首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gaskin S  White NM 《Hippocampus》2006,16(7):577-585
The conditioned cue preference (CCP) was used to study how rats discriminate between adjacent arms on a radial maze. Chai and White (Behav Neurosci 2004, 118:770-784) showed that an intact dorsal hippocampus is required to learn this discrimination and that an amygdala-based conditioned approach response that produces an equal tendency to enter both arms is simultaneously acquired. In the present experiments, rats were preexposed to the maze with no food and trained by alternately confining them at the ends of two adjacent arms, one that contained food and one that did not. When given a choice between these arms with no food present, the rats spent more time on their food-paired arms, suggesting they had learned to discriminate their locations. Temporary inactivation of the dorsal hippocampus with muscimol during confinement on the food-paired arm had no effect on the discrimination, but inactivation while on the no-food arm impaired it. This pattern of effects was reversed in rats with amygdala lesions (inactivation on the food-paired arm impaired, but inactivation on the no-food arm had no effect on the discrimination), showing that hippocampus-based and amygdala-based learning interact to influence the behavior of normal rats in this situation. The dorsal hippocampus learns about locations that contain food and about locations that do not contain food. The amygdala-based tendency to enter the food-paired arm cooperates with hippocampus-based foraging for food on the food-paired, but the amygdala-based tendency to enter the no-food arm competes with hippocampus-based learning about the absence of food on that arm.  相似文献   

2.
Gaskin S  Chai SC  White NM 《Hippocampus》2005,15(8):1085-1093
The conditioned cue preference (CCP) task was used to study the ability of rats to discriminate between spatial locations. Food-deprived rats explored an eight-arm radial maze with no food present (pre-exposure). On subsequent days, they were alternately confined in one arm of the maze with food and in another arm with no food (training), followed by a preference test with no food present, to determine if they had learned to discriminate between the two arm locations. No injections were given during the two latter phases. With adjacent radial maze arms, rats given three 10-min pre-exposure sessions and four food-pairing trials exhibited a preference for their food-paired arms; rats not pre-exposed did not exhibit this preference. Rats pre-exposed 30 min after dorsal hippocampus injections of muscimol exhibited the preference. With widely separated maze arms, rats given two training trials with no pre-exposure exhibited a preference for the food-paired arm; rats that were given one pre-exposure session did not. Rats pre-exposed 30 min after dorsal hippocampus injections of muscimol did not exhibit the preference. The same intrahippocampal muscimol injections that failed to affect the influence of pre-exposure on CCP learning with both arm configurations impaired win-shift performance, a standard test of spatial learning. These findings suggest that a functional dorsal hippocampus is not required for the (incidental or latent) learning that occurs during unreinforced exploration of a novel environment. The information acquired during this activity subsequently produces a latent learning effect if it is used to discriminate between two ambiguous locations (adjacent arms) or a latent inhibition--like effect if it is used to discriminate between two unambiguous locations (separated maze arms).  相似文献   

3.
The conditioned cue preference paradigm was used to study how rats use extra‐maze cues to discriminate between 2 adjacent arms on an 8‐arm radial maze, a situation in which most of the same cues can be seen from both arms but only one arm contains food. Since the food‐restricted rats eat while passively confined on the food‐paired arm no responses are reinforced, so the discrimination is due to Pavlovian stimulus‐reward (or outcome) learning. Consistent with other evidence that rats must move around in an environment to acquire a spatial map, we found that learning the adjacent arms CCP (ACCP) required a minimum amount of active exploration of the maze with no reinforcers present prior to passive pairing of the extra‐maze cues with the food reinforcer, an instance of latent learning. Temporary inactivation of the hippocampus during the pre‐exposure sessions had no effect on ACCP learning, confirming other evidence that the hippocampus is not involved in latent learning. A series of experiments indentified a circuit involving fimbria‐fornix and dorsal entorhinal cortex as the neural basis of latent learning in this situation. In contrast, temporary inactivation of the entorhinal cortex or hippocampus during passive training or during testing blocked ACCP learning and expression, respectively, suggesting that these two structures co‐operate in using spatial information to learn the location of food on the maze during passive pairing and to express this combined information during testing. In parallel with these processes we found that the amygdala processes information leading to an equal tendency to enter both adjacent arms (even though only one was paired with food) suggesting that the stimulus information available to this structure is not sufficiently precise to discriminate between the ambiguous cues visible from the adjacent arms. Expression of the ACCP in normal rats depends on hippocampus‐based learning to avoid the unpaired arm which competes with the amygdala‐based tendency to enter that arm. In contrast, there is cooperation between amygdala‐ and hippocampus‐based tendencies to enter the food‐paired arm. These independent forms of learning contribute to the rat's ability to discriminate among spatial locations using ambiguous extra‐maze cues. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Gaskin S  White NM 《Hippocampus》2007,17(7):586-594
The relationship of the entorhinal cortex (EC) and fimbria-fornix (FF) in unreinforced spatial (latent) learning was studied using the conditioned-cue-preference task on an eight-arm radial maze. The maze was turned before every trial to eliminate the use of local cues. During three pre-exposure sessions, food-deprived rats explored the center platform and two adjacent arms of the maze. Since most of the same cues were visible from both arm locations, discriminating them required spatial learning. The rats were then alternately confined to the end of each arm over several days: one arm always contained food, the other was empty. Finally, the rats were allowed free access to both arms with no food present. Normal rats spent more time in their food-paired than in their unpaired arms showing that they learned to discriminate between the arm locations. Bilateral micro-injections of muscimol into the dorsal, but not into the ventral EC, given before the pre-exposure sessions only, impaired the discrimination. The discrimination was also impaired in rats with unilateral lesions of FF and contralateral injections of muscimol into the dorsal EC given before the pre-exposure sessions. Ipsilateral FF lesions and entorhinal inactivation had no effect. These results indicate that the acquisition of information during unreinforced exploration of a novel environment requires an intact circuit involving the dorsal EC and fimbria fornix. Together with previous reports, that this form of learning does not require a functional hippocampus, (Gaskin et al. (2005) Hippocampus 15:1085-1093) the findings also suggest that the acquisition of certain kinds of unreinforced information by this circuit is independent of the hippocampus.  相似文献   

5.
The behavioral effects of 6-hydroxydopamine, injected bilaterally into the lateral septum, were investigated in two tests of spatial memory (radial 8-arm and T-maze). Three different experiments were conducted in the radial maze. In experiment I, rats were permitted to learn the task with food reinforcement in all arms of the maze. In experiment II, retention of the spatial information (working memory) learned in experiment I was tested by interposing various time intervals between choice 4 and 5 of each trial. In experiment III, reference and working memory were simultaneously assessed by only reinforcing 4 choices in the radial maze. Performances were compared in spaced versus massed trials. In the T-maze, the rats were first tested for learning a spatial discrimination between the two arms of the maze, and subsequently for reversal of the previously learned response. The results showed that the rats with lesions were impaired in all experiments. This impairment was particularly marked in some aspects of the procedures used: (1) in the search for the last 4 pellets in experiment I, (2) in the first presentations of various intervals interposed between choices 4 and 5, (3) in the search for food in the baited arms when the trials were massed in experiment III and (4) in the reversal of previously learned spatial discrimination in the T-maze. These behavioral deficits in the rats with septal dopaminergic lesions were interpreted as an increased susceptibility to interference. The lesions were shown to have selectively depleted dopamine concentrations in the septum without damaging noradrenergic terminals or cholinergic cell bodies. It was concluded that dopaminergic neurons could have a modulatory influence on memory processes.  相似文献   

6.
Rats with lesions in the fimbria-fornix, or with a control operation, were trained to discriminate between two spatial locations in a test arena, following which each rat was given two series of transfer tests. Although rats with fimbria-fornix lesions took longer than the controls to learn the spatial discrimination, on the first series of transfer tests all rats, even those with lesions, chose the correct goal location from an unfamiliar starting location, indicating that they had used a cognitive mapping strategy to solve the task. The results of the second series of transfer tests suggest that the rats with fimbria-fornix lesions preferred to use stimuli which were different from those used by the controls to solve the discrimination. Finally, on a radial arm maze task, the rats with lesions performed poorly in relation to the controls, demonstrating that the lesions were functionally effective. These results are seen as compatible with theories that emphasize the role of the hippocampal system in memory functions rather than in cognitive mapping.  相似文献   

7.
The present experiment examined the effects of quinolinic acid (125 mM) lesions of the agranular insular area on working memory for food reward value and working memory for spatial locations. In both tasks a go/no-go procedure was used. Working memory for food reward value was assessed using a delayed conditional discrimination in which either a 20% or 45% sugar content cereal was associated with a reinforcement and the other cereal was not. In the spatial locations task, rats were allowed to enter 12 arms in a radial maze for a food reinforcement. Of the 12 arm presentations, three or four arms were presented for a second time in a session which did not contain a reinforcement. The number of trials between the 1st and 2nd presentation of an arm ranged from 0 to 6 (lags). Working memory was assessed by the latency to enter an arm during the 2nd presentation. In the food reward value task, agranular insular lesions produced memory deficits in a delay-dependent manner. In contrast, agranular insular lesions did not impair working memory for spatial locations. These results add to accumulating evidence suggesting that different types of working memory are distributed across separate prefrontal subregions.  相似文献   

8.
Rats with fornix transection, or with cytotoxic retrohippocampal lesions that removed entorhinal cortex plus ventral subiculum, performed a task that permits incidental learning about either allocentric (Allo) or egocentric (Ego) spatial cues without the need to navigate by them. Rats learned eight visual discriminations among computer-displayed scenes in a Y-maze, using the constant-negative paradigm. Every discrimination problem included two familiar scenes (constants) and many less familiar scenes (variables). On each trial, the rats chose between a constant and a variable scene, with the choice of the variable rewarded. In six problems, the two constant scenes had correlated spatial properties, either Allo (each constant appeared always in the same maze arm) or Ego (each constant always appeared in a fixed direction from the start arm) or both (Allo + Ego). In two No-Cue (NC) problems, the two constants appeared in randomly determined arms and directions. Intact rats learn problems with an added Allo or Ego cue faster than NC problems; this facilitation provides indirect evidence that they learn the associations between scenes and spatial cues, even though that is not required for problem solution. Fornix and retrohippocampal-lesioned groups learned NC problems at a similar rate to sham-operated controls and showed as much facilitation of learning by added spatial cues as did the controls; therefore, both lesion groups must have encoded the spatial cues and have incidentally learned their associations with particular constant scenes. Similar facilitation was seen in subgroups that had short or long prior experience with the apparatus and task. Therefore, neither major hippocampal input-output system is crucial for learning about allocentric or egocentric cues in this paradigm, which does not require rats to control their choices or navigation directly by spatial cues.  相似文献   

9.
Hippocampal cell loss was induced by the four-vessel occlusion (4VO) method, a model of global ischaemia. Global ischaemia for 15 min induced a selective damage to the CA1 subfield. Occlusion for 25 min produced a larger cell loss within the CA1 and more variably the CA2, CA3, the striatum and cortex. Ischaemic and sham control groups were assessed on two conditional discrimination tasks (presenting the conditional cues either in the choice arms or the start arm) and two spatial tasks (water maze and a simple spatial discrimination task). No significant effects were found on either of the spatial tasks (apart from the speed measure on the water maze). However, on the conditional discrimination task with the cues in the choice arms, animals with 25 min ischaemia learned the task significantly more slowly than the 15 min ischaemic and control groups. Results for the task with cues presented in the start arm differed according to choice of criterion for learning. With a standard criterion of 90% accuracy on one session controls were significantly superior to both ischaemic groups. However, in this task rats with 15 min occlusion showed the greatest impairment, and were significantly worse than both the controls and the 25 min occlusion group. These results suggest that hippocampal ischaemic damage disrupts the learning of conditional discrimination but not simple spatial tasks. No clear relationship between the extent of hippocampal cell loss and behavioural impairment was evident. These results highlight the critical importance of procedural factors in the assessment of cognitive impairment.  相似文献   

10.
This study investigated the effects of neonatal hippocampal ablation on the development of spatial learning and memory abilities in rats. Newborn rats sustained bilateral electrolytic lesions of the hippocampus or were sham-operated on postnatal day 1 (PN1). At PN20–25, PN50–55, or PN90–95, separate groups of rats were tested in a Morris water maze on a visible “cue” condition (visible platform in a fixed location of the maze), a spatial “place” condition (submerged platform in a fixed location), or a no-contingency “random” condition (submerged platform in a random location). Rats were tested for 6 consecutive days, with 12 acquisition trials and 1 retention (probe) trial per day. During acquisition trials, the rat's latency to escape the maze was recorded. During retention trials (last trial for each day, no escape platform available), the total time the rat spent in the probe quadrant was recorded. Data from rats with hippocampal lesions tested as infants (PN20–25) or as adults (PN50–55 and PN90–95) converged across measures to reveal that 1) spatial (place) memory deficits were evident throughout developmental testing, suggesting that the deficits in spatial memory were long-lasting, if not permanent, and 2) behavioral performance measures under the spatial (place) condition were significantly correlated with total volume of hippocampal tissue damage, and with volume of damage to the right and anterior hippocampal regions. These results support the hypothesis that hippocampal integrity is important for the normal development of spatial learning and memory functions, and show that other brain structures do not assume hippocampal-spatial memory functions when the hippocampus is damaged during the neonatal period (even when testing is not begun until adulthood). Thus, neonatal hippocampal damage in rats may serve as a rodent model for assessing treatment strategies (e.g., pharmacological) relevant to human perinatal brain injury and developmental disabilities within the learning and memory realm. Hippocampus 7:403–415, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The septo-hippocampal cholinergic pathway has traditionally been thought of as essential for spatial memory. Recent studies have demonstrated intact spatial learning following removal of this pathway with an immunotoxin selective for cholinergic neurons. In the present experiment, rats with selective removal of hippocampal cholinergic input were tested in a delayed nonmatching-to-position task in a water version of the radial arm maze. This allowed us to increase and parametrically vary the memory load compared with the standard Morris water maze (by varying the delay between the initial four choices and the final four choices) to determine if this would reveal a deficit in rats with lesions of septo-hippocampal cholinergic projections. Male Long-Evans rats were given injections of 192 lgG-saporin, a selective immunotoxin for cholinergic neurons, into the medial septum/vertical limb of the diagonal band (MS/VDB) to remove cholinergic projections to the hippocampus, or a control surgery. The rats were trained on the radial maze task following surgery. An escape platform was located at the end of each arm of the maze and was removed after an arm was utilized for escape. After initial training, a delay was interposed between the first four trials and the second four trials. Errors during the second four-trial component were scored in two categories: retroactive (reentering an arm chosen before the delay) and proactive (reentering an arm chosen after the delay). Retroactive errors increased as delay increased (from 60 s to 6 h) but were equivalent in control and MS/VDB-lesion groups. Proactive errors did not vary with delay and were also unaffected by the lesion. Radioenzymatic assays for choline acetyltransferase activity in the hippocampus of lesioned rats confirmed a significant loss of cholinergic input from the MS/VDB. These results indicate that normal spatial working memory is possible after substantial loss of septo-hippocampal cholinergic projections. Hippocampus 7:130–136, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
We trained rats to perform one of three versions of delayed non-matching-to-sample (DNMS): DNMS between two retractable levers in an enclosed operant chamber; varying-choice DNMS between two arms selected at random on every trial in an uncovered eight-arm radial arm maze; or recurring-choice DNMS between the same two arms on every trial in a covered radial maze (N=33/task). Rats with medial prefrontal cortical lesions showed delay-independent impairments on the retractable lever and recurring-choice tasks, but performed varying-choice DNMS normally. Rats with hippocampal lesions exhibited delay-independent impairments of the retractable lever task and delay-dependent impairments of both radial maze tasks. When rats trained initially to perform recurring choice DNMS were switched to varying choice DNMS, the impairments of both the prefrontal and hippocampal groups were reduced, although hippocampal animals remained significantly impaired. When rats trained initially to perform varying choice DNMS were switched to recurring choice DNMS, the impairment of the hippocampal group was exacerbated while the prefrontal group remained unimpaired. Thus training the prefrontal group to perform the varying choice task first seemed to protect from impairment when these rats were subsequently trained to perform recurring choice DNMS. This protection provides evidence against the possibility that factors related to proactive interference or to temporal discrimination can account for the effects of prefrontal lesions on delayed conditional discriminations involving two response alternatives in fixed locations.  相似文献   

13.
Learning and memory impairments are present in schizophrenia (SZ) throughout the illness course and predict psychosocial function. Abnormalities in prefrontal and hippocampal function are thought to contribute to SZ deficits. The radial arm maze (RAM) is a test of spatial learning and memory in rodents that relies on intact prefrontal and hippocampal function. The goal of the present study was to investigate spatial learning in SZ using a virtual RAM. Thirty-three subjects with SZ and thirty-nine healthy controls (HC) performed ten trials of a virtual RAM task. Subjects attempted to learn to retrieve four rewards each located in separate arms. As expected, subjects with SZ used more time and traveled more distance to retrieve rewards, made more reference (RM) and working memory (WM) errors, and retrieved fewer rewards than HC. It is important to note that the SZ group did learn but did not reach the level of HC. Whereas RM errors decreased across trials in the SZ group, WM errors did not. There were no significant relationships between psychiatric symptom severity and maze performance. To our knowledge, use of a virtual 8-arm radial maze task in SZ to assess spatial learning is novel. Impaired virtual RAM performance in SZ is consistent with studies that examined RAM performance in animal models of SZ. Results provide further support for compromised prefrontal and hippocampal function underlying WM and RM deficits in SZ. The virtual RAM task could help bridge preclinical and clinical research for testing novel drug treatments of SZ.  相似文献   

14.
This study was undertaken to compare the effect of hippocampal neurotoxic lesions in rats on two behavioral tasks, one a test of spatial learning, and the other an operant discrimination task that is acquired by forming nonspatial configural associations. Lesions of the hippocampus were made with microinjections of ibotenic acid. After postoperative recovery, rats were trained initially to locate a camouflaged escape platform in a water maze using distal spatial cues. Rats also were trained in the maze apparatus with a visible escape platform under conditions in which spatial information was made irrelevant to performance, i.e., cue learning. In an operant task, the same rats were then trained on a discrimination that included simultaneous feature positive and feature negative components (trial types XA+, A-, XB-, B+). After completion of this nonspatial configural learning task, rats received additional training in the water maze using a new platform location for spatial learning. To the extent that proficient performance in both the maze and operant tasks depends on a common function of the hippocampus, i.e., configural learning, the expectation was that hippocampal lesions would prove equally detrimental to performance in both tasks. Contrary to this expectation, lesioned rats were severely impaired in spatial learning but readily acquired the operant discrimination, even exhibiting some evidence of enhanced performance on this nonspatial configural learning task. Performance of the lesioned rats during cue training in the water maze was also enhanced relative to the control group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The symmetric radial arm maze, described by Olton in 1976, has developed into an important tool for the study of spatial memory. In a typical test an animal is placed in the centre of the maze, which contains some small piece of food at the end of each arm. The sampling behaviour of the animal is then recorded. In such studies the score (number of choices of arms which still contain food) of the animal is normally compared with the score of an imaginary animal which changes arms entirely at random. In a new method of analysis the non-random score of the animal is split into two parts, one depending on memory and one on stereotypic choice behaviour. Even mild departures from randomness are shown to alter considerably the expected ‘random’ score in an eight-armed maze. The part of the score claimed to depend on memory was shown to increase when the animals learn to search the maze, the stereotypic part did not. The general effect from stereotypic choice behaviour is shown to result, in most animals, in an increase in the total score. In an eight-armed maze this increase may amount to more than 20% of the total non-random score, even in a well-trained animal. The effect is less pronounced in mazes with 16 arms. It has been proposed that hippocampal lesions produce a stereotypic behaviour. We propose, based on our analysis, that the stereotypic behaviour is not produced but revealed by hippocampal lesions which destroy almost completely the memory-guided behaviour masking the stereotypic behaviour in the intact animal.  相似文献   

16.
Sziklas V  Petrides M 《Hippocampus》2007,17(6):456-461
The anterior thalamic region is intimately linked anatomically and functionally with the hippocampus, which is critical for various forms of spatial learning. Rats with lesions to the anterior thalamic nuclei and a control group were trained on a visual-spatial conditional associative learning task in which they had to learn to go to one of two locations depending on the particular visual cue presented on each trial; the rats approached the cues from different directions. The animals were subsequently tested on a spatial working memory task, the eight-arm radial maze. Performance on both these tasks had previously been shown to be impaired by hippocampal lesions. Rats with anterior thalamic damage were able to acquire the conditional associative task at a rate comparable to that of the control animals, but were impaired on the radial maze task. The finding of a dissociation between the effects of lesions of the anterior thalamic nuclei on two different classes of behavior known to be associated with hippocampal function suggest that while different neural stations within the extended hippocampal circuit may all play a role in spatial learning, the role of each of these regions in such learning may be more selective than previously considered.  相似文献   

17.
Both hypothyroidism and stress interfere with cognitive function in patients. This study examined the effect of hypothyroidism and stress on hippocampus-dependent learning and memory in rats using the novel radial arm water maze (RAWM), which measures spatial working memory. Hypothyroidism was accomplished by thyroidectomy and 2 weeks later a form of intruder stress was used as the chronic psychosocial stressor. After 4-6 weeks of stress, rats were trained to learn (during the acquisition phase; four trials) and then remember (during two memory test trials occurring 15 and 120 min after the acquisition phase) the within-day location of a hidden escape platform, which was in different arm every day. The number of errors (entry into arms other than the platform arm) was noted. Within-day learning of the platform location was largely unaffected by the experimental manipulations, indicating that rats in all groups were equally capable of finding the platform to escape from the water with similar numbers of errors (P > 0.005). The number of days a rat took to reach a criterion (DTC; a maximum of one error in three consecutive days) indicated that chronic stress or hypothyroidism, alone, resulted in a mild impairment of spatial memory, and the combination of chronic stress and hypothyroidism resulted in a more severe and long-lasting memory impairment. The data indicated that the combination of stress and hypothyroidism produced more deleterious effects on hippocampal function than either chronic stress or hypothyroidism alone.  相似文献   

18.
Four separate cohorts of rats were employed to examine the effects of cytotoxic retrohippocampal lesions in four spatial memory tasks which are known to be sensitive to direct hippocampal damage and/or fornix-fimbria lesions in the rat. Selective retrohippocampal lesions were made by means of multiple intracerebral infusions of NMDA centred on the entorhinal cortex bilaterally. Cell damage typically extended from the lateral entorhinal area to the distal ventral subiculum. Experiment 1 demonstrated that retrohippocampal lesions spared the acquisition of a reference memory task in the Morris water maze, in which the animals learned to escape from the water by swimming to a submerged platform in a fixed location. In the subsequent transfer test, when the escape platform was removed, rats with retrohippocampal lesions tended to spend less time searching in the appropriate quadrant compared to controls. Experiment 2 demonstrated that the lesions also spared the acquisition of a working memory version of the water maze task in which the location of the escape platform was varied between days. In experiment 3, both reference and working memory were assessed using an eight-arm radial maze in which the same four arms were constantly baited between trials. In the initial acquisition, reference memory but not working memory was affected by the lesions. During subsequent reversal learning in which previously baited arms were now no longer baited and vice versa, lesioned animals made significantly more reference memory errors as well as working memory errors. In experiment 4, spatial working memory was assessed in a delayed matching-to-position task conducted in a two-lever operant chamber. There was no evidence for any impairment in rats with retrohippocampal lesions in this task. The present study demonstrated that unlike direct hippocampal damage, retrohippocampal cell loss did not lead to a general impairment in spatial learning, implying that the integrity of the retrohippocampus and/or its interconnection with the hippocampal formation is not critical for normal hippocampal-dependent spatial learning and memory. This outcome is surprising for a number of current hippocampal theories, and suggests that other cortical as well as subcortical inputs to the hippocampus might be of more importance, and further raises the question regarding the functional significance of the retrohippocampal region. Introduction  相似文献   

19.
The effects of ibotenate hippocampal lesions on discrimination performance in an eight-arm radial maze were investigated in mice, using a three-stage paradigm in which the only parameter that varied among stages was the way the arms were presented. In the initial learning phase (stage 1), animals learned the valence or reward contingency associated with six (three positive and three negative) adjacent arms of the maze using a successive (go/no-go) discrimination procedure. In the first test phase (stage 2), the six arms were grouped into three pairs, so that on each trial, the subject was faced with a choice between two adjacent arms of opposite valence (concurrent two-choice discrimination). In the second test phase (stage 3), the subject was faced with all six arms simultaneously (six-choice discrimination). Hippocampal-lesioned mice acquired the initial learning phase at a near-normal rate but behaved as if they had learned nothing when challenged with the two-choice discriminations at stage 2. In contrast, they behaved normally when confronted with the six-choice discrimination at stage 3. Detailed examination of within- and between-stage performance suggests that hippocampal-lesioned mice perform as intact mice when presentation of the discriminanda encourages the storage and use of separate representations (i.e., in initial learning and six-choice discrimination testing), but that they fail in test situations that involve explicit comparisons between such separate representations (two-choice discriminations), hence requiring the use of relational representations.  相似文献   

20.
The effects of lesions to the hippocampal system on acquisition of three different configural tasks by rats were tested. Lesions of either the hippocampus (kainic acid/colchicine) or fornix-fimbria (radiofrequency current) were made before training. After recovery from surgery, rats were trained to discriminate between simple and compound-configural cues that signaled the availability or nonavailability of food when a bar was pressed. When positive cues were present, one food pellet could be earned by pressing a lever after a variable time had elapsed. The trial terminated on food delivery (variable interval 15 s). This procedure eliminates some possible alternative explanations of the results of previous experiments on configural learning. Hippocampal lesions increased rates of responding and retarded acquisition of a negative patterning task (A+, B+, AB); using a ratio measure of discrimination performance these lesions had a milder retarding effect on a biconditional discrimination (AX+, AY, BY+, BX), and they had no effect on a conditional context discrimination (X: A+, B; Y: A, B+). Fornix-fimbria lesions did not affect acquisition of any of these tasks but increased rates of responding. The results suggest that several task parameters determine the involvement of the hippocampus in configural learning; however, all tasks tested can also be learned to some extent in the absence of an intact hippocampal system, presumably by other learning/memory systems that remain intact following surgery. The lack of effect of fornix-fimbria lesions on any of these tasks suggests that retrohippocampal connections with other brain areas may mediate hippocampal contributions to the learning of some configural tasks. An analysis of these results and of experiments on spatial learning situations suggests that involvement of the hippocampus is a function of the degree to which correct performance depends on a knowledge of relationships among cues in a situation. Hippocampus 7:371–388, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号