首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
T van Groen  J M Wyss 《Brain research》1990,518(1-2):227-243
The present study describes the differences and similarities between the connections of the presubiculum and parasubiculum based on retrograde and anterograde tracing experiments. The results demonstrate that both areas have several similar afferent connections, particularly those from subcortical areas such as the claustrum, diagonal band of Broca, anterior thalamus, nucleus reuniens, locus coeruleus, and raphe nuclei. Both subicular areas also are innervated by axons originating in the ipsilateral and contralateral entorhinal cortex, presubiculum, and parasubiculum. In contrast to these similarities, most axons innervating the presubiculum originate in the lateral dorsal thalamic nucleus, the claustrum, and the contralateral presubiculum. Conversely, the parasubiculum is innervated primarily by axons that originate in area CA1 of the hippocampus, the basolateral nucleus of the amygdala, and the contralateral presubiculum and parasubiculum. The major efferent projection from the presubiculum and parasubiculum courses bilaterally to the medial entorhinal cortex; however, the results of the present study confirm previous suggestions that presubicular axons terminate almost exclusively in layers I and III, whereas parasubicular axons innervate layer II. The presubiculum also projects to the anteroventral and laterodorsal nuclei of the thalamus, and the lateral ventral portion of the medial mammillary nucleus, whereas the parasubiculum projects prominently to the anterodorsal nucleus of the thalamus, the contralateral presubiculum and parasubiculum, and the lateral dorsal segment of the medial mammillary nucleus. Thus despite some similarities, the major connections of presubiculum and parasubiculum are distinct from one another and distinct from the projections of the adjacent subiculum and postsubiculum. These results suggest that the subicular cortex is considerably more complex than previously envisioned and indicate that each segment may subserve a distinct role in the processing of information by the hippocampal formation.  相似文献   

2.
The subiculum forms part of the region of transition between hippocampus and entorhinal cortex and is one of the primary output structures of the hippocampal formation. Intracellular recordings from subicular bursting and non-bursting cell types and field potential recordings were taken in horizontal slices from rat brains. The inputs and outputs of the two cell types were studied for the purpose of reinforcing or refuting the dichotomy proposed on the basis of membrane properties. Some bursting cells were antidromically activated by stimuli applied to the superficial or deep layers of presubiculum, but never by stimuli applied to deep layers of medial entorhinal cortex (dMEC). Some non-bursting subicular neurons were antidromically activated by stimuli applied to dMEC, but never by stimuli applied to presubiculum. Antidromic population events in subiculum were single spikes when deep MEC was stimulated, but were bursts when presubiculum was stimulated, even in the presence of glutamate receptor antagonists. Population bursts consist of 2 or more population spikes with peak to peak intervals of 5 ms. That population bursts occur in slices where excitatory transmission is blocked suggests that such population bursts reflect coincident bursts by individual neurons. Short-latency (<5 ms) excitatory postsynaptic potentials (EPSPs) were evoked in both subicular cell types in response to single entorhinal, presubicular and CA1 stimuli. Long-latency (>10 ms) EPSPs were seen in both cell types in response to presubicular, but not entorhinal or CA1 stimulation. Bursting cells responded to brief trains of orthodromic stimuli (2–10 pulses, 5–10 ms interstimulus interval) with a burst of action potentials even when the cell was previously depolarized out of bursting range by current injection. Non-bursting cells responded to brief trains of orthodromic stimuli with repetitive firing (≤1 spike/stimulus) at all holding potentials. Spike intervals could reach those seen in bursts by bursting cells. It is concluded that: (1) the distinction between bursting and non-bursting subicular neurons is a dichotomy and cells do not change their identity when activated antidromically or orthodromically; (2) the outputs of the two cell types may be different: bursting cells projected to presubiculum and non-bursting cells projected to entorhinal cortex; and (3) non-bursting cells can, when repetitively stimulated, fire repetitive spikes with interspike intervals in the range of intervals seen in bursts.  相似文献   

3.
The intrahippocampal projections of the subicular complex were studied in the rat with the aid of the anterogradely transported lectin Phaseolus vulgaris leucoagglutinin (PHA-L). After iontophoretic injections of the lectin into the subiculum proper, presubiculum, or the parasubiculum, axons and terminal processes immunoreactive for PHA-L were traced to their respective terminal fields within the hippocampal region. After subicular injections PHA-L-stained axons could be followed both in a caudal and a rostral direction. The caudally directed fibers course around or within the angular bundle to enter layers VI and V of the medial entorhinal area (MEA). Many fibers penetrate through these layers to terminate in layer IV of the medial and the lateral entorhinal area, which contains a major terminal field of this projection. At more ventral levels, all layers of the entorhinal area are innervated by cells located in the subiculum. Other retrohippocampal projections of the subiculum proper include the deep and the outer two layers of the presubiculum and the medial sector of the parasubiculum, in addition to a massive projection which terminates in the retrosplenial cortex. The rostrally directed projections from the subiculum form a dense innervation of strata lacunosum, radiatum, oriens, and of individual pyramidal cells in the regio superior of the Ammon's horn. All these projections of the subiculum are exclusively ipsilateral. After injections of PHA-L into layers II and III of the presubiculum, both ipsi- and contralateral projections were traced to the outer three layers of the medial entorhinal area; the lateral entorhinal area apparently receives no innervation from the presubiculum. The innervation of layer III is very dense while in layer II and deep layer I, restricted zones of innervation are found. The fibers reach these layers via the deep layers of the MEA and through the molecular layer after first coursing around the parasubiculum. In addition, a minor projection from the presubiculum to the pyramidal cell layer of the subiculum and to the molecular layer of the hippocampal formation was found. PHA-L injections into the parasubiculum labeled fibers that form a dense innervation of layer II in the MEA and the medial part of the lateral EA, and of the most medial sector of layer III in the MEA. Layer I and the superficial part of layer II of the contralateral MEA also contain a dense terminal network after PHA-L injections into the parasubiculum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Abrahám H  Tóth Z  Seress L 《Hippocampus》2004,14(3):385-401
Calretinin-containing neurons in the hippocampal formation, including the subiculum, presubiculum, parasubiculum, and entorhinal cortex, were visualized with immunocytochemistry. Calretinin immunoreactivity was present exclusively in non-principal cells. The largest immunoreactive cell population was found in the outer half of the molecular layer of the dentate gyrus and in the stratum lacunosum-moleculare of Ammon's horn. A proportion of these cells were also immunoreactive for reelin, a Cajal-Retzius cell marker. Similar calretinin-positive cells were found in the molecular layer of the subicular complex and entorhinal cortex. In the parasubiculum, a few immunoreactive bipolar and multipolar cells could be observed in the superficial and deep pyramidal cell layers. In the entorhinal cortex, bipolar and multipolar calretinin-positive cells were frequent in layer II, and large numbers of multipolar cells in layer V were immunoreactive. Electron microscopic analysis showed that somata of calretinin-positive cells contained either round nuclei with smooth nuclear envelopes or nuclei with multiple deep infoldings. Immunoreactive dendrites were smooth varicose, and the apposing axon terminals formed both symmetric and asymmetric synapses. Zonula adherentia were observed between calretinin-positive dendrites. Calretinin-positive axon terminals formed two types of synapses. Axon terminals with asymmetric synapses were found close to the hippocampal fissure, whereas axon terminals forming symmetric synapses innervated spiny dendrites in both the molecular layer of the dentate gyrus and in stratum lacunosum-moleculare of Ammon's horn. Calretinin-positive axon terminals formed both symmetric and asymmetric synapses with calretinin-positive dendrites. In conclusion, calretinin-positive neurons form two major subpopulations in the adult domestic pig hippocampus: (1) a gamma-aminobutyric acid (GABA)ergic subpopulation of local circuit neurons that innervates distal dendrites of principal cells in both the dentate gyrus and in Ammon's horn; and (2) Cajal-Retzius type cells close to the hippocampal fissure, as well as in the molecular layer of the subicular complex and entorhinal cortex.  相似文献   

5.
The retrohippocampal cortices form the transition between neocortex and the hippocampus. Area CA3 of the hippocampus and the entorhinal cortex (EC) of the retrohippocampal region are established as brain regions that generate epileptiform activity. Interictal activity generated in EC consists of a primary population burst followed by multiple afterdischarges. The presubiculum is similar to EC in its six-layered structure, but lacks a columnar circuitry that the EC possesses. Isolated presubicular tissue cannot generate afterdischarges and isolated subicular tissue generates no spontaneous activity under some conditions. We report epileptiform activity in combined presubiculum–subiculum slices that consists of synchronous population bursts and multiple afterdischarges. Intracellular and field potential recordings reveal two re-entrant paths for interaction of presubicular and subicular neurons. We demonstrate a deep presubicular input to subiculum and separate return paths from subicular bursting neurons onto deep and superficial layer pre-/parasubicular neurons. Recordings from subicular cell apical dendrites showed repetitive burst firing during sustained depolarizing current injection. We conclude that re-entrant activity in a presubiculum–subiculum circuit generates epileptiform activity in both regions. Presubicular inputs to subiculum depolarize apical dendrites which can then burst repetitively. These bursts are transmitted back to the presubiculum. We suggest that iterations on this circuit act to prolong the dendritic depolarization of subicular bursting neurons and to entrain the activity across subicular cells resulting in multiple afterdischarges.  相似文献   

6.
Funahashi M  Harris E  Stewart M 《Brain research》1999,849(1-2):139-146
The retrohippocampal cortices form the transition between neocortex and the hippocampus. Area CA3 of the hippocampus and the entorhinal cortex (EC) of the retrohippocampal region are established as brain regions that generate epileptiform activity. Interictal activity generated in EC consists of a primary population burst followed by multiple afterdischarges. The presubiculum is similar to EC in its six-layered structure, but lacks a columnar circuitry that the EC possesses. Isolated presubicular tissue cannot generate afterdischarges and isolated subicular tissue generates no spontaneous activity under some conditions. We report epileptiform activity in combined presubiculum-subiculum slices that consists of synchronous population bursts and multiple afterdischarges. Intracellular and field potential recordings reveal two re-entrant paths for interaction of presubicular and subicular neurons. We demonstrate a deep presubicular input to subiculum and separate return paths from subicular bursting neurons onto deep and superficial layer pre-/parasubicular neurons. Recordings from subicular cell apical dendrites showed repetitive burst firing during sustained depolarizing current injection. We conclude that re-entrant activity in a presubiculum-subiculum circuit generates epileptiform activity in both regions. Presubicular inputs to subiculum depolarize apical dendrites which can then burst repetitively. These bursts are transmitted back to the presubiculum. We suggest that iterations on this circuit act to prolong the dendritic depolarization of subicular bursting neurons and to entrain the activity across subicular cells resulting in multiple afterdischarges.  相似文献   

7.
T van Groen  J M Wyss 《Brain research》1990,529(1-2):165-177
The hippocampal formation contributes importantly to many cognitive functions, and therefore has been a focus of intense anatomical and physiological research. Most of this research has focused on the hippocampus proper and the fascia dentata, and much less attention has been given to the subicular cortex, the origin of most extrinsic projections from the hippocampal formation. The present experiments demonstrate that the postsubiculum is a distinct area of the subicular cortex. The major projections to the postsubiculum originate in the hippocampal formation, the cingulate cortex, and the thalamus (primarily from the anterodorsal (AD) nucleus and to a lesser extent from the anteroventral (AV) and lateral dorsal (LD) nuclei). These projections differ from the thalamic projections to presubiculum and parasubiculum. Efferent projections from the postsubiculum terminate in both cortical and subcortical areas. The cortical projections terminate in the subicular and retrosplenial cortices and in the caudal lateral entorhinal and perirhinal cortices. Subcortical projections primarily end in the AD and the LD nuclei of the thalamus. These thalamic projections end in areas that are distinct from those to which the presubiculum and parasubiculum project. For instance, the postsubiculum has a dense terminal field in the AD nucleus, but presubicular axons terminate predominantly in the AV nucleus. The cortical projections also distinguish postsubiculum. All subicular areas project to the entorhinal cortex, but the postsubicular projection ends in the deep layers (i.e. IV-VI), whereas presubiculum projects to layers I and III, and parasubiculum projects to layer II. Postsubiculum projects to retrosplenial granular b cortex and only incidentally to retrosplenial granular a cortex. In contrast presubiculum projects to the retrosplenial granular a cortex but not to the retrosplenial granular b cortex. These differences clearly mark the postsubiculum, the presubiculum, and the parasubiculum as distinct regions within the subicular cortex and suggest that they subserve different roles in the processing and integration of limbic system information.  相似文献   

8.
The regional and laminar organization of the projections from the presubiculum and the parasubiculum to the entorhinal cortex was analyzed in the rat with the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L). The projections from the presubiculum were bilateral and confined to layers III and I of the medial entorhinal area (MEA). Both the ipsi- and the contralateral projections showed similar distributions and were almost of equal density. Projections to layer III of the entorhinal cortex arose predominantly from superficial layers of the presubiculum, whereas the fibers that reach layer I of the entorhinal cortex appear to originate preferentially from the deep layers of the presubiculum. These fibers also appeared to innervate weakly layer II of MEA. The parasubiculum distributed projections not only to MEA but also to the lateral entorhinal area (LEA), innervating layer II selectively. The innervation of LEA was quite dense and extensive. Very weak projections from the parasubiculum to the contralateral entorhinal cortex were observed in this study. The position of the terminal plexus in the entorhinal cortex was determined by the point of origin along both the dorsoventral and transverse or proximodistal axes of the presubiculum and parasubiculum. Projections from the presubiculum and parasubiculum entered the entorhinal cortex at the level of the injection, or slightly ventral to it, and the main terminal field was always present ventrally to the injection site. The dorsoventral axis of origin thus corresponded to a similarly oriented axis of termination in the entorhinal cortex. The distribution in relation to the origin along the transverse axis was more complex, and differences between the presubiculum and parasubiculum were present. The proximal presubiculum, i.e., the part closest to the subiculum, projected to the most lateral part of MEA and the central part of the presubiculum sent fibers to the most medial part of MEA. The distal part of the presubiculum, i.e., the part that borders the parasubiculum, projected to the central part of MEA. Projections from the portion of the parasubiculum directly adjacent to the presubiculum, the so-called proximal parasubiculum, reached medial parts of MEA, and those originating in the central part distributed preferentially to lateral parts of MEA and adjacent medial parts of LEA. The distal part of the parasubiculum that borders the entorhinal cortex projected mainly to almost the full mediolateral extent of LEA. The regional and laminar organizations of the projections from the presubiculum and parasubiculum to the entorhinal cortex suggest that information is selectively conveyed not only to different cell layers but also to restricted dorsoventral and mediolateral parts of the entorhinal cortex. © 1993 Wiley-Liss, Inc.  相似文献   

9.
We studied the responses of rat cingulate cortex neurons to electrical stimulation of the subicular complex. Intracellular and 'quasi-intracellular' recordings from layer V posterior cingulate neurons showed that stimulation of the presubiculum or postsubiculum evoked EPSPs and action potentials. These were usually followed by shallow IPSPs averaging 122 ms in duration. Frequency potentiation of an EPSP was demonstrated in one case. Laminar analysis of field potentials provided evidence for a source of excitatory synaptic drive in layer II-III of the posterior cingulate cortex, where the subicular projections terminate, presumably on apical dendrites of layer V pyramids. Intracellular HRP injection of neurons showing EPSPs after subicular complex stimulation established that these responsive neurons were layer V pyramids. One cell with physiological properties characteristic of inhibitory interneurons was recorded in layer V. Stimulation of the thalamic nuclei lateralis and anterior ventralis also evoked EPSPs and action potentials in layer V cingulate neurons. In one cell it was possible to show that EPSPs evoked by presubicular stimulation and by nucleus anterior ventralis summed. These results indicate that subicular and thalamic afferents make excitatory synaptic contact onto dendrites of the same layer V cingulate neurons; that spatial summation can integrate the input from these two sources; and that inhibition from local interneurons limits the duration of this excitatory influence.  相似文献   

10.
Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d)-stained profiles were evaluated throughout the human hippocampal formation (i. e., dentate gyrus, Ammon's horn, subicular complex, entorhinal cortex) and perirhinal cortex. NADPH-d staining revealed pleomorphic cells, fibers, and blood vessels. Within the entorhinal and the perirhinal cortices, darkly stained (type 1) NADPH-d pyramidal, fusiform, bipolar, and multipolar neurons with extensive dendrites were scattered mainly within deep layers and subjacent white matter. Moderately stained (type 2) NADPH-d round or oval neurons were seen mainly in layers II and III of the entorhinal and perirhinal cortices, in the dentate gyrus polymorphic layer, in the CA fields stratum pyramidal and radiatum, and in the subicular complex. The distribution of type 2 cells was more abundant in the perirhinal cortex compared to the hippocampal formation. Lightly stained (type 3) NADPH-d pyramidal and oval neurons were distributed in CA4, the entorhinal cortex medial subfields, and the amygdalohippocampal transition area. Sections concurrently stained for NADPH-d and nitric oxide synthase (NOS) revealed that all type 1 neurons coexpressed NOS, whereas types 2 and 3 were NOS immunonegative. NADPH-d fibers were heterogeneously distributed within the different regions examined and were frequently in close apposition to reactive blood vessels. The greatest concentration of fibers was in layers III and V–VI of the entorhinal and perirhinal cortices, dentate gyrus polymorphic and molecular layers, and CA1 and CA4. A band of fibers coursing within CA1 divided into dorsal and ventral bundles to reach the presubiculum and entorhinal cortex, respectively. Although the distribution of NADPH-d fibers was conserved across all ages examined (28–98 years), we observed an increase in the density of fiber staining in the aged cases. These results may be relevant to our understanding of selective vulnerability of neuronal systems within the human hippocampal formation in aging and in neurodegenerative diseases. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Estimates of neuron numbers have been useful in studies of neurodegenerative disorders, and in their animal models, and in the computational modeling of hippocampal function. Although the retrohippocampal region (presubiculum, parasubiculum, and entorhinal area) is an integral part of the hippocampal circuitry and is affected selectively in a number of disorders, estimates of neuron numbers in the rat retrohippocampal region have yet to be published. Such data are necessary ingredients for computational models of the function of this region and will also facilitate a comparison of this region in rats and primates, which will help to determine how well we may expect rat models to predict function and dysfunction in primate brains. In the present study, we used the optical fractionator to estimate the number of neurons in the rat retrohippocampal region. The following estimates were obtained: 3.3 × 105 in presubicular layers II and III, 1.5 × 105 in parasubicular layers II and III, 2.2 × 105 in the combined pre- and parasubicular layers V and VI, 6.6 × 104 in medial entorhinal area (MEA) layer II, 1.3 × 105 in MEA layer III, 1.9 × 105 in MEA layers V and VI, 4.6 × 104 in lateral entorhinal area (LEA) layer II, 1.2 × 105 in LEA layer III, and 1.4 × 105 in LEA layers V and VI. A surprising finding was the large numbers of neurons in the pre- and parasubiculum, which indicate an important role of these areas in the control of the entorhino-hippocampal projection. A comparison of the numbers of neurons in the hippocampus and entorhinal areas in rats with similar estimates in humans revealed that gross input-output relations are largely conserved. Differences between rats and humans may be accounted for by more prominent entorhino-neocortical projections in primates and consequent increases in the number of neurons in the hippocampus and retrohippocampal region, which are dedicated to these projections. J. Comp. Neurol. 385:83–94, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
The gamma-aminobutyric acid (GABAergic) system of the hippocampal formation of Macaca fascicularis monkeys was studied immunohistochemically with a monoclonal antibody to GABA and with nonisotopic in situ hybridization with cRNA probes for glutamic acid decarboxylase 65 (GAD65) and GAD67. The highest densities of labeled cells were observed in the presubiculum, parasubiculum, entorhinal cortex, and subiculum, whereas the CA3 field and the dentate gyrus had the lowest densities of positive neurons. Within the dentate gyrus, most of the GABAergic neurons were located in the polymorphic layer and in the deep portion of the granule cell layer. GABAergic terminals were densest in the outer two-thirds of the molecular layer. GABAergic neurons were seen throughout all layers of the hippocampus. Terminal labeling was highest in the stratum lacunosum-moleculare. A higher terminal labeling was observed in the subiculum than in CA1 and was particularly prominent in layer II of the presubiculum. A bundle of GABAergic fibers was visible deep to the cell layers of the presubiculum and subiculum. This bundle could be followed into the angular bundle ipsilaterally and was continuous with stained fibers in the dorsal hippocampal commissure. This pattern of labeling is reminiscent of the presubicular projections to the contralateral entorhinal cortex. GABAergic cells were observed in all layers of the entorhinal cortex although the density was higher in layers II and III than in layers V and VI. The in situ hybridization preparations largely confirmed the distribution of GABAergic neurons in all fields of the hippocampal formation.  相似文献   

13.
The laminar and topographical organization of connections between the hippocampal formation and parahippocampal regions was investigated in the rabbit following in vivo injection of cholera toxin B subunit as a retro‐ and antero‐grade tracer and biotinylated dextran amine as an anterograde tracer. We confirmed several connectional features different from those of the rat, that is, the rabbit presubiculum received abundant afferents from CA1 and had many reciprocal connections with the entorhinal cortex. On the other hand, we identified many similarities with the rat: both the CA1 and subicular afferents that originated from the entorhinal cortex were abundant; moreover, the presubiculum received many inputs from the subiculum and sent massive projections to the entorhinal cortex. By plotting retrograde and anterograde labels in two‐dimensional unfolded maps of the entire hippocampal and parahippocampal regions, we found that each group of entorhinal cells that project to CA1, subiculum, and presubiculum, and also the termination of the presubiculo‐entorhinal projection, was distributed in band‐like zones in layers II–III, extending across the medial and lateral entorhinal cortex. Our results suggest that the rabbit has a basic connectivity that is common with that of the rat, and also has additional hippocampal–presubicular and entorhino–presubicular connections that may reflect functional evolution in learning and memory.  相似文献   

14.
The presubiculum, at the transition from the hippocampus to the cortex, is a key area for spatial information coding but the anatomical and physiological basis of presubicular function remains unclear. Here we correlated the structural and physiological properties of single neurons of the presubiculum in vitro. Unsupervised cluster analysis based on dendritic length and form, soma location, firing pattern and action potential properties allowed us to classify principal neurons into three major cell types. Cluster 1 consisted of a population of small regular spiking principal cells in layers II/III. Cluster 2 contained intrinsically burst firing pyramidal cells of layer IV, with a resting potential close to threshold. Cluster 3 included regular spiking cells of layers V and VI, and could be divided into subgroups 3.1 and 3.2. Cells of cluster 3.1 included pyramidal, multiform and inverted pyramidal cells. Cells of cluster 3.2 contained high‐resistance pyramidal neurons that fired readily in response to somatic current injection. These data show that presubicular principal cells generally conform to neurons of the periarchicortex. However, the presence of intrinsic bursting cells in layer IV distinguishes the presubicular cortex from the neighbouring entorhinal cortex. The firing frequency adaptation was very low for principal cells of clusters 1 and 3, a property that should assist the generation of maintained head direction signals in vivo.  相似文献   

15.
The afferents to the parahippocampal area of the rat were studied with retrograde transport of horseradish peroxidase injected into the medial entorhinal cortex, lateral entorhinal cortex, parasubiculum, presubiculum, or a large injection which stained all these structures as well as the ventral hippocampus. Control rats were injected with horseradish peroxidase into the overlying visual cortex. Labeled neurons in brains with injections into the medial entorhinal cortex and the adjacent parasubicular region were found in the ipsilateral and contralateral presubicular region, the medial septal nucleus, the thalamic nucleus reuniens, the dorsal part of the lateral nucleus of thalamus, the anterior periventricular nucleus of the thalamus, and the dorsal raphe nucleus. Brains with injections into the lateral entorhinal cortex yielded labeled neurons in the medial septal nucleus, nucleus reuniens, dorsal raphe nucleus, and nucleus locus ceruleus. Injections into the presubiculum resulted, in addition, in labeling of neurons in the lateral nucleus of the thalamus. Control injections aimed at the sensory cortex overlying the parahippocampal area yielded labeled neurons in the medial septal nucleus, the dorsal lateral geniculate nucleus, and the nucleus locus ceruleus.  相似文献   

16.
The dendritic and axonal morphology of rat subicular neurons was studied in single cells labeled with Neurobiotin. Electrophysiological classification of cells as intrinsic burst firing or regular spiking neurons was correlated with morphologic patterns and cell locations. Every cell had dendritic branches that reached the outer molecular layer, with most cells having branches that reached the hippocampal fissure. All but two pyramidal cells had axon collaterals that entered the deep white matter (alveus). Branching patterns of apical dendrites varied as a function of the cell's soma location along the fissure-alveus axis of the cell layer. The first major dendritic branch point for most cells occurred at the superficial edge of the cell layer giving deep cells long primary apical dendrites and superficial cells short or absent primary apical dendrites. In contrast, basal dendritic arbors were similar across cells regardless of cell position. Apical and basal dendrites of all cells had numerous spines. Superficial and deep cells also differed in axonal collateralization. Deep cells (mostly intrinsically bursting [IB] class) had one or more ascending axon collaterals that typically remained within the region circumscribed by their apical dendrites. Superficial cells (mostly regular spiking [RS] class) tended to have axon collaterals that reached longer distances in the cell layer. Numerous varicosities and axonal extensions were present on axon collaterals in the cell layer and in the apical dendritic region, suggesting intrinsic connectivity. Axonal varicosities and extensions were found on axons that entered presubiculum, entorhinal cortex or CA1, supporting the notion that these were projection cells. Local collaterals were distinctly thinner than collaterals that would leave the subiculum, suggesting little or no myelin on local collaterals and some myelin on efferent fibers. We conclude that both IB and RS classes of subicular principal cells make synaptic contacts in and apical to the cell layer. Based on the patterns of axonal arborization, we suggest that subiculum has at least a crude columnar and laminar architecture, with ascending collaterals of deep cells forming columns and broader axonal arbors of superficial cells serving to distribute activity across multiple columns.  相似文献   

17.
The pathway from the entorhinal cortical region to the hippocampal formation has previously been shown to be comprised of two sub-systems, one of which projects predominantly to the ipsilateral fascia dentata and regio inferior of the hippocampus proper, and a second which projects bilaterally to regio superior. The goal of the present investigation was to determine if these two pathways might originate from different cell populations within the entorhinal area. The cells of origin of these entorhinal pathways were identified by retrograde labeling with horseradish peroxidase (HRP). Injections which labeled the entorhinal terminal fields in both the fascia dentata and regio superior resulted in the retrograde labeling of two populations of cells in the entorhinal area. Ipsilateral to the injection, HRP reaction product was found in the cells of layer II (predominantly stellate cells) and the cells of layer III (predominantly pyramidal cells). Contralateral to the injections, however, the reaction product was found almost exclusively in the cells of layer III. With selective injections of the entorhinal terminal field in regio superior, only the cells of layer III were labeled, but these were labeled bilaterally. Selective injection of the entorhinal terminal field in the fascia dentata, however, resulted in the labeling of cells of layer II, but not of layer III, and these cells of layer II were labeled almost exclusively ipsilaterally. A very small number of labeled cells in layer II were, however, found contralateral to the injection as well. No labeled cells were found either in the presubiculum or parasubiculum following injections of the hippocampal formation. These cell populations were found capable of retrograde transport of HRP, however, since cells in both presubiculum and parasubiculum were labeled following HRP injections into the contralateral entorhinal area. These results suggest that the projections to the fascia dentata originate from the cells of layer II, while the projections to regio superior originate from the cells of layer III of the entorhinal region proper. The very slight crossed projection from the entorhinal area to the contralateral area dentata probably originates from the small population of cells in layer II which are labeled following HRP injections in the contralateral area dentata.  相似文献   

18.
Inhibitory post-synaptic potentials (IPSPs) were studied in neurons of presubiculum, parasubiculum and medial entorhinal cortex in horizontal slices from rat brains. Isolated IPSPs were evoked by extracellular electrical stimuli in the presence of glutamate receptor antagonists. Cellular morphology was identified using Neurobiotin labeling. IPSPs were compared: (a) across morphological cell types, (b) across laminae within regions, and (c) across regions. IPSPs were visible in stellate and pyramidal cells from layers II, III, and V of all retrohippocampal areas during bath application of glutamate antagonists. Qualitative and quantitative differences in IPSPs were only found when comparing responses by superficial layer II, III cells to responses by deep layer V cells. Responses by stellate and pyramidal cells within the same or adjacent layers did not differ, nor did responses differ from region to region. All cell types exhibited an early hyperpolarizing response. The majority (85%) of superficial layer cells in all regions, regardless of cell shape, exhibited a second hyperpolarizing component. Fewer (50%) deep layer cells exhibited the late peak with similar long latencies. IPSPs were typically larger in superficial layer cells. IPSPs were comprised of GABAA and GABAB (γ-aminobutyric acid) receptor-mediated components. With repetitive stimulation, the peak amplitude of the GABAA receptor-mediated component decreased with successive stimuli, but stabilized during the first five or fewer stimuli to a level that did not vary with stimulation frequency. The GABAB receptor-mediated component also stabilized, but the final amplitude appeared to decrease as the stimulation frequency increased. With high-frequency repetitive stimulation, both components of the IPSP showed summation. We conclude that the most meaningful distinction for IPSPs among retrohippocampal neurons is a laminar distinction, between superficial and deep layer neurons, and not one across cell shape or retrohippocampal subregion. These laminar differences can contribute to synchronous activity by deep layer neurons and restrict the activity of superficial layer neurons.  相似文献   

19.
Immunocytochemistry was used to examine gamma-aminobutyric acid beta (GABA)(B)R1a-b protein expression in the human hippocampal formation (including dentate gyrus, hippocampus proper, subicular complex, and entorhinal cortex) and perirhinal cortex. Overall, GABA(B)R1a-b immunostaining was intense and widespread but showed differential areal and laminar distributions of labeled cells. GABA(B)R1a-b-immunoreactive (-ir) neurons were found in the three main layers of the dentate gyrus, the most intense labeling being present in the polymorphic layer, whereas the granule cells were moderately immunoreactive. Except for slight variations, similar distribution patterns of GABA(B)R1a-b immunostaining were found along the different subfields of the Ammon's horn (CA1-CA4). The highest density of GABA(B)R1a-b-ir neurons was localized in the stratum pyramidale, where virtually every pyramidal cell was intensely immunoreactive, including the proximal part of the apical dendrites. Within the subicular complex, a more intense GABA(B)R1a-b immunostaining was found in the subiculum than in the presubiculum or parasubiculum, especially in the pyramidal and polymorphic cell layers. In the entorhinal cortex, distribution of GABA(B)R1a-b immunoreactivity was localized mainly in both pyramidal and nonpyramidal cells of layers II, III, and VI and in the superficial part of layer V, with layers I, IV, and deep layer V being less intensely stained. In the perirhinal cortex, the most intense GABA(B)R1a-b immunoreactivity was located in the deep part of layer III and in layer V and was mainly confined to medium-sized and large pyramidal cells. Thus, the differential expression, but widespread distribution, of GABA(B)R1a-b protein found in the present study suggests the involvement of GABA(B) receptors in many circuits of the human hippocampal formation and adjacent cortical structures. Interestingly, the hippocampal formation of epileptic patients (n = 8) with hippocampal sclerosis showed similar intensity of GABA(B)R1a-b immunostaining in the surviving neurons located within or adjacent to those regions presenting neuronal loss than in the controls. However, surviving neurons in the granule cell layer of the dentate gyrus displayed a significant reduction in immunostaining in 7 of 8 patients. Therefore, alterations in inhibitory synaptic transmission through GABA(B) receptors appears to affect differentially certain hippocampal circuits in a population of epileptic patients. This reduction in GABA(B)R1a-b expression could contribute to the pathophysiology of temporal lobe epilepsy.  相似文献   

20.
The subicular–parahippocampal projection has been proposed as the major output pathway of the hippocampus. This projection shows a striking topographic organization along its three‐dimensional axes. Here we aimed to study the development of this projection system. We found that an adult‐like topography of subiculum‐to‐parahippocampal projections is present by postnatal day 7 (P7). The cellular morphology in the subiculum is immature at this age, reaching maturity by P15–19. The density of projections increases from P7 to P15–19 but does so within the constraints of the adult topography. Projections to the entorhinal cortex show a clear arrangement in line with the adult data, in that distal portions of the subiculum project to the medial entorhinal cortex, whereas proximal portions project to the lateral entorhinal cortex. Our results add new details to the proximodistal organization of projections to the pre‐ and parasubiculum. We show that these projections arise exclusively from the more distal part, sharing their origin with that of medial entorhinal projections. Within this distal portion of the subiculum, a proximodistal gradient of origin maps onto a presubicular termination gradient starting in proximal presubiculum and extending gradually until it covers the proximodistal extent. Proximally located neurons in the distal part of the subiculum target the distal portion of the parasubiculum, and distal subicular neurons target the proximal most portion of parasubiculum. Given the specificity of the known topographic projections this early in development, we expect that these newly described topographic features will be maintained in the adult. J. Comp. Neurol. 521:4284–4299, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号