首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 332 毫秒
1.
Lu2O3:Eu3+ transparent, high density, and optical quality thin films were prepared using the sol-gel dip-coating technique, starting with lutetium and europium nitrates as precursors and followed by hydrolysis in an ethanol-ethylene glycol solution. Acetic acid and acetylacetonate were incorporated in order to adjust pH and as a sol stabilizer. In order to increment the thickness of the films and orient the structure, F127 Pluronic acid was incorporated during the sol formation. Structural, morphological, and optical properties of the films were investigated for different F127/Lu molar ratios (0–5) in order to obtain high optical quality films with enhanced thickness compared with the traditional method. X-ray diffraction (XRD) shows that the films present a highly oriented cubic structure <111> beyond 1073 K for a 3-layer film, on silica glass substrates. The thickness, density, porosity, and refractive index evolution of the films were investigated by means of m-lines microscopy along with the morphology by scanning electron microscope (SEM) and luminescent properties.  相似文献   

2.
The structural, optical, and electrical properties of ZnO are intimately intertwined. In the present work, the structural and transport properties of 100 nm thick polycrystalline ZnO films obtained by atomic layer deposition (ALD) at a growth temperature (Tg) of 100–300 °C were investigated. The electrical properties of the films showed a dependence on the substrate (a-Al2O3 or Si (100)) and a high sensitivity to Tg, related to the deviation of the film stoichiometry as demonstrated by the RT-Hall effect. The average crystallite size increased from 20–30 nm for as grown samples to 80–100 nm after rapid thermal annealing, which affects carrier scattering. The ZnO layers deposited on silicon showed lower strain and dislocation density than on sapphire at the same Tg. The calculated half crystallite size (D/2) was higher than the Debye length (LD) for all as grown and annealed ZnO films, except for annealed ZnO/Si films grown within the ALD window (100–200 °C), indicating different homogeneity of charge carrier distribution for annealed ZnO/Si and ZnO/a-Al2O3 layers. For as grown films the hydrogen impurity concentration detected via secondary ion mass spectrometry (SIMS) was 1021 cm−3 and was decreased by two orders of magnitude after annealing, accompanied by a decrease in Urbach energy in the ZnO/a-Al2O3 layers.  相似文献   

3.
Hard carbon thin films were synthesized on Si (100) and quartz substrates by the Pulsed Laser Deposition (PLD) technique in vacuum or methane ambient to study their suitability for applications requiring high mechanical resistance. The deposited films’ surface morphology was investigated by scanning electron microscopy, crystalline status by X-ray diffraction, packing and density by X-ray reflectivity, chemical bonding by Raman and X-ray photoelectron spectroscopy, adherence by “pull-out” measurements and mechanical properties by nanoindentation tests. Films synthesized in vacuum were a-C DLC type, while films synthesized in methane were categorized as a-C:H. The majority of PLD films consisted of two layers: one low density layer towards the surface and a higher density layer in contact with the substrate. The deposition gas pressure played a crucial role on films thickness, component layers thickness ratio, structure and mechanical properties. The films were smooth, amorphous and composed of a mixture of sp3-sp2 carbon, with sp3 content ranging between 50% and 90%. The thickness and density of the two constituent layers of a film directly determined its mechanical properties.  相似文献   

4.
Nanocomposite multi-layer TiO2/V2O5/TiO2 thin films were prepared via electron-beam evaporation using high-purity targets (TiO2 and V2O5 purity > 99.9%) at substrate temperatures of 270 °C (TiO2) and 25 °C (V2O5) under a partial pressure of oxygen of 2 × 10−4 mbar to maintain the stoichiometry. Rutherford backscattering spectrometry was used to confirm the layer structure and the optimal stoichiometry of the thin films, with a particle size of 20 to 40 nm. The thin films showed an optical transmittance of ~78% in the visible region and a reflectance of ~90% in the infrared. A decrease in transmittance was observed due to the greater cumulative thickness of the three layers and multiple reflections at the interface of the layers. The optical bandgap of the TiO2 mono-layer was ~3.49 eV, whereas that of the multi-layer TiO2/V2O5/TiO2 reached ~3.51 eV. The increase in the optical bandgap was due to the inter-diffusion of the layers at an elevated substrate temperature during the deposition. The intrinsic, structural, and morphological features of the TiO2/V2O5/TiO2 thin films suggest their efficient use as a solar water heater system.  相似文献   

5.
Modification has been made to TiO2 thin film to improve the wettability and the absorption of light. The sol-gel spin coating method was successfully used to synthesize GO/TiO2 thin films using a titanium (IV) isopropoxide (TTIP) as a precursor. Different amounts of polyethylene glycol (PEG) (20 to 100 mg) were added into the parent sol solution to improve the optical properties and wettability of the GO/TiO2 thin film. The effect of different amounts of PEG was characterized using X-ray diffraction (XRD) for the phase composition, scanning electron microscopy (SEM) for microstructure observation, atomic force microscopy (AFM) for the surface topography, ultraviolet–visible spectrophotometry (UV-VIS) for the optical properties and wettability of the thin films by measuring the water contact angle. The XRD analysis showed the amorphous phase. The SEM and AFM images revealed that the particles were less agglomerated and surface roughness increases from 1.21 × 102 to 2.63 × 102 nm when the amount of PEG increased. The wettability analysis results show that the water contact angle of the thin film decreased to 27.52° with the increase of PEG to 80 mg which indicated that the thin film has hydrophilic properties. The optical properties also improved significantly, where the light absorbance wavelength became wider and the band gap was reduced from 3.31 to 2.82 eV with the presence of PEG.  相似文献   

6.
Y2O3:Eu is a promising red-emitting phosphor owing to its high luminance efficiency, chemical stability, and non-toxicity. Although Y2O3:Eu thin films can be prepared by various deposition methods, most of them require high processing temperatures in order to obtain a crystalline structure. In this work, we report on the fabrication of red Y2O3:Eu thin film phosphors and multilayer structure Y2O3:Eu-based electroluminescent devices by atomic layer deposition at 300 °C. The structural and optical properties of the phosphor films were investigated using X-ray diffraction and photoluminescence measurements, respectively, whereas the performance of the fabricated device was evaluated using electroluminescence measurements. X-ray diffraction measurements show a polycrystalline structure of the films whereas photoluminescence shows emission above 570 nm. Red electroluminescent devices with a luminance up to 40 cd/m2 at a driving frequency of 1 kHz and an efficiency of 0.28 Lm/W were achieved.  相似文献   

7.
Titanium dioxide photoanodes for hydrogen generation suffer from a profound mismatch between the optical absorption of TiO2 and the solar spectrum. To solve the problem of low solar-to-chemical efficiency, optically active materials are proposed. In this work, TiO2 thin films containing erbium were deposited by radio frequency RF magnetron sputtering under ultrahigh vacuum conditions UHV. Morphology, structural, optical and electronic properties were studied. TiO2:Er thin films are homogenous, with uniform distribution of Er ions and high transparency over the visible VIS range of the light spectrum. However, a profound 0.4 eV blue shift of the fundamental absorption edge with respect to undoped TiO2 was observed, which can be attributed either to the size effect due to amorphization of TiO2 host or to the onset of precipitation of Er2Ti2O7 nanocrystals. Near-infrared NIR to VIS up-conversion is demonstrated upon excitation at 980 nm, while strong green photoluminescence at 525 and 550 nm occurs upon photon absorption at 488 nm.  相似文献   

8.
Eu3+ doped porous nanostructured SrTiO3 films and powder fabricated by sol-gel route without using any precursor template are characterized by different morphology and phase composition. The films and the power show red and yellow luminescence with the most intensive photoluminescence (PL) bands at 612 nm and 588 nm, respectively. Raman, secondary ion mass spectrometry (SIMS), and X-ray diffraction (XRD) analysis of undoped nanostructured porous SrTiO3 films showed the presence of TiO2, SrO, and SrTiO3 phases and their components. The undoped porous SrTiO3 films are photosensitive and demonstrate resistive switching. The capacitance-voltage hysteresis loops with the width of about 6 V in the frequency range of 2 kHz—2 MHz were observed.  相似文献   

9.
The development of optoelectronic devices based on flexible organic substrates substantially decreases the possible process temperatures during all stages of device manufacturing. This makes it urgent to search for new transparent conducting oxide (TCO) materials, cheaper than traditional indium-tin oxide (ITO), for the low-temperature deposition of transparent electrodes, a necessary component of most optoelectronic devices. The article presents the results of a vertically integrated study aimed at the low-temperature production of TCO thin films based on a zinc-indium oxide (ZIO) system with acceptable functional characteristics. First, dense and conducting ceramic targets based on the (100-x) mol% (ZnO) + x mol% (In2O3) system (x = 0.5, 1.5, 2.5, 5.0, and 10.0) were synthesized by the spark plasma sintering method. The dependences of the microstructure and phase composition of the ZIO ceramic targets on the In2O3 content have been studied by powder X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy methods. Then, a set of ZIO thin films with different Zn/In ratios were obtained on unheated glass substrates by direct current (dc) magnetron sputtering of the sintered targets. Complex studies of microstructure, electrical and optical properties of the deposited films have revealed the presence of an optimal doping level (5 mol% In2O3) of the ZIO target at which the deposited TCO films, in terms of the combination of their electrical and optical properties, become comparable to the widely used expensive ITO.  相似文献   

10.
11.
An efficient and environmentally friendly combustion technique was employed to produce ZnO nanopowders with different Eu concentrations (from 0.001 g to 5 g). The structural morphology of the Eu2O3-ZnO nanocomposites was examined using XRD, SEM, and infrared spectroscopy (FT-IR). In addition, UV-Vis diffuse reflectance spectroscopy was also used to investigate the effects of europium (Eu) dopant on the optical behaviors and energy bandgaps of nano-complex oxides. The photocatalytic degradation efficiency of phenol and methylene blue was investigated using all the prepared Eu2O3-ZnO nanostructured samples. Photocatalytic effectiveness increased when europium (Eu) doping ratios increased. After adding moderate Eu, more hydroxyl radicals were generated over ZnO. The best photocatalyst for phenol degradation was 1 percent Eu2O3-ZnO, while it was 0.5 percent Eu2O3-ZnO for methylene blue solutions. The obtained Eu2O3-doped ZnO nanostructured materials are considered innovative, promising candidates for a wide range of nano-applications, including biomedical and photocatalytic degradation of organic dyes and phenol.  相似文献   

12.
Photocatalytic degradation of organic pollutants in water is a highly efficient and green approach. However, the low quantum efficiency is an intractable obstacle to lower the photocatalytic efficiency of photocatalysts. Herein, the TiO2/ZnO heterojunction thin films combined with surface oxygen vacancies (OVs) were prepared through magnetron sputtering, which was designed to drive rapid bulk and surface separation of charge carriers. The morphology and structural and compositional properties of films were investigated via different techniques such as SEM, XRD, Raman, AFM, and XPS. It has been found that by controlling the O2/Ar ratio, the surface morphology, thickness, chemical composition, and crystal structure can be regulated, ultimately enhancing the photocatalytic performance of the TiO2/ZnO heterostructures. In addition, the heterojunction thin film showed improved photocatalytic properties compared with the other nano-films when the outer TiO2 layer was prepared at an O2/Ar ratio of 10:35. It degraded 88.0% of Rhodamine B (RhB) in 90 min and 90.8% of RhB in 120 min. This was attributed to the heterojunction interface and surface OVs, which accelerated the separation of electron–hole (e–h) pairs.  相似文献   

13.
A combustion synthesis method has been developed for synthesis of Eu2+ doped CaAlSiN3 phosphor and its photoluminescence properties were investigated. Ca, Al, Si, and Eu2O3 powders were used as the Ca, Al, Si and Eu sources. The addition of NaN3, NH4Cl and Si3N4 powders was found to increase significantly the product yield. These powders were mixed and pressed into a compact, which was then wrapped up with an igniting agent (i.e., Mg+Fe3O4). The compact was ignited by electrical heating under a N2 pressure of ≤1.0 MPa. Effects of these experimental parameters on the product yield were investigated and a reaction mechanism was proposed. The synthesized CaAlSiN3:Eu2+ phosphor absorbs light in the region of 200–600 nm and shows a broad band emission in the region of 500–800 nm due to the 4f65d1 → 4f7 transition of Eu2+. The sample doped with Eu2+ at the optimized molar ratio of 0.04 is efficiently excited by the blue light (460 nm) and generates emission peaking at ~650 nm with peak emission intensity ~106% of a commercially available phosphor, YAG:Ce3+(P46-Y3).The internal quantum efficiency of the synthesized phosphor was measured to be 71%, compared to 69% of the YAG:Ce3+ (P46-Y3).  相似文献   

14.
Glasses containing two different network-forming components and doped with optically active ions exhibit interesting properties. In this work, glass systems based on germanium dioxide and boron trioxide singly doped with lanthanides (Eu3+) and transition metals (Cr3+) ions are research subjects. Optical spectroscopy was the major research tool used to record excitation and emission spectra in a wide spectral range for studied systems. The emitted radiation of glasses doped with Cr3+ ions is dominated by broadband luminescence centered at 770 nm and 1050 nm (4T24A2). Interestingly, the increase of concentration of one of the oxides contributed to the detectable changes of the R-line (2E → 4A2) of Cr3+ ions. Moreover, EPR spectroscopy confirmed the paramagnetic properties of the obtained glasses. The influence of molar ratio GeO2:B2O3 on spectroscopic properties for Eu3+ ions is discussed. The intensity of luminescence bands due to transitions of trivalent europium ions as well as the ratio R/O decrease with the increase of B2O3. On the other hand, the increase in concentration B2O3 influences the increasing tendency of luminescence lifetimes for the 5D0 state of Eu3+ ions. The results will contribute to a better understanding of the role of the glass host and thus the prospects for new optical materials.  相似文献   

15.
A high-quality Er3+-doped (Gd1−xLux)3Ga5O12 (Er: LGGG) laser crystal with a size of Φ 36 × 45 mm3 was successfully grown by the Czochralski (Cz) method for the first time. The effective segregation coefficient of Er3+ was determined to be 0.97, close to 1, and, thus, the uniform high-quality Er: LGGG crystal can be grown. In addition, the thermal and spectroscopic properties of Er: LGGG were investigated. Based on the measured characteristics, the Er: LGGG crystal has a huge potential for use in the 3.0 µm mid-infrared laser because of its outstanding optical quality, extraordinary thermal conductivity and stable structure.  相似文献   

16.
Hydrogen doped In2O3 thin films were prepared by room temperature sputter deposition with the addition of H2O to the sputter gas. By subsequent vacuum annealing, the films obtain high mobility up to 90 cm2/Vs. The films were analyzed in situ by X-ray photoelectron spectroscopy (XPS) and ex situ by X-ray diffraction (XRD), optical transmission and Hall effect measurements. Furthermore, we present results from in situ Hall effect measurements during vacuum annealing of In2O3:H films, revealing distinct dependence of carrier concentration and mobility with time at different annealing temperatures. We suggest hydrogen passivation of grain boundaries as the main reason for the high mobility obtained with In2O3:H films.  相似文献   

17.
Novel glass samples with the composition 75TeO2–5Ta2O5–15Nb2O5–5x (where x = ZnO, MgO, TiO2, or Na2O) in mole percent were prepared. The physical, optical, and gamma radiation shielding properties of the glass samples were studied over a wide energy spectrum ranging between 0.015 and 20 MeV. The glasses’ UV–vis spectra were utilized to evaluate the optical energy gap and refractive index. Glass samples had a refractive index ranging from 2.2005 to 2.0967. The results showed that the sample doped with zinc oxide (ZnO) recorded the highest density (ρglass), molar polarizability (αm), molar refraction (Rm), refractive index (n), and third-order nonlinear optical susceptibility (χ3) and the lowest optical energy gap (Eopt) among the samples under investigation. When comparing the current glass system with various standard glass shielding materials, the prepared glass system showed superior shielding performance at energies ranging between 40 and 85 keV. These findings indicate that the prepared glass systems can be used in diagnostic X-rays, especially in dental applications.  相似文献   

18.
The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed.  相似文献   

19.
In the present work, TiO2/ZnO hybrid nanosponges have been synthesized for the first time. First, TiO2 nanosponges were obtained by anodization under hydrodynamic conditions in a glycerol/water/NH4F electrolyte. Next, in order to achieve the anatase phase of TiO2 and improve its photocatalytic behaviour, the samples were annealed at 450 °C for 1 h. Once the TiO2 nanosponges were synthesized, TiO2/ZnO hybrid nanosponges were obtained by electrodeposition of ZnO on TiO2 nanosponges using different temperatures, times, and concentrations of zinc nitrate (Zn(NO3)2). TiO2/ZnO hybrid nanosponges were used as photoanodes in photoelectrochemical water splitting tests. The results indicate that the photoelectrochemical response improves, in the studied range, by increasing the temperature and the Zn(NO3)2 concentration during the electrodeposition process, obtaining an increase in the photoelectrochemical response of 141% for the TiO2/ZnO hybrid nanosponges electrodeposited at 75 °C with 10 mM Zn(NO3)2 for 15 min. Furthermore, morphological, chemical, and structural characterization was performed by Field Emission Scanning Electron Microscopy (FE-SEM) with Energy Dispersive X-Ray spectroscopy (EDX), Raman Confocal Laser Spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), and Grazing Incidence X-Ray Diffraction (GIXRD).  相似文献   

20.
High transmittance ratio in visible range, low resistivity, and high mobility of IGZO thin films were prepared at room temperature for 30 min by co-sputtering of Zn2Ga2O5 (Ga2O3 + 2 ZnO, GZO) ceramic and In2O3 ceramic at the same time. The deposition power of pure In2O3 ceramic target was fixed at 100 W and the deposition power of GZO ceramic target was changed from 80 W to 140 W. We chose to investigate the deposition power of GZO ceramic target on the properties of IGZO thin films. From the SEM observations, all of the deposited IGZO thin films showed a very smooth and featureless surface. From the measurements of XRD patterns, only the amorphous structure was observed. We aimed to show that the deposition power of GZO ceramic target had large effect on the Eg values, Hall mobility, carrier concentration, and resistivity of IGZO thin films. Secondary ion mass spectrometry (SIMS) analysis in the thicknesses’ profile of IGZO thin films found that In and Ga elements were uniform distribution and Zn element were non-uniform distribution. The SIMS analysis results also showed the concentrations of Ga and Zn elements increased and the concentrations of In element was almost unchanged with increasing deposition power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号