking DNA to the first 38 bp of exon 2) to drive expression of a lacZ reporter cassette. LoxP sites were incorporated around a 1.5‐kb section of hPLP1 intron 1 since it contains sequence orthologous to the wmN1 region from mouse which, previously, was shown to augment expression of a minimally‐promoted transgene coincident with the active myelination period of CNS development. Eight transgenic lines were generated with the parental, 6.2hPLP(+)Z/FL, transgene. All lines expressed the transgene appropriately in brain as evidenced by staining with X‐gal in white matter regions and olfactory bulb. Removal of the “wmN1” region from 6.2hPLP(+)Z/FL with a ubiquitously expressed Cre‐driver caused a dramatic reduction in transgene activity. These results demonstrate for the first time that the wmN1 enhancer region: (1) is functional in hPLP1; (2) works in collaboration with its native promoter—not just a basal heterologous promoter; (3) is required for high levels of hPLP1 gene activity; (4) has a broader effect, both spatially and temporally, than originally projected with mPlp1.  相似文献   

11.
12.
To better understand the mechanism by which glucocorticosteroids (GLUC) could enhance myelination in the PNS, cultured rat Schwann cells were transiently transfected with reporter constructs in which luciferase expression was controlled by the promoter region of either the peripheral myelin protein-22 (PMP22) or the protein zero (P(0)) genes. GLUC stimulated the activity of the P(0) promoter and the PMP22 promoters 1 and 2. The effect of GLUC was specific as estradiol and testosterone did not activate the promoters. The antagonist RU486 did not abolish the effect of GLUC, but instead stimulated promoter activities by itself. In the mammary carcinoma cell line 34i, which expresses GLUC receptors, GLUC did not stimulate the P(0) and PMP22 promoters while the promoter of the mouse mammary tumor virus was strongly activated. Thus, the activation by GLUC of the promoter activities of two peripheral myelin protein genes is Schwann cell-specific.  相似文献   

13.
14.
Dengue virus (DV) infections cause mild dengue fever or severe life-threatening dengue haemorrhagic fever (DHF)/ dengue shock syndrome (DSS). DV-infected patients have high plasma concentrations of plasminogen activator inhibitor type I (PAI-1). However, the mechanism to cause haemorrhage in DV infections remains poorly understood. In this study, investigation was carried out on the purified recombinant domain III of the envelope glycoprotein of DV serotypes 2 (EIII) and the signalling pathways of EIII leading to PAI-1 gene expression were measured by RT-PCR, Western blot, and immunofluorescence stain. Reporter gene constructs containing serially 5'-deleted sequences of the proximal human PAI-1 promoter region were constructed and then transfected to Huh7 cells, a human hepatoma cell line, prior to EIII treatment. EIII increased the PAI-1 mRNA and protein levels in a dose-dependent manner in Huh7 cells. Results showed that U0126, an inhibitor of extracellular signal-regulated kinase (ERK) kinase (MEK), almost completely suppressed EIII-induced PAI-1 expression. The results suggest that the MEK/ERK signalling pathways mediate the EIII-dependent induction of PAI-1 gene expression via the proximal promoter region.  相似文献   

15.
We investigated the regulation of the rat neuron-specific enolase gene using a transient transfection approach. Recent transgenic mouse studies have shown that a 1.8-kb segment of the ratNSE gene 5′ flanking region, including the first (noncoding) exon but not the first intron, is able to drive expression of a reporter gene in parallel with endogenousNSE. These data suggest thatcis-acting elements responsible for the spatial and temporal pattern ofNSE gene expression are located within the proximal 1.8 kb of the 5′ flanking sequence. To further investigate this region, we joined the 1.8-kb regulatory cassette to thecat reporter gene and generated a number of constructs in which the flanking sequence was progressively deleted from the 5′ end. These constructs were tested by transient transfection into neuronal and nonneuronal cells, followed by an assay for CAT activity. We found that as little as 255 bp of 5′ flanking sequence was able to confer cell type-specificity on the reporter gene. Further truncation to 120 bp of 5′ sequence resulted in a sharp downregulation of reporter activity in PC12 cells but a significant rise in both Neuro-2A neuroblastoma cells and nonneuronal Ltk- cells, indicating thatcis-acting elements controlling the regulation ofNSE in Ltk-, Neuro-2A, and PC12 cells may lie within the 135 bp region covered by this deletion. This region contains an AP-2 site and an element similar in sequence and position to a motif identified in the proximal promoter region of the neuron-specific peripherin gene. Reduction to 95 bp of 5′ sequence resulted in a slight downregulation of CAT activity in all cell lines tested, and further truncation to 65 bp of 5′ sequence caused a universal reduction to background levels of CAT activity, concomitant with the disruption of the basalNSE promoter. Our results show that the 5′ flanking region of theNSE gene is capable of conferring cell type-specificity on a heterologous gene in transfected cells and that elements responsible for this are located within the proximal 255 bp.  相似文献   

16.
17.
18.
19.
20.
Transferrin (TF), a major plasma protein, binds and transports ferric iron. Evidence exists for unique roles for TF in brain in oligodendrocyte differentiation, myelination and neuronal development. In this study, 5' flanking regions of the TF gene important in regulating gene expression were identified by transfected cell studies and a comparison of 5' flanking sequences of the human TF and TF receptor genes. Human glioma cell lines HTB-16 and HTB-17 were shown to synthesize TF identical in size and immunological reaction to TF synthesized by liver. The expression of a series of human chimeric TF genes in glioma cells was compared with hepatoma and HeLa cells. A difference in transient expression was observed in hepatoma and glioma cells transfected with TF chimeric genes containing 3.9 kb of the 5' region; hepatoma cells demonstrated significantly more expression than did glioma cells, suggesting that a DNA region present in the 3.9-kb construct is important either in liver-specific expression or in repression of brain expression, or in both. Smaller constructs containing less than or equal to 0.622 kb of the 5' regulatory region of the TF gene failed to demonstrate cell-specific expression; they were expressed in HeLa cells, a line that does not synthesize TF. High levels of expression of 0.15-kb TF constructs were also observed in hepatoma and glioma cell lines, but not in transgenic mice. Possible explanations of differences observed in expression of shorter TF constructs in vitro and in vivo are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号