首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
This is an experiment on the effect of mixing time for alkali-activated cement (AAC) using a binder mixed with ground granulated blast furnace slag (slag) and fly ash (FA) in a ratio of 1:1 on the mechanical properties. The mixing method of ASTM C305 was used as the basic mixing method, and the following mixing method was changed. Simply adding the same mixing time and procedure, the difference in the order of mixing slag and FA, and controlling the amount of activator and mixed water were considered. As a result of the experiment, the addition of the same mixing time and procedure, pre-injection of slag, and high-alkali mixed water in which half of the activator and mixing water were mixed showed the highest mechanical properties and a dense pore structure. As a result, the design of a blending method that can promote the activation action of slag rather than FA at room temperature was effective in improving the mechanical properties of AAC. In addition, these blending factors showed a clearer effect as the concentration of the activator increased. Through the results of this experiment, it was shown that high-temperature curing, high fineness of the binder, or even changing the setting of the mixing method without the use of excessive activators can lead to an improvement of mechanical properties.  相似文献   

2.
Coal gasification slag is an inevitable by-product of the coal gasification process. This paper explored the feasibility of using activators (calcium hydroxide, sodium hydroxide, calcium sulfate, sodium sulfate) to promote the pozzolanic activity of milled coal gasification coarse slags (MCS), and analyzed the effect of alkali and sulfate activators on the hydration characteristic of cement-based materials containing MCS. Coal gasification slags with ignition lossses more than 15% were removed and the remaining slags were considered as cementitious material after milling. Scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and hydration heat tests were employed to analyze the hydration mechanism of the samples. Besides, the compressive strength values of cement mortars with MCS and activators were evaluated. The results showed that calcium hydroxide was conductive to the formation of hydration products and its crystallization could contribute to the strength improvement of the sample. Calcium sulfate mainly participated in the hydration process of cement to form ettringite (AFt) phases. Sodium hydroxide could accelerate the dissolution of active mineral phases of MCS, resulting in the pozzolanic activity being enhanced. Moreover, sodium sulfate could not only increase the formation of AFt phases, but also improved the alkalinity in sample to facilitate the production of gels. Among them, a better promotion effect could be obtained from the combined application of calcium hydroxide and sodium sulfate. In addition, the compressive strength values of cement mortars containing MCS tended to increase when activators were used. The sample activated by calcium hydroxide and sodium sulfate exhibited the highest strength, increasing by 18.55% at 28 days compared with the sample without an activator.  相似文献   

3.
With the trend toward taller and larger structures, the demand for high-strength and lightweight cement concrete has increased in the construction industry. Equipment for transporting ready-mixed concrete is frequently used to bring concrete to construction sites, and washing this equipment generates a large amount of recycled water, which is an industrial by-product. In this study, we recycled this water as the pre-wetting water for lightweight aggregate and as mixing water, and we substituted blast furnace slag powder (BS) and fly ash (FA) as cementitious materials (Cm). In addition, we evaluated the fluidity, compressive strength, tensile strength, drying shrinkage, and accelerated carbonation depth of lightweight ternary cementitious mortars (TCMs) containing artificial lightweight aggregate and recycled water. The 28-day compressive strengths of the lightweight TCM specimens with BS and FA were ~47.2–51.7 MPa, except for the specimen with 20% each of BS and FA (40.2 MPa), which was higher than that of the control specimen with 100% OPC (45.9 MPa). Meanwhile, the 28-day tensile strengths of the lightweight TCM specimens containing BS and FA were ~2.81–3.20 MPa, which are ~13.7–29.5% higher than those of the control specimen. In this study, the TCM specimen with 5% each of BS and FA performed the best in terms of the combination of compressive strength, tensile strength, and carbonation resistance.  相似文献   

4.
Environmental considerations and technical benefits have directed research towards reducing cement clinker content in concrete, and one of the best ways to do this is to replace cement with supplementary cementitious materials. High calcium fly ash, ladle furnace slag, and limestone filler were investigated as supplementary cementitious materials in cement pastes, and binary mixtures were produced at 10%, 20%, and 30% cement replacement rates for each material. The water requirement for maximum packing and for normal consistency were obtained for each paste, and strength development was determined at 3, 7, 28, and 90 days for the 20% replacement rate. Furthermore, two ternary mixtures at 30% cement replacement were also prepared for maximum packing density and tested for compressive strength development. The results showed that high calcium fly ash decreased cement paste packing and increased water demand but contributed to strength development through reactivity. Ladle furnace slag and limestone filler, on the other hand, were less reactive and seemed to contribute to strength development through the filler effect. The ternary paste with 70% cement, 20% high calcium fly ash, and 10% limestone filler showed equivalent strength development to that of the reference cement paste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号