首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The article presents the results of research that was carried out in order to analyze the capillary suction of cement mortar. Capillary suction is a common process that occurs when porous material is in free contact with moisture. The result of high capillary suction may be excessive moisture in buildings, and it is therefore important to limit the causes of such moisture. The main aim of the presented research is to show the influence of sodium silicate (in various proportions), as well as the quantity of aggregate, on capillary suction. Three different types of cement mortar and one type of fine aggregates were analyzed in the research. At the beginning, the capillary suction of the aggregates was analyzed. Afterwards, nine cement mortar bars were made, which were then used to examine the capillary suction. As a result of this study, it was proved that M15 cement mortar with basalt fine aggregate and a higher proportion of sodium silicate was the mortar with the lowest capillary suction. It was found that M15 cement mortar with basalt fine aggregate and a higher proportion of sodium silicate had 39 mm of capillary suction after 120 h of being immersed in water. M5 cement mortar without sodium silicate had the highest index of capillary suction, which shows that adding sodium silicate to cement mortar can significantly reduce capillary suction.  相似文献   

2.
The use of cement emulsified asphalt mortar (CA mortar) in the track structure of high-speed speed railways has been gaining considerations by many researchers due to its coupled merits of the strength of cement as well as the flexibility of asphalt material. The asphalt to cement ratio (A/C) and the compatibility among constituent materials are crucial to the properties of CA mortar. To improve the performance properties and application of CA mortar, it is imperative to have a broad understanding of the composition mechanisms and compatibility between constituent materials. This paper summarizes interesting research outcomes related to the composition and properties of CA mortar. The consumption of water by cement promotes the breakdown of emulsified asphalt, likewise, the adsorption of asphalt droplets on the surface of cement grains retards the hydration process of cement. An appropriate A/C is required for the cement hydration rate to match the speed of demulsification of asphalt emulsion. Depending on the type and properties for which the CA mortar is designed to possess, the A/C ranges from 0.2 to 0.6 for type 1 (CAM I), and 0.6 to 1.2 for type 2 (CAM II). This paper also discusses measures taken to improve performance properties, compatibility, the interaction between constituent materials of CA mortar, and the use of additives as a partial replacement of cement in CA mortar production. The current review also suggests areas of interest for future research studies. This paper is useful to those who aim to understand or study the composition mechanisms and performance properties of CA mortar.  相似文献   

3.
There have been numerous recent studies on improving the mechanical properties and durability of cement composites by mixing them with functional polymers. However, research into applying modified biopolymer such as catechol-functionalized chitosan to cement mortar or concrete is rare to the best of our knowledge. In this study, catechol-functionalized chitosan (Cat-Chit), a well-known bioinspired polymer that imitates the basic structures and functions of living organisms and biological materials in nature, was synthesized and combined with cement mortar in various proportions. The compressive strength, tensile strength, drying shrinkage, accelerated carbonation depth, and chloride-ion penetrability of these mixes were then evaluated. In the ultraviolet–visible spectra, a maximum absorption peak appeared at 280 nm, corresponding to catechol conjugation. The sample containing 7.5% Cat-Chit polymer in water (CPW) exhibited the highest compressive strength, and its 28-day compressive strength was ~20.2% higher than that of a control sample with no added polymer. The tensile strength of the samples containing 5% or more CPW was ~2.3–11.5% higher than that of the control sample. Additionally, all the Cat-Chit polymer mixtures exhibited lower carbonation depths than compared to the control sample. The total charge passing through the samples decreased as the amount of CPW increased. Thus, incorporating this polymer effectively improved the mechanical properties, carbonation resistance, and chloride-ion penetration resistance of cement mortar.  相似文献   

4.
In this paper, the traditional, silicate-based Portland cement (PC) was employed as the control to explore the impact of adding varying amounts of metakaolin (MK) on the mechanical properties of cement mortar. In fact, as a mineral admixture, metakaolin (MK) has the ability to significantly improve the early strength and sulfate resistance of cement mortar in traditional, silicate-based Portland cement (PC). In addition to this, the performance of Portland cement mortar is greatly affected by the curing mode. The previous research mainly stays in the intermittent curing and alkaline excitation mode, and there are few studies on the influence of relatively humidity on it. Moreover, the paper investigated the impact of four different curing methods about humidity on the mechanical properties and sulfate resistance. The results show that the best content of metakaolin in Portland cement is 10% (M10), and the best curing method is 95% humidity in the first three days followed by 60% humidity in the later period (3#). Based on previous literature that suggests that adding MK thickens water film layer on the surface of mortar, the mechanism of MK increasing the early strength of cement was analyzed. The compressive strength of the Portland cement containing 10% MK (M10) after 1 day curing is 3.18 times that of pristine PC mortar, and is comparable if PC is cured for three days under the same curing conditions. The traditional PC mortar is highly dependent on the wet curing time, and normally requires a curing time of at least seven days. However, the incorporation of MK can greatly reduce the sensitivity of Portland cement to water; MK cement mortar with only three days wet curing (3#M10) can reach 49.12 MPa after 28 days, which can greatly shorten the otherwise lengthy wet curing time. Lastly, the cement specimens with MK also demonstrated excellent resistance against sulfate corrosion. The work will provide a strong theoretical basis for the early demolding of cement products in construction projects. At the same time, this study can also provide a theoretical reference for the construction of climate drought and saline land areas, which has great reference value.  相似文献   

5.
In this study, the compressive strength and water contact angle of mortar specimens prepared by mixing two types of water repellent with ordinary Portland cement (OPC) and rapid-hardening cement mortar were measured before and after surface abrasion. In addition, the hydration products and chemical bonding of cement mortar with the repellents were examined using X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA), and Fourier-transform infrared spectroscopy (FT-IR) to evaluate the performance of these cement mortar mixtures as repair materials. We found that the fast-hardening cement mortar mixture containing the oligomer water repellent showed the best performance with a high compressive strength and large water contact angle. With the oligomer water repellent, the rapid-hardening cement mortar mixture showed contact angles of 131° and 126° even after a 2 mm abrasion, thereby confirming that the water repellent secured hydrophobicity through strong bonding with the entire cement mortar as well as its surface. The compressive strengths were found to be 34.5 MPa at 3 h and 54.8 MPa at 28 days, confirming that hydration occurred well despite the addition of water repellent.  相似文献   

6.
The preload load on concrete during heating is considered to cause a ‘densification’ of cement mortar which led to the increased compressive strength. In order to assess the influence of coupled load and heating effects on porosity characteristics of concrete, the porosity of mortar after mechanical and thermal loading was measured by X-ray computed tomography (X-ray CT). The preload at pre-stress ratios of 0, 0.2, 0.4, and 0.6 (ratio of stress applied to the specimen to its compressive strength at room temperature) were applied on mortar specimens during heating. The residual compressive strengths of the heated and stressed mortar specimens were tested after cooling to room temperature. Combined analyses of the residual compressive strength test results and porosity test results, it shows that the porosity of the specimens under the coupled stressing and heating conditions were slightly lower than that under the unstressed conditions; however, the conclusion that the increase of compressive strength of stressed mortar was caused by the ‘densification’ of cement paste was insufficient. The preload reduced the cracks in the mortar, especially the crack induced due to the thermal mismatch in aggregates and hardened cement paste (HCP), and this may account for the increased compressive strength of stressed mortar.  相似文献   

7.
In the search for methods to incorporate Phase Change Materials (PCM) into Portland cement mortar mixtures, PCM based on paraffins adhered to a silica-based matrix appear as a suitable option. However, paraffin particles have been observed to escape from the silica matrix when water is added. There are only limited data on how the use of such PCM affects the behaviour of mortars. To evaluate the effect of this PCM addition, Portland mortar mixtures were elaborated with 5%, 10% and 15% of PCM content, and using CEM 42.5 I R and CEM I 52.5 R cement types. Physical properties such as density, open porosity, air content and water absorption were analysed for fresh and dry samples. The results obtained show that the PCM-added mixtures require greater water and cement amounts than the standard mortar mixtures to achieve similar compressive strengths. Compared to non-PCM mixtures the PCM-added mortars present a density lowering of 37% for fresh mixtures and near 45% for dry state forms. A maximum compressive strength of 15.9 MPa was reached for 15% PCM mixtures, while values beyond 40 MPa were achieved for 5% PCM mixtures. Thus, the proposed study contributes to broad the available knowledge of PCM cement mortar mixtures behaviour and their mix design.  相似文献   

8.
As the construction of hydrotechnical and energy facilities grows worldwide, so does the need for special heavyweight concrete. This study presents the analysis of the influence of waste-metal particle filler (WMP) on Portland cement (PC) paste and mortars with pozzolanic (microsilica and metakaolin) additives in terms of the hydration process, structure development, and physical–mechanical properties during 28 days of hardening. Results have shown that waste-metal particle fillers prolong the course of PC hydration. The addition of pozzolanic additives by 37% increased the total heat value and the ultrasound propagation velocity (UPV) in WMP-containing paste by 16%; however, in the paste with only WMP, the UPV is 4% lower than in the WMP-free paste. The density of waste-metal particle fillers in the free mortar was about two times lower than waste-metal particle fillers containing mortar. Due to the lower water absorption, the compressive strength of WMP-free mortar after 28 days of hardening achieved 42.1 MPa, which is about 14% higher than in mortar with waste-metal particle filler. The addition of pozzolanic additives decreased water absorption and increased the compressive strength of waste-metal particle filler containing mortar by 22%, compared to pozzolanic additive-free waste-metal particle fillers containing mortar. The pozzolanic additives facilitated a less porous matrix and improved the contact zone between the cement matrix and waste-metal particle fillers. The results of the study showed that pozzolanic additives can solve difficulties in local waste-metal particle fillers application in heavyweight concrete. The successful development of heavyweight concrete with waste-metal particle fillers and pozzolanic additives can significantly expand the possibility of creating special concrete using different local waste. The heavyweight concrete developed by using waste-metal particle fillers is suitable for being used in load balancing and in hydrotechnical foundations.  相似文献   

9.
Biomass combustion is a significant new source of green energy in the European Union. The adequate utilization of byproducts created during that process is a growing challenge for the energy industry. Biomass fly ash could be used in cement composite production after appropriate activation of that material. This study had been conducted to assess the usefulness of mechanical and physical activation methods (grinding and sieving), as well as activation through the addition of active silica in the form of silica fume, as potential methods with which to activate biomass fly ash. Setting time, compressive strength, water absorption and bulk density tests were performed on fresh and hardened mortar. While all activation methods influenced the compressive strength development of cement mortar with fly ash, sieving of the biomass fly ash enhanced the early compressive strength of cement mortar. The use of active silica in the form of silica fume ensured higher compressive strength results than those of control specimens throughout the entire measurement period.  相似文献   

10.
Coral sand cement (CSC) mortar is increasingly used in reef projects, which is prepared by mixing coral sand with cement and water in certain proportions. Considering that early-age hydration behavior is closely related to the strength and durability of the mortar, the early-age hydration process and micro-morphology of CSC mortars with various water–cement ratios (W/C) and sand–cement ratios (S/C) were studied. A monitoring system based on FBG is proposed in this paper, which uses the high sensitivity and conformability of optical fiber to measure the hydration temperature and internal shrinkage strain simultaneously and continuously. The standard sand cement (SSC) mortar with the same sand gradation and mix proportion is also prepared for comparison. The micro-morphology is observed by a scanning electron microscope (SEM) for measurement results’ explanation. The results show that the variation of the hydration temperature and shrinkage strain with hydration time of both CSC mortars and SSC mortars follow a unimodal function. Differently, the peak hydration temperature for CSC is obviously lower than that of SSC. The peak temperature of CSC mortar decreases linearly with the increase in S/C, and the decrease rate of the peak temperature is higher for CSC with small W/C than that with higher W/C. For mortars with lower W/C, the peak shrinkage strain of CSC is larger than that of SSC. Meanwhile, for mortars with higher W/C, the peak shrinkage strain of CSC changes to be lower than that of SSC, which is attributed to the significant water absorption characteristic of CSC. Therefore, as an eco-friendly lightweight aggregate, CS is more suitable than SS for the design of high W/C and alleviating the hydration heat of mass concrete under the meeting of strength.  相似文献   

11.
In this study, the amount of cement used in a concrete mix is minimized to reduce the toxic effects on users by adjusting the concrete mixture contents. The reduction of cement is achieved by using various admixtures (ground granulated blast-furnace slag, flyash, ordinary Portland cement, and activated Hwangtoh powder). To apply the mix to construction, material property tests such as compressive strength, slump, and pH are performed. Preliminary experimental results showed that the Hwangtoh concrete could be used as a healthy construction material. Also, the health issues and effects of Hwangtoh mortar are quantitatively evaluated through an animal clinical test. Mice are placed in Hwangtoh mortar and cement mortar cages to record their activity. For the test, five cages are made with Hwangtoh and ordinary Portland cement mortar floors, using Hwangtoh powder replacement ratios of 20%, 40%, 60%, and 80% of the normal cement mortar mixing ratio, and two cages are made with Hwangtoh mortar living quarters. The activity parameter measurements included weight, food intake, water intake, residential space selection, breeding activity, and aggression. The study results can be used to evaluate the benefits of using Hwangtoh as a cement replacing admixture for lifestyle, health and sustainability.  相似文献   

12.
This paper discusses studies regarding the impact of fine-ground glass additives on the hydration and properties of alumina cement pastes and mortars. Fine-ground glass was added to pastes and mortars instead of high-alumina cement and calcium aluminate cement in quantities of 5% and 10%. The findings are inconclusive as to the impact of glass on the properties of tested alumina cement types. The effect produced via the addition of glass instead of cement depends on the type of alumina cement used. Adding fine-ground glass to high-alumina cement enhances the paste’s density while improving paste and mortar strength. Using the same additive for calcium aluminate cement reduces its density and strength. The addition of glass to high-alumina cement adversely affects its strength at higher temperatures.  相似文献   

13.
This paper shows the results of a study focused on the evolution and properties of mortars made with a mixture of portland cement (PC) and natural mordenite (Mor). To begin, samples of mordenite, cement and sand were studied with X-ray diffraction (XRD), X-ray fluorescence (XRF) and granulometric analysis (GA). Next, mortars with a ratio of 75% PC and 25% mordenite were prepared to determine their initial and final setting times, consistency and density. Continuing, the density, weight and compressive strength of the specimens were determined at 2, 7, 28, 90 and 365 days. Finally, the specimens were studied using SEM, XRD and XRF. The results of the study of the mordenite sample showed a complex constitution where the major mineral component is mordenite, and to a lesser degree smectite (montmorillonite), halloysite, illite, mica, quartz, plagioclase and feldspar, in addition to altered volcanic glass. Tests with fresh cement/mordenite mortar (CMM) showed an initial setting time of 320 min and a final setting time of 420 min, much longer than the 212–310 min of portland cement mortar (PCM). It was established that the consistency of the cement/mordenite mortar (CMM) was greater than that of the PCM. The results of the density study showed that the CMM has a lower density than the PCM. On the other hand, the density of cement/mordenite specimens (CMS) was lower than that of portland cement specimens (PCS). The CMS compressive strength studies showed a significant increase from 18.2 MPa, at 2 days, to 72 MPa, at 365 days, with better strength than PCS at 28 and 365 days, respectively. XRD, XRF and SEM studies conducted on CMS showed a good development of primary and secondary tobermorite, the latter formed at the expense of portlandite; also, ettringite developed normally. This work proves that the partial replacement of PC by mordenite does not have a negative effect on the increase in the mechanical strength of CMS. It indicates that the presence of mordenite inhibits the spontaneous hydration of C3A and controls the anomalous formation of ettringite (Ett). All this, together with the mechanical strength reported, indicates that mordenite has a deep and positive influence on the evolution of the mortar setting and is an efficient pozzolan, meaning it can be used in the manufacture of mortars and highly resistant pozzolanic cement, with low hydration heat, low density, stability in extremely aggressive places and a low impact on the environment.  相似文献   

14.
The study of the effect of cement type on the action of an admixture increasing the volume of concrete (containing aluminum powder), used in amounts of 0.5–1.5% of cement mass, was presented. The tests were carried out on cement mortars with Portland (CEM I) and ground granulated blast-furnace slag cement (CEM III). The following tests were carried out for the tested mortars: the air content in fresh mortars, compressive strength, flexural strength, increase in mortar volume, bulk density, pore structure evaluation (by the computer image analysis method) and changes in the concentration of OH ions during the hydration of used cements. Differences in the action of the tested admixture depending on the cement used were found. To induce the expansion of CEM III mortars, a smaller amount of admixture is required than in the case of CEM I cement. Using the admixture in amounts above 1% of the cement mass causes cracks of mortars with CEM III cement due to slow hydrogen evolution, which occurs after mortar plasticity is lost. The use of an aluminum-containing admixture reduces the strength properties of the cement mortars, the effect being stronger in the case of CEM III cement. The influence of the sample molding time on the admixture action was also found.  相似文献   

15.
In the industries of petroleum extraction, a large volume of oily sludge is being generated. This waste is usually considered difficult to dispose of, causing environmental and economic issues. This study presented the novel experimental method of manufacturing mortar used in civil construction by cement and oily sludge ash (OSA). The defined method was described with a logical experimental study conducted to examine a feasible manufacturing method for casting cement-based mortars by partially replacing cement with OSA. Replacement concentrations for OSA ranged from 0 to 20 percent by cement weight, while the water-to-cement (w/c) ratio was varied from 0.4 to 0.8, and the amount of sand was kept constant. The strengths and absorption rate of the mortar were monitored for 28 days. The OSA contains a crystalline structure with packs of angular grains. Because of OSA in the cement-based mortar mixtures and water-to-cement ratios, the mechanical strength was improved significantly. However, the water absorption trend increased linearly. Using variance analysis, the influence of OSA and w/c ratio on the behavior of mortar was acquired. The developed models were significant for all p-value reactions of <5%. Numerical optimization results showed that the best mixture can be obtained by replacing 8.19 percent cement with OSA and 0.52 as a ratio of w/c.  相似文献   

16.
Graphene’s outstanding properties make it a potential material for reinforced cementitious composites. However, its shortcomings, such as easy agglomeration and poor dispersion, severely restrict its application in cementitious materials. In this paper, a highly dispersible graphene (TiO2-RGO) with better dispersibility compared with graphene oxide (GO) is obtained through improvement of the graphene preparation method. In this study, both GO and TiO2-RGO can improve the pore size distribution of cement mortars. According to the results of the mercury intrusion porosity (MIP) test, the porosity of cement mortar mixed with GO and TiO2-RGO was reduced by 26% and 40%, respectively, relative to ordinary cement mortar specimens. However, the TiO2-RGO cement mortars showed better pore size distribution and porosity than GO cement mortars. Comparative tests on the strength and durability of ordinary cement mortars, GO cement mortars, and TiO2-RGO cement mortars were conducted, and it was found that with the same amount of TiO2-RGO and GO, the TiO2-RGO cement mortars have nearly twice the strength of GO cement mortars. In addition, it has far higher durability, such as impermeability and chloride ion penetration resistance, than GO cement mortars. These results indicate that TiO2-RGO prepared by titanium dioxide (TiO2) intercalation can better improve the strength and durability performance of cement mortars compared to GO.  相似文献   

17.
Magnesium potassium phosphate cement (MKPC) is an excellent rapid repair material for concrete, and many mineral admixtures have been applied to promote its performance. This study focuses on the quantitative characterization of the physical and chemical contributions of granulated blast-furnace slag with various finenesses to the performance development of MKPC. It was found that the addition of slag could increase the setting time, which is mainly due to the dilution of cement. Fine slag tends to decrease the fluidity of MKPC mortar. The physical contributions of ordinary and ultrafine slag to the early performance of MKPC mortar are 23% and 30%, while the chemical contributions are only 6%~10%. At late ages, the physical contribution is less than 10% and the chemical contribution of slag is even slightly negative. The addition of slag is beneficial to the compact packing of MKPC, which is the main reason for the physical contribution. Slag could react in the MKPC system, and increasing the fineness significantly promotes the reaction kinetics.  相似文献   

18.
This work studies the possibility of incorporating different proportions of glass powder from the waste glass (rejected material called fine cullet) produced during the glass recycling process into the manufacturing of mortar and concrete. For this purpose, the material is characterized by its chemical composition and pozzolanic activity, and the shape and size of its particles are studied. It is then incorporated as a substitute for cement into the manufacturing of mortar and concrete at 25% and 40% of cement weight, and its effect on setting times, consistency, and mechanical strength is analyzed. Its behavior as a slow pozzolan is verified, and the possibility of incorporating it into concrete is ratified by reducing its cement content and making it a more sustainable material.  相似文献   

19.
The amount of fly ash from the incineration of sewage sludge is increasing all over the world, and its utilization is becoming a serious environmental problem. In the study, a type of sewage sludge ash (SSA) collected directly from the municipal sewage treatment plant was used. Five levels of cement replacement (2.5%, 5%, 7.5%, 10% and 20%) and unchanged water-to-binder (w/b) ratio (0.55) were used. The purpose of the study was to evaluate the effect of sewage sludge ash (SSA) on the hydration heat process of cement mortars. The heat of the hydration of cement mortars was monitored by the isothermal calorimetric method for 7 days at 23 °C. The analysis of chemical composition and particle size distribution was performed on the tested material. The tests carried out have shown that SSA particles have irregular grain morphology and, taking into account the chemical composition consists mainly of oxides such as CaO, P2O5, SiO2 and Al2O3. The concentration of these compounds affects the hydration process of cement mortars doped with SSA. In turn, the content of selected heavy metals in the tested ash should not pose a threat to the environment. Calorimetric studies proved that the hydration process is influenced by the presence of SSA in cement mortars. The studies showed that the rate of heat generation decreased (especially in the initial setting period) with the increasing replacement of cement by SSA, which also reduced the amount of total heat compared to the control cement mortar. With increasing mass of the replacement of cement with SSA up to 20%, the 7-day compressive strength of the mortar samples decreases.  相似文献   

20.
Hydraulic fracturing may be induced easily in a cement-based structure in a sulfate-rich environment, which threatens engineering safety. In order to investigate the evolution of critical water pressure, a series of hydraulic fracturing tests and splitting tensile strength tests on the cement mortar under different sulfate-exposure periods are performed. The critical water pressure of the cement mortar under sulfate attack experiences an initial increase stage and a subsequent decrease stage. A stress intensity factor is modified by two proposed damage variables which are crack length and fracture stress. Then, the relationship between the critical water pressure and the tensile strength is established. Moreover, an evolution model of the critical water pressure is proposed, which reveals that the matrix tensile strength and porosity of cement mortar strongly affect the critical water pressure evolution. Additionally, an empirical formula is suggested to describe the critical water pressure evolution of the cement mortar under sulfate attack, and its validity is verified by experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号