首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In line with the trend of using waste raw materials in the technology of building materials, experimental studies of cement mortars containing various amounts of fine-grained waste aggregate were carried out. The waste aggregate was based on an incinerated municipal sewage sludge which was mechanically crushed to an appropriate grading. Chemical and physical properties of the waste aggregate are presented. Mortars with varying amounts of waste aggregate as a replacement for natural sand were prepared. Study determines compressive strength and flexural strength up to 56 days. Properties such as capillary action, air content and thermal conductivity were determined. The results of the tests has shown that the incinerated waste sludge can be used as a partial or total replacement for natural aggregate. In mortars with waste aggregate, a favorable relation between flexural and compressive strengths was observed, which translates into increased strength of the interfacial transition zone. A significant increase in water absorption was observed for mortars containing high amounts of waste aggregate, which is directly related to its porous structure. Conducted studied prove that the aggregate obtained from incineration of the municipal sewage sludge can a feasible alternative for natural aggregates in production of masonry and rendering mortars for construction purposes.  相似文献   

2.
The results of flexural tests of basalt fibre-reinforced cementitious mortars in terms of flexural strength and the occurrence of the bridging effect are summarised. Mixture proportions and curing conditions were altered for various series. The main parameters concerning mixture proportions were water to cement ratio (w/c), micro-silica and plasticiser addition and fibre dosage (1%, 3% and 6.2% by binder’s mass). Various curing conditions were defined by different temperatures, humidity and time. The influence of the amount of water inside the pores of the hardened cementitious matrix on the flexural strength values, as far as the impact of the alkaline environment on basalt fibres’ performance is concerned, was underlined. The designation of flexural strength and the analysis of post-critical deformations were also performed on the reference series without fibres and with the addition of more common polypropylene fibres. The bridging effect was observed only for the basalt fibre-reinforced mortar specimens with a relatively low amount of cement and high w/c ratio, especially after a short time of hardening. For the lowest value of w/c ratio (equalling 0.5), the bridging effect did not occur, but flexural strength was higher than in the case of non-reinforced specimens. Comparing mortars with the addition of basalt and polypropylene fibres, the former demonstrated higher values of flexural strength (assuming the same percentage dosage by the mass of the binder). Nevertheless, the bridging effect in that case was obtained only for polypropylene fibres.  相似文献   

3.
Cracks in typical mortar constructions enhance water permeability and degrade ions into the structure, resulting in decreased mortar durability and strength. In this study, mortar samples are created that self-healed their cracks by precipitating calcium carbonate into them. Bacillus subtilus bacterium (10−7, 10−9 cells/mL), calcium lactate, fine aggregate, OPC-cement, water, and bagasse ash were used to make self-healing mortar samples. Calcium lactates were prepared from discarded eggshells and lactic acid to reduce the cost of self-healing mortars, and 5% control burnt bagasse ash was also employed as an OPC-cement alternative. In the presence of moisture, the bacterial spores in mortars become active and begin to feed the nutrient (calcium lactate). The calcium carbonate precipitates and plugs the fracture. Our experimental results demonstrated that cracks in self-healing mortars containing bagasse ash were largely healed after 3 days of curing, but this did not occur in conventional mortar samples. Cracks up to 0.6 mm in self-healing mortars were filled with calcite using 10−7 and 10−9 cell/mL bacteria concentrations. Images from an optical microscope, X-ray Diffraction (XRD), and a scanning electron microscope (SEM) were used to confirm the production of calcite in fractures. Furthermore, throughout the pre- and post-crack-development stages, self-healing mortars have higher compressive strength than conventional mortars. The precipitated calcium carbonates were primed to compact the samples by filling the void spaces in hardened mortar samples. When fissures developed in hardened mortars, bacteria became active in the presence of moisture, causing calcite to precipitate and fill the cracks. The compressive strength and flexural strength of self-healing mortar samples are higher than conventional mortars before cracks develop in the samples. After the healing process of the broken mortar parts (due to cracking), self-healing mortars containing 5% bagasse ash withstand a certain load and have greater flexural strength (100 kPa) than conventional mortars (zero kPa) at 28 days of cure. Self-healing mortars absorb less water than typical mortar samples. Mortar samples containing 10−7 bacteria cells/mL exhibit greater compressive strength, flexural strength, and self-healing ability. XRD and SEM were used to analyze mortar samples with healed fractures. XRD, FTIR, and SEM images were also used to validate the produced calcium lactate. Furthermore, the durability of mortars was evaluated using DTA-TGA analysis and water absorption tests.  相似文献   

4.
This work aims to investigate the effects of multi-walled carbon nanotubes (MWCNTs) on the strength and electrical properties of cement mortar. MWCNTs were added to cement mortar in four different concentrations: 0.00 wt.%, 0.01 wt.%, 0.015 wt.%, and 0.02 wt.% by the mass of cement. The consistency, density, setting time and compressive and flexural strength of mixes were tested and analyzed at 28 and 90 days curing time. Mechanical performance tests confirm an increase of 25% and 20% in the ultimate compressive and flexural strength respectively, which results from MWCNT 0.02 wt.% loading at 90 days curing time. The resistivity measurements in mortars with 0.01 and 0.015 wt.% MWCNT loading result up to 10% decrement at both 28 and 90 days curing. Activation energy calculations show fully accordance with these statements, resuming that 0.01 wt.% MWCNT appears to be the most effective loading scheme to produce certain conductivity enhancement in cement mortar.  相似文献   

5.
The article describes the results of a study to determine the simultaneous effect of polyethylene terephthalate waste (PET) and polyethylene (PE) on the strength characteristics and bulk density of epoxy mortars. In these mortars, 9 wt.% of the polymer binder was replaced by glycolysate which was made from PET waste and propylene glycol. Additionally, 0–10 vol.% of the aggregate was substituted with PE agglomerate made from plastic bags waste, respectively. The modification of the composition of epoxy mortar has a special environmental and economic aspect. It also allows to protect natural sources of the aggregate, while reducing the amount of waste and reducing problems arising from the need to store them. The resulting composite has very good strength properties. With the substitution of 9 wt.% of resin and 5 vol.% of sand, a flexural strength of 35.7 MPa and a compressive strength of 101.1 MPa was obtained. The results of the microstructure study of the obtained mortars constitute a significant part of the paper.  相似文献   

6.
This paper presents an experimental study on use of hot-melt polyamide (HMP) to prepare mortar specimens with improved crack healing and engineering properties. The role of HMP in the crack repairing of cement mortar subjected to several rounds of heat treatment was investigated. Compatibility between HMP and hydraulic cement was investigated through X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) technology. Mortar specimens were prepared using standard cement mortar mixes with HMP at 1%, 3% and 5% (by volume) for fine aggregate substitute. After curing for 28 days, HMP specimens were subjected to heating at temperature of 160 °C for one, two, and three days and then natural cooling down to ambient temperature. Mechanical and durability properties of the heated HMP mortars were evaluated and compared with those of the corresponding mortars without heating. The microscopic observation of the interfacial transition zone (ITZ) of HMP mortar was conducted through environmental scanning electron microscopy (ESEM). Results reveal that incorporation of HMP improves the workability of the HMP/cement binder while leading to decrease in compressive strength and durability. The heated HMP mortars after exposure to heating for one, two, and three days exhibit no obvious change in compressive strength while presenting notable increase in flexural strength and durability compared with the corresponding mortars without heating. The XRD, FTIR and ESEM analyses indicate that no obvious chemical reaction occurs between HMP and hydraulic cement, and thus the self-repairing for interfacial micro-crack in HMP/cement composite system is ascribed to the physical adhesion of HMP to cement matrix rather than the chemical bonding between them.  相似文献   

7.
Using the waste materials in the production of the building materials limits the storage of the wastes, burdensome for the environment and landscape, and makes possible to manufacture the materials and products with the use of the less volume of the raw materials. Cement concretes and mortars as the basic building materials offer the broad prospects of utilization of the recyclable or waste materials. The wastes from the iron ore processing are the solid wastes resulting from the process of enrichment of the ore concentrate. The paper presents the results of testing three mortars, in which a part of fine aggregate was replaced with the iron oxide concentrate (IOC) resulting from such a process. IOC has been used as a substitute of 10%, 20% and 30% (by mass) of the fine aggregate. The effect of the concentrate on the mechanical performance of the mortars at the high temperature (up to 600 °C) was also investigated. The IOC is a neutral material, not affecting chemically the process of cement hydration. The addition of IOC slightly improves the strength of the cement mortars (by 5% to 10%). In the case of the larger amount (20–30%) of the addition, the use of superplasticizer is necessary. The IOC significantly improves the high temperature resistance of the cement mortars (300 °C). The cement mortars containing 30% of the IOC addition keep 80% of the initial flexural and compressive strength when exposed to the temperature 450 °C.  相似文献   

8.
Nowadays, effective and eco-friendly ways of using waste materials that could replace natural resources (for example, sand) in the production of concrete composites are highly sought. The article presents the results of research on geopolymer composites produced from two types of waste materials—hemp and fine fractions recovered from recycled cement concrete, which were both used as a replacement for standard sand. A total of two research experiments were conducted. In the first experiment, geopolymer mortars were made using the standard sand, which was substituted with recycled fines, from 0% to 30% by weight. In the second study, geopolymers containing organic filler were designed, where the variables were (i) the amount of hemp and the percent of sand by volume (0%, 2.5%, and 5%) and(ii) the amount of hydrated lime and the percent of fly ash (by weight) (0%, 2%, and 4%) that were prepared. In both cases, the basic properties of the prepared composites were determined, including their flexural strength, compressive strength, volume density in a dry and saturated state, and water absorption by weight. Observations of the microstructure of the geopolymers using an electron and optical microscope were also conducted. The test results show that both materials (hemp and recycled fines) and the appropriate selection of the proportions of mortar components and can produce composites with better physical and mechanical properties compared to mortars made of only natural sand. The detailed results show that recycled fines (RF) can be a valuable substitute for natural sand. The presence of 30% recycled fines (by weight) as a replacement for natural sand in the alkali-activated mortar increased its compressive strength by 26% and its flexural strength by 9% compared to control composites (compared to composites made entirely of sand without its alternatives). The good dispersion of both materials in the geopolymer matrix probably contributed to filling of the pores and reducing the water absorption of the composites. The use of hemp as a sand substitute generally caused a decrease in the strength properties of geopolymer mortar, but satisfactory results were achieved with the substitution of 2.5% hemp (by volume) as a replacement for standard sand (40 MPa for compressive strength, and 6.3MPa for flexural strength). Both of these waste materials could be used as a substitute for natural sand and are examples of an eco-friendly and sustainable substitution to save natural, non-renewable resources.  相似文献   

9.
The production of ordinary Portland cement is associated with significant CO2 emissions. To limit these emissions, new binders are needed that can be efficiently substituted for cement. Alkali-activated slag composites are one such possible binder solution. The research programme presented herein focused on the creation of alkali-activated slag composites with the addition of PET flakes as a partial substitute (5%) for natural aggregate. Such composites have a significantly lower impact in terms of CO2 emissions in comparison to ordinary concrete. The created composites were differentiated by the amount of activator (10 and 20 wt.%) and curing temperature (from 20 to 80 °C). Their mechanical properties were tested, and a scanning electron microscope analysis was conducted. Compressive and flexural strengths ranging from 29.3 to 68.4 MPa and from 3.5 to 6.1 MPa, respectively, were achieved. The mechanical test results confirmed that a higher amount of activator improved the mechanical properties. However, the influence of the PET particles on the mechanical properties and microstructure varied with the curing temperature and amount of activator. Areas that require further research were identified.  相似文献   

10.
This study evaluated the behavior of a new generation of bulk-fill resin composites after prolonged exposure to an aqueous environment and accelerated aging in ethanol. Six bulk-fill materials were tested (Tetric PowerFill, Filtek One Bulk Fill Restorative, Tetric EvoCeram Bulk Fill, Fill-Up!, Tetric PowerFlow, SDR Plus Bulk Fill Flowable) and compared to two conventional reference materials (Tetric EvoCeram and Tetric EvoFlow). Flexural strength, modulus, and Weibull parameters were examined at three time points: 1 day, 30 days, and 30 days followed by ethanol immersion. Degree of conversion after 30 days, water sorption, and solubility up to 90 days were also investigated. Filtek One Bulk Fill had the highest flexural strength and modulus among the tested materials, followed by Tetric PowerFill and SDR plus. Flexural strength and modulus of high-viscosity bulk-fill materials showed higher stability after accelerated aging in ethanol compared to their low-viscosity counterparts and reference materials. After 30 days, the degree of conversion was above 80% for all tested materials. Dual-cure material Fill-Up! was the best-cured material. The water sorption was highest for Fill-Up!, Filtek One Bulk Fill Restorative, and Tetric EvoFlow, while solubility was highest for Tetric EvoCeram. After aging in water and ethanol, new generation high-viscosity bulk-fill materials showed better mechanical properties than low-viscosity bulk-fill and conventional composites under extended light curing conditions.  相似文献   

11.
The addition of natural fibers used as reinforcement has great appeal in the construction materials industry since natural fibers are cheaper, biodegradable, and easily available. In this work, we analyzed the feasibility of using the fibers of piassava, tucum palm, razor grass, and jute from the Amazon rainforest as reinforcement in mortars, exploiting the mechanical properties of compressive and flexural strength of samples with 1.5%, 3.0%, and 4.5% mass addition of the composite binder (50% Portland cement + 40% metakaolin + 10% fly ash). The mortars were reinforced with untreated (natural) and treated (hot water treatment, hornification, 8% NaOH solution, and hybridization) fibers, submitted to two types of curing (submerged in water, and inflated with CO2 in a pressurized autoclave) for 28 days. Mortars without fibers were used as a reference. For the durability study, the samples were submitted to 20 drying/wetting cycles. The fibers improved the flexural strength of the mortars and prevented the abrupt rupture of the samples, in contrast to the fragile behavior of the reference samples. The autoclave cure increased the compressive strength of the piassava and tucum palm samples with 4.5% of fibers.  相似文献   

12.
The properties of cement concrete using waste materials—namely, recycled cement mortar, fly ash–slag, and recycled concrete aggregate—are presented. A treatment process for waste materials is proposed. Two research experiments were conducted. In the first, concretes were made with fly ash–slag mix (FAS) and recycled cement mortar (RCM) as additions. The most favorable content of the concrete additive in the form of RCM and FAS was determined experimentally, and their influence on the physical and mechanical properties of concrete was established. For this purpose, 10 test series were carried out according to the experimental plan. In the second study, concretes containing FAS–RCM and recycled concrete aggregate (RCA) as a 30% replacement of natural aggregate (NA) were prepared. The compressive strength, frost resistance, water absorption, volume density, thermal conductivity, and microstructure were researched. The test results show that the addition of FAS–RCM and RCA can produce composites with better physical and mechanical properties compared with concrete made only of natural raw materials and cement. The detailed results show that FAS–RCM can be a valuable substitute for cement and RCA as a replacement for natural aggregates. Compared with traditional cement concretes, concretes made of FAS, RCM, and RCA are characterized by a higher compressive strength: 7% higher in the case of 30% replacement of NA by RCA with the additional use of the innovative FAS–RCM additive as 30% of the cement mass.  相似文献   

13.
Recycled concrete aggregate (RCA) is a promising substitute for natural aggregates and the reuse of this material can benefit construction projects both economically and environmentally. RCA has received great attention in recent years in the form of aggregate as well as a geotechnical material of sand size. Next to RCA, another recycled material, which reduces the waste volume and is a part of the present challenges in civil engineering, is tire waste. Despite the good engineering properties of recycled tire waste (RTW), its use is still limited, even after almost 30 years since they were first introduced. To broaden the applicability of reused concrete and rubber, a further understanding of their properties and engineering behavior is required. For this reason, the main subject of this paper is composite materials that consist of anthropogenic soil recycled concrete aggregate (RCA) and crushed pieces of recycled tire waste (RTW). In this study, a series of isotropic consolidated drained triaxial tests were undertaken to characterize the shear strength of eight mixtures of variable grain-size distribution, rubber inclusion (RC), and fine fraction (FF) content. The results show that the introduction of rubber waste leads to changes in the strength parameters of the tested mixtures. Improvements in RCA shear strength were observed, the largest for the mixture M7 with 10% of recycled tire waste. Similarly, the effect of fine fraction content on the angle of internal friction and cohesion was found. Dilation characteristics were observed in all analyzed composites. Based on the results of all tests performed, including physical, geometric, chemical, and mechanical properties of the created composites, it can be stated that the samples would meet local road authority requirements for sub-base applications.  相似文献   

14.
Raw clay is used nowadays in construction as a component of mortars and plasters and as a binder in composites based on straw or shives. It is a material with good sorption properties and vapor permeability, but it is susceptible to shrinkage, is not resistant to water, and also is characterized by low mechanical strength, which makes it impossible to be used, for example, in external plasters. Various additives and admixtures are used to improve selected properties of clay mortars. The article presents the research results and assessment of the effect of glauconite clay mortar modification with an admixture of linseed oil varnish on selected properties. Admixtures in the amounts of 1%, 2%, and 3% in relation to clay weight were used. Flexural and compressive strength, water resistance, shrinkage, drying capacity, density, and porosity of mortar, were tested. The admixture of linseed oil varnish in the amounts used in the investigation had a positive effect on some of the tested properties; regardless of the quantity of the admixture, the modified mortars had better parameters concerning flexural strength, shrinkage reduction, and water resistance than the reference mortar, without admixture.  相似文献   

15.
The article presents laboratory tests on the impact of the mixing water content used in the preparation of fresh mortar on the flexural and compressive strength of one of the dry-mix mortars produced by a leading European producer and dedicated to bricklaying with clinker elements. The development of these parameters in relation to curing time was also analyzed. The mortar samples were prepared from a factory-made mortar mix using 4.0 L (the value recommended by the mortar manufacturer), 4.5 L, and 5 L of water per 25 kg bag of ready-made, pre-mixed dry mortar mix. All samples were tested in five series after 5, 9, 14, 21, and 28 days of sample curing. The results of these tests showed that the use of 6 and 18% more mixing water than recommended by the manufacturer (4.5 and 5 L per bag) adversely affected the basic mechanical parameters of the tested mortar. Moreover, it was found that the highest compressive strength values were obtained after 21 days of curing and not after 28 days as usual. It was also found that hardening time and higher than recommended water content adversely affected the bending strength of the mortar.  相似文献   

16.
The long-term property development of fly ash (FA)-based geopolymer (FA–GEO) incorporating industrial solid waste carbide slag (CS) for up to 360 d is still unclear. The objective of this study was to investigate the fresh, physical, and mechanical properties and microstructures of FA–GEO composites with CS and to evaluate the effects of CS when the composites were cured for 360 d. FA–GEO composites with CS were manufactured using FA (as an aluminosilicate precursor), CS (as a calcium additive), NaOH solution (as an alkali activator), and standard sand (as a fine aggregate). The fresh property and long-term physical properties were measured, including fluidity, bulk density, porosity, and drying shrinkage. The flexural and compressive strengths at 60 d and 360 d were tested. Furthermore, the microstructures and gel products were characterized by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The results show that the additional 20.0% CS reduces the fluidity and increases the conductivity of FA–GEO composites. Bulk densities were decreased, porosities were increased, and drying shrinkages were decreased as the CS content was increased from 0.0% to 20.0% at 360 d. Room temperature is a better curing condition to obtain a higher long-term mechanical strength. The addition of 20.0% CS is more beneficial to the improvement of long-term flexural strength and toughness at room temperature. The gel products in CS–FA–GEO with 20.0% CS are mainly determined as the mixtures of sodium aluminosilicate (N–A–S–H) gel and calcium silicate hydration (C–S–H) gel, besides the surficial pan-alkali. The research results provide an experimental basis for the reuse of CS in various scenarios.  相似文献   

17.
The effects of mono (single type) and hybrid (mixed types) fibres on the workability, compressive strength, flexural strength, and toughness parameters of fly ash geopolymer mortar were studied. The ratio of sand to geopolymer paste of the mortar was 2.75. It was found that workability of mortar decreased more with the use of PP fibres due to its higher dispersion into individual filaments in geopolymer mortar compared to the bundled ARG and PVA fibres. Compressive strength increased by 14% for using 1% steel with 0.5% PP fibres compared to that of the control mixture, which was 48 MPa. However, 25 to 30% decrease of compressive strength was observed in the mortars using the low-modulus fibres. Generally, flexural strength followed the trend of compressive strength. Deflection hardening behaviours in terms of the ASTM C1609 toughness indices, namely I5, I10 and I20 were exhibited by the mortars using 1% steel mono fibres, 0.5% ARG with 0.5% steel and 1% PVA with 0.5% steel hybrid fibres. The toughness indices and residual strength factors of the mortars using the other mono or hybrid fibres at 1 or 1.5% dosage were relatively low. Therefore, multiple cracking and deflection hardening behaviours could be achieved in fly ash geopolymer mortars of high sand to binder ratio by using steel fibres in mono or hybrid forms with ARG and PVA fibres.  相似文献   

18.
The substitution of river sand with glass aggregate (GA) and cement with glass powder (GP) is a mainstream method to recycle waste glass. Traditionally, standard curing was widely used for glass-based mortars. However, it is time-consuming and cannot address low mechanical strengths of the early-age mortars. Therefore, the effect of water curing at 80 °C on the properties of GA mortars is investigated. Furthermore, the effect of the GP size is also considered. Results show that compared with the expansion of alkali-silica reaction (ASR), water curing at 80 °C has a negligible effect on the volume change. Moreover, the compressive strength of GA mortars under 1-day water curing at 80 °C is comparable with that under 28-day water curing at 20 °C. Therefore, the 1-day water curing at 80 °C is proposed as an accelerated curing method for GA mortars. On the other hand, the addition of GP with the mean size of 28.3 and 47.9 μm can effectively mitigate the ASR expansion of GA mortars. Compared with the size of 28.3 μm, GA mortars containing GP (47.9 μm) always obtain higher compressive strength. In particular, when applying the 1-day water curing at 80 °C, GA mortars containing GP (47.9 μm) can even gain higher strength than those containing fly ash.  相似文献   

19.
The cement industry is responsible for 8% of global CO2 production. Therefore, a clear trend has been observed recently to replace to some extent the main binder of cement composites with environmentally friendly or recycled materials with a lower carbon footprint. This paper presents the effect of brick powder (BP) on the physico-chemical and mechanical properties of cement mortars. The effect of a short-term thermal shock on morphology and strength properties of green mortars was investigated. BP addition caused increase in porosity and decrease in compressive and flexural strength of mortars. The best results were obtained for samples with 5% wt. BP addition. Above this addition the strength decreased. The mechanical performance of the samples subjected to thermal loading increased compared to the reference samples, which is the result of a process called as the “internal autoclaving”. The BP addition positively affects the linear shrinkage, leading to its reduction. The lowest linear shrinkage value was achieved by the mortar with the highest BP addition. An intelligent modeling approach for the prediction of strength characteristics, depending on the ultrasonic pulse velocity (UPV) is also presented. To solve the model problem, a supervised machine-learning algorithm in the form of an SVM (support vector machines) regression approach was implemented in this paper. The results indicate that BP can be used as a cement replacement in cement mortars in limited amounts. The amount of the additive should be moderate and tuned to the features that mortars should have.  相似文献   

20.
The thermal and moisture properties of building envelope materials determine their performance over many years of use. Moisture has a particularly negative impact, impairing all the technical parameters and adversely affecting the microclimatic conditions inside the building. This article presents research and analysis on the moisture behavior of partitions made of autoclaved aerated concrete. Autoclaved aerated concrete is a very popular material for building external walls because of its relatively good thermal insulation and sufficient strength, if it is not subjected to increased moisture. This study investigated how the moisture content of this material changes with the change in relative air humidity. The four most popular density classes were studied. The sorption isotherms were determined by the static gravimetric method throughout the whole hygroscopic range. Moreover, the applicability of various models to describe sorption isotherms of this material group has been extensively evaluated. The tested models (Peleg, Redlich, Chen, Oswin, Henderson, Lewicki, Caurie, and GAB) all provided a very good fit with the experimental results for the tested material group (R2 ranged from 0.9599 to 0.9978). This paper indicates that the use of two additional approximation parameters (SSE and RMSE) allows a more precise assessment of the quality of individual models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号