首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 185delAG and 5382insC founder mutations account for the majority of mutations identified in BRCA1 in Ashkenazi Jewish breast and breast-ovarian cancer families. Few non-founder BRCA1 mutations have been identified to date in these families. We initially screened a panel of 245 Ashkenazi Jewish breast-ovarian cancer families with an affected proband and at least one other case of breast or ovarian cancer for founder mutations in BRCA1 and BRCA2. Founder mutations were identified in 85 families (185delAG in 44 families, 5382insC in 16 families, and the BRCA2 6174delT in 25 families). The 160 negative families were then screened for the entire BRCA1 gene by a combination of DGGE and PTT. We identified one novel frameshift mutation in BRCA1 in exon 14 (4572del22) that truncated the protein at codon 1485. The family contained three cases of early-onset ovarian cancer (41 years, 43 years, and 52 years) and one case of breast cancer (at age 54 years subsequent to an ovarian cancer). In addition, three missense variants of unknown significance (exon 11 C3832T (P1238L), exon 15 G4654T (S1512I), and exon 15 G4755A (D1546N)) were found in single families. These missense variants have been previously identified in other families [BIC Database] and are considered to be "unclassified variants, favoring polymorphism." Non-founder BRCA1 mutations are rare in Ashkenazi Jewish breast/ovarian cancer families.  相似文献   

2.
OBJECTIVES: In view of the recent reports of recurrent mutations in BRCA1 and BRCA2 in the Ashkenazi Jewish population, we have undertaken to assess the frequency of these mutations in this population attending for genetic counselling and risk assessment of familial breast cancer. DESIGN: Mutation screening for the 185delAG and the 5382insC mutations in BRCA1 and the 6174delT mutation in BRCA2 was performed on DNA samples from either subjects affected by breast or ovarian cancer or obligate gene carriers. The likelihood of the cancers being hereditary in each family was calculated. SUBJECTS: Blood samples were obtained from 26 affected subjects or obligate gene carriers from 23 Ashkenazi Jewish families, all with a history of either early onset breast or ovarian cancers, or multiple cases of breast or ovarian cancer. RESULTS: Twelve mutations have been identified in the 23 families (52%) of which eight (67%) were the 185delAG mutation, three (25%) were the 6174delT mutation, and one (8%) was the 5382insC mutation. While the majority of these mutations were identified in families with a greater than 50% probability of being hereditary under the CASH segregation model, three mutations were identified in families with a 35% or less probability. CONCLUSIONS: Genetic screening of the recurrent mutations in Ashkenazi Jewish families will lead to the availability of predictive testing in a reasonably large proportion, even if the family history of breast/ovarian cancer is not particularly strong. In our view it is possible to reassure high risk unaffected members of these families, if the screening is negative for these mutations, even if a sample from an affected member of the family is unavailable for previous screening.  相似文献   

3.
Currently many centers offer testing for three specific mutations, 185delAG, 5382insC, and 6174delT, in the BRCA1 and BRCA2 genes to Ashkenazi Jewish individuals at high risk for breast and ovarian cancer. We recently tested members of a family with multiple cases of breast and ovarian cancer (Family R014). The proband in this family tested positive for the 185delAG mutation. The unaffected sister of the proband tested positive for both the 185delAG and the 6174delT mutations. Further testing and review of the family history suggest that both mutations may have come from a maternal grandfather and passed down for two generations. Counseling of the unaffected double heterozygote individual in this family is complicated by lack of information on the risk of breast, ovarian, and other cancers in such individuals. A better understanding of these risks will depend on the identification and study of more individuals carrying mutations in both the BRCA1 and BRCA2 genes. Our study emphasizes the importance of testing Ashkenazi Jewish individuals from high-risk breast and ovarian cancer families for all three common BRCA1 and BRCA2 mutations identified in this ethnic group.  相似文献   

4.
The prevalence of BRCA1 and BRCA2 mutations among breast cancer patients in Peru has not yet been explored. We enrolled 266 women with breast cancer from a National cancer hospital in Lima, Peru, unselected for age or family history. DNA was screened with a panel of 114 recurrent Hispanic BRCA mutations (HISPANEL). Among the 266 cases, 13 deleterious mutations were identified (11 in BRCA1 and 2 in BRCA2), representing 5% of the total. The average age of breast cancer in the mutation‐positive cases was 44 years. BRCA1 185delAG represented 7 of 11 mutations in BRCA1. Other mutations detected in BRCA1 included: two 2080delA, one 943ins10, and one 3878delTA. The BRCA2 3036del4 mutation was seen in two patients. Given the relatively low cost of the HISPANEL test, one should consider offering this test to all Peruvian women with breast or ovarian cancer.  相似文献   

5.
Women harboring BRCA1 germline mutations carry an 85% lifetime risk of developing breast cancer and a 63% risk of ovarian cancer. In this first systematic study of familial breast and/or ovarian cancer in Germany we investigated 29 families for germline mutations in the BRCA1 gene. We identified mutations in three breast cancer families and in four breast-ovarian cancer families. The mutations include one missense mutation, one frameshift mutation, one splice mutation, and four nonsense mutations cosegregating with breast and/or ovarian susceptibility in five of ten (50%) families showing positive evidence of linkage to chromosome band 17q21 and in two of 19 (11%) families where linkage data was not available. Two apparently unrelated families carried the same nonsense mutation at codon 1835 and three families harbored a C to T transition at nucleotide 49 of the untranslated exon 4. Allelotyping of the markers D17S855, D17S1322, D17S1323, and D17S1327 located within or near BRCA1 revealed that all affected individuals in the two families harboring the mutation at codon 1835 shared at least one allele indicating a founder mutation. With respect to the overall mutation spectrum, no mutations were identified in exon 11 (0/7) in this set of German families. These findings differed significant from those in British (17/32)(P = 0.012) and Southern Swedish (13/15) (P < 0.001) families. The lack of BRCA1 mutations in exon 11 which represents 61% of the entire coding sequence may provide additional insight into BRCA1 associated breast and ovarian tumor development. Genes Chromosom. Cancer 18:126–132, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
It is not clear if hereditary site-specific ovarian cancer exists as a genetic entity distinct from the hereditary breast-ovarian cancer syndrome. We have identified a large Ashkenazi Jewish kindred with 8 cases of ovarian carcinoma and no cases of breast cancer. Initially, linkage analysis for this kindred generated a negative LOD score to BRCA1, but subsequent mutation and haplotype analysis of key individuals demonstrated a BRCA1 185delAG mutation segregating with all but 1 of the ovarian cancer cases. This observation has important implications for genetic counselling of families with site-specific ovarian cancer. Hereditary site-specific ovarian cancer is likely to be a variant of the hereditary breast-ovarian cancer syndrome, attributable to either BRCA1 or BRCA2. We consider women from these families to be at increased risk of breast cancer and counsel them accordingly. Am. J. Med. Genet. 75:55–58, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Liede A, Metcalfe K, Offit K, Brown K, Miller S, Narod SA, Moslehi R. A family with three germline mutations in BRCAl and BRCA2 . Clin Genet 1998: 54: 215–218. 0 Munksgaard. 1998
Several cancer genetics centres offer testing for specific BRCAl and BRCAZ mutations to Ashkenazi Jewish individuals with a family history of breast and ovarian cancers. Testing involves screening for three common mutations found in this population, namely BRCA I 185delAG, 5382insC and BRCA2 6174delT (Struewing et al., Nat Genet 1995: 11: 198–200; Roa et al., Nat Genet 1996: 14 185–187; Oddoux et al., Nat Genet 1996: 14 188–190). We have identified a large Ashkenazi Jewish kindred (W9170) with ten cases of breast cancer and four cases of ovarian carcinoma. Initially, mutation analysis for this family identified a BRCAl 185delAG mutation in the proband diagnosed with three separate primary cancers of the breast, ovary and colon. Another individual in this family diagnosed with two primary cancers of the ovary and breast, was identified as having a second mutation, BRCA I 5382insC. Subsequent work found that two sisters (cousins of the proband), both diagnosed with carcinoma of the breast, had a third mutation, BRCAZ 6174delT. These three mutations have previously been found to be more common in the Ashkenazi Jewish population (References as above). The identification of all three mutations in one family, raised new implications for the manner in which testing and counselling should be offered. In our opinion, Ashkenazi Jewish individuals in breast-ovarian cancer families should be offered complete testing for the three common Ashkenazi Jewish mutations regardless of previous identification of one of these mutations in the family.  相似文献   

8.
In this study we genotyped Turkish breast/ovarian cancer patients for BRCA1/BRCA2 mutations: protein truncation test (PTT) for exon 11 BRCA1 of and, multiplex PCR and denaturing gradient gel electrophoresis (DGGE) for BRCA2, complemented by DNA sequencing. In addition, a modified restriction assay was used for analysis of the predominant Jewish mutations: 185delAG, 5382InsC, Tyr978X (BRCA1) and 6174delT (BRCA2). Eighty three breast/ovarian cancer patients were screened: twenty three had a positive family history of breast/ovarian cancer, ten were males with breast cancer at any age, in eighteen the disease was diagnosed under 40 years of age, one patient had ovarian cancer in addition to breast cancer and one patient had ovarian cancer. All the rest (n=30) were considered sporadic breast cancer cases. Overall, 3 pathogenic mutations (3/53-5.7%) were detected, all in high risk individuals (3/23-13%): a novel (2990insA) and a previously described mutation (R1203X) in BRCA1, and a novel mutation (9255delT) in BRCA2. In addition, three missense mutations [two novel (T42S, N2742S) and a previously published one (S384F)] and two neutral polymorphisms (P9P, P2532P) were detected in BRCA2. Notably none of the male breast cancer patients harbored any mutation, and none of the tested individuals carried any of the Jewish mutations. Our findings suggest that there are no predominant mutations within exon 11 of the BRCA1 and in BRCA2 gene in Turkish high risk families.  相似文献   

9.
We have carried out a study of breast cancer in Spanish families in which the entire coding region of the BRCA1 gene have been analyzed. To identify BRCA1 mutations, PTT and CSGE methods were used followed by direct sequencing. We investigated 51 breast cancer women with a family history. Among these we have identified 7 frameshifts mutations (15%), 185delAG (4 times), 1623del5 and 3450del4 (2 times), and 3 missense mutations, Ser1613Gly, Met1652Ile and Ala1708Glu, which are likely polymorphisms. These findings show that BRCA1 is implicated in a fraction of Spanish familial breast cancer similar to other countries. There was association between bilateral breast cancer and BRCA1 mutations. The CSGE technique has been demonstrated to be a highly reliable method for mutation screening because of its sensitivity and high throughput.  相似文献   

10.
BRCA1 and BRCA2 founder mutations in patients with bilateral breast cancer   总被引:3,自引:0,他引:3  
Bilateral breast cancer is traditionally considered an indirect indicator of inherited predisposition to cancer. To appreciate the contribution of genetic determinants to bilateral breast cancer in Jewish women we genotyped 55 such women for the three predominant mutations in BRCA1 (185delAG and 5382insC) and BRCA2 (6174delT) that account for the overwhelming majority of BRCA mutations in high-risk Jewish families. Among women with bilateral breast cancer, 17 mutation carriers (17/55; 29.6%) were identified. Individual mutation frequencies were 18.5% (10/55) for 185delAG, 3.7% (2/55) for 5382insC and 7.4% (5/55) for 6174delT. Carrier rate was significantly higher (P < 0.0016) in women with bilateral breast cancer whose first tumour was diagnosed at or before 42 years of age (82%; 14/17) than in women diagnosed after 42 years of age (7.9%; 3/38). Among patients with bilateral breast cancer and positive family history 45% (14/31) carried a BRCA mutation. Of these 86% (12/14) had one breast cancer diagnosed at or before 42 years of age. Our results suggest that bilateral breast cancer per se, in most cases, does not reflect genetic predisposition, unless associated with early age of onset (first tumour diagnosed at or before 42 years of age). Although the relationship between young age and carrier state in women with bilateral breast cancer is strong, no significant association between family history and carrier state was found. We can thus speculate that women with early onset breast cancer who carry a BRCA1 or BRCA2 mutation are prone to acquire a second breast tumour.  相似文献   

11.
Pertesi M, Konstantopoulou I, Yannoukakos D. Haplotype analysis of two recurrent genomic rearrangements in the BRCA1 gene suggests they are founder mutations for the Greek population. The deletions of 4.4 and 3.2 kb identified in exons 24 and 20, respectively, are two of the four most common mutations in the BRCA1 gene in Greek breast cancer patients. They have been reported previously six and three times, respectively, in unrelated Greek families. A total of 11 more families have been identified in the present study. In order to characterize these recurrent mutations as founder mutations, it is necessary to identify the disease‐associated haplotype and prove that it is shared by all the mutation carriers, suggesting that it occurred only once in a common ancestor. Haplotype analysis was performed on 24 mutation carriers and 66 healthy individuals using 10 short tandem repeat markers located within and flanking the BRCA1 gene locus, spanning a 5.9 Mb interval. Results indicate that most of the carriers of the exon 24 deletion share a common core haplotype ‘4‐7‐6‐6‐1‐3’ between markers D17S951 and D17S1299, for a stretch of 2.9 Mb, while the common haplotype for the exon 20 deletion is ‘6‐7‐4‐2‐6‐7‐1‐3’ between markers D17S579 and D17S1299, for a stretch of 3.9 Mb. Both genomic rearrangements in BRCA1 gene are Greek founder mutations, as carriers share the same, for each mutation, disease‐associated haplotype, suggesting the presence of a distinct common ancestor for both mutations.  相似文献   

12.
At least 25% of Ashkenazi Jewish families with two or more cases of premenopausal breast cancers are attributable to one of three founder mutations in BRCA1 or BRCA2. As these three founder mutations are common in the Ashkenazi Jewish population ( approximately 2.5%) and can easily be tested for in a multiplex assay, establishing ethnicity can expedite genetic testing. It is not always possible, however, to conclusively establish ethnicity before offering testing. We report here the occurrence of a founder Ashkenazi Jewish BRCA1 mutation, 185delAG (also known as 187delAG), in a non-Jewish Chilean family with no reported Jewish ancestry. The linked haplotype present in this family was identical to that identified in the Ashkenazi Jewish population. This case report not only illustrates the problem of the definition of ethnicity but also points to the possibility of further studies of the frequency of founder Ashkenazi Jewish mutations in populations not generally considered to be of Ashkenazi Jewish origin.  相似文献   

13.

Background

A large number of distinct mutations in the BRCA1 and BRCA2 genes have been reported worldwide, but little is known regarding the role of these inherited susceptibility genes in breast cancer risk among Indian women. We investigated the distribution and the nature of BRCA1 and BRCA2 germline mutations and polymorphisms in a cohort of 204 Indian breast cancer patients and 140 age-matched controls.

Method

Cases were selected with regard to early onset disease (≤40 years) and family history of breast and ovarian cancer. Two hundred four breast cancer cases along with 140 age-matched controls were analyzed for mutations. All coding regions and exon-intron boundaries of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis followed by direct sequencing of detected variants.

Results

In total, 18 genetic alterations were identified. Three deleterious frame-shift mutations (185delAG in exon 2; 4184del4 and 3596del4 in exon 11) were identified in BRCA1, along with one missense mutation (K1667R), one 5'UTR alteration (22C>G), three intronic variants (IVS10-12delG, IVS13+2T>C, IVS7+38T>C) and one silent substitution (5154C>T). Similarly three pathogenic protein-truncating mutations (6376insAA in exon 11, 8576insC in exon19, and 9999delA in exon 27) along with one missense mutation (A2951T), four intronic alterations (IVS2+90T>A, IVS7+75A>T, IVS8+56C>T, IVS25+58insG) and one silent substitution (1593A>G) were identified in BRCA2. Four previously reported polymorphisms (K1183R, S1613G, and M1652I in BRCA1, and 7470A>G in BRCA2) were detected in both controls and breast cancer patients. Rare BRCA1/2 sequence alterations were observed in 15 out of 105 (14.2%) early-onset cases without family history and 11.7% (4/34) breast cancer cases with family history. Of these, six were pathogenic protein truncating mutations. In addition, several variants of uncertain clinical significance were identified. Among these are two missense variants, one alteration of a consensus splice donor sequence, and a variant that potentially disrupts translational initiation.

Conclusion

BRCA1 and BRCA2 mutations appear to account for a lower proportion of breast cancer patients at increased risk of harboring such mutations in Northern India (6/204, 2.9%) than has been reported in other populations. However, given the limited extent of reported family history among these patients, the observed mutation frequency is not dissimilar from that reported in other cohorts of early onset breast cancer patients. Several of the identified mutations are unique and novel to Indian patients.  相似文献   

14.
The breast cancer susceptibility genes, BRCA1 and BRCA2, differ in their contribution to ovarian cancer. Recently, founder mutations in each of these genes were identified in Canadian breast cancer and breast ovarian cancer families of French ancestry. We have examined the prevalence of the founder mutations in a series of 113 French Canadian women with ovarian cancer unselected for family history. Germline mutations were found in eight of 99 invasive carcinomas and in none of the 14 tumors of borderline malignancy. Five cases carried the BRCA1 C4446T mutation and two cases carried the BRCA2 8765delAG mutation which are the most common mutations that have been described in French Canadian breast cancer and breast ovarian cancer families. All of these cases reported a family history of at least one first-degree relative with breast cancer, diagnosed below age 60 years, or with ovarian cancer. The identification of founder BRCA1 and BRCA2 mutations in ovarian cancer cases unselected for family history can facilitate carrier detection when the expected yield of a comprehensive screen may be low.  相似文献   

15.
Three founder alleles of BRCA1 (C61G, 4153delA, 5382insC) were reported in Poland in 2000, and these three mutations have comprised the standard testing panel used throughout the country. However, since 2000, other recurrent mutations of BRCA1 and BRCA2 have been reported. To establish if the inclusion of one or more of these mutations will increase the sensitivity of the standard test panel, we studied 1164 Polish women with unselected breast cancer diagnosed at age of 50 or below. All women were genotyped for 12 recurrent mutations of BRCA1 and BRCA2. We identified a mutation in 83 of 1164 patients (7.1%) including 61 women with one of the original three mutations (C61G, 4153delA, 5382insC) and 22 women with a different mutation (1.9%). Three new mutations (3819del5, 185delAG and 5370C>T) were seen in multiple families. By including these three mutations in the extended panel, the mutant frequency increased from 5.2 to 6.7%. Polish women with breast cancer diagnosed at age of 50 or below should be screened with a panel of six founder mutations of BRCA1 (C61G, 4153delA, 5382insC, 3819del5, 185delAG and 5370C>T).  相似文献   

16.
Germline mutations in the BRCA1 tumour suppressor gene on chromosome 17q21 are responsible for approximately half of the cases of hereditary breast cancer, including the majority of familial breast/ovarian cancers. To increase our knowledge of the spectrum of BRCA1 mutations, we have extended our analysis to include patients with varied family histories of cancer of the breast, ovary, and at multiple other sites. We have analysed 23 unrelated familial cases using direct sequencing or a combination of dideoxy fingerprinting and sequencing procedures. Twenty one of these families contained three or more cases of breast or ovarian cancer and two families had one case of breast cancer diagnosed before the age of 40 and one case of ovarian cancer. The common frameshift mutation 5382insC was detected in two patients, and the 185delAG mutation was found in a family of Ashkenazi Jewish descent. The novel frameshift mutation 3450del4 (CAAG) was detected in a patient who developed breast cancer at the age of 28 and ovarian cancer at the age of 34. Three other women in this family were diagnosed with breast cancer at the ages of 26, 29, and 40. The novel framshift mutation 2953del3+C was found in a French Canadian woman who had developed two primary cancers of the breast at the age of 37 and 38 and renal cancer at the age of 38.  相似文献   

17.
18.
The entire coding regions of the two breast cancer susceptibility genes BRCA1 and BRCA2 from breast cancer patients from 40 Cypriot families with multiple cases of breast and ovarian cancer were sequenced. A total of four protein-truncating mutations were found in six families. In BRCA1, a novel truncating mutation 5429delG was found in exon 21. In BRCA2, three truncating mutations were detected: a frameshift 8984delG in exon 22 and two nonsense mutations C1913X in exon 11 and K3326X in exon 27. It is noted that mutation 8984delG was found in three separate families, and haplotype analysis showed that this may be a founder mutation in the Cypriot population. In addition, a pair of rare variants, Q356R and S1512I, was detected in BRCA1 in patients belonging to two Cypriot families. The simultaneous presence of this pair of missense mutations may be associated with the breast cancer phenotype in the Cypriot population. We conclude that the BRCA2 gene appears to play a more important role in familial breast cancer in the Cypriot population than BRCA1.  相似文献   

19.
Screening for mutations in the breast and ovarian cancer susceptibility gene, BRCA1, is complicated by the wide spectrum of mutations found in this large gene. In the present study a constant denaturant gel electrophoresis (CDGE) mutation screening strategy was established for ˜80% of the genomic coding sequence (exons 2, 11, 13–16, 20, 24). This strategy was applied to screen genomic DNA from 50 familial breast and/or ovarian cancer patients who had previously been examined for BRCA1 mutations by SSCP. A total of 14 carriers of 12 distinct disease-associated mutations and 7 carriers of 6 distinct rare substitutions leading to amino acid substitutions were identified. The SSCP failed to detect 40% of the different deletions/insertions (4/10) and 75% (6/8) of the different base substitutions leading to terminating codons or rare amino acid changes. SSCP did, however, identify one rare base substitution that could not be detected in the CDGE screening. To evaluate the CDGE mutation screening strategy further, 25 unrelated patients from Norwegian breast and/or ovarian cancer families were examined for BRCA1 mutations using a combined genomic DNA/cDNA approach covering the entire coding sequence of the gene. A total of six mutation carriers were detected, all of whom had cases of ovarian cancer in their families. Three patients from independent families carried an 1135insA mutation in exon 11, two others had a Gly484ter and an 1675delA mutation, respectively, and the sixth carried a splice mutation (5194-2 a→c) causing deletion of exon 18. CDGE may become an efficient tool in diagnostic and population based screening for BRCA1 mutations. Hum Mutat 11:166–174, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Since the identification of the BRCA1 and BRCA2 genes (MIM#s 113705 and 600185), more than hundred different mutations throughout both genes have been reported. Recurrent mutations are rare and mainly due to founder effects. We analyzed 12 sporadic female patients with breast cancer before age 35, as well as 16 unrelated families, presenting with either (i) at least 3 first degree relatives with breast and/or ovarian cancer diagnosed at any age, or (ii) at least 2 first and/or second degree relatives with breast and/or ovarian cancer before age 45 years. We performed a protein truncation test for BRCA1 exon 11 and BRCA2 exons 10 and 11 and heteroduplex analysis for all the remaining exons of BRCA1 and 2. Presence of genomic deletions encompassing exons 13 or 22 of BRCA1, known to be Dutch founder mutations, was investigated by PCR. In 6/16 (37.5%) unrelated families the causal mutation in either the BRCA1 or BRCA2 gene was identified. Four different mutations were found in the BRCA1 gene: IVS5+3A>G (intron 5), 1191delC (exon 11), R1443X (exon 13), IVS22+5G>A (intron 22) and two in the BRCA2 gene: 6503delTT (exon 11), 6831delTG (exon 11). 1191delC (BRCA1) and 6831delTG (BRCA2) are novel mutations. IVS5+3A>G in exon 5 of BRCA1 published by Peelen et al. (1997) as a novel Belgian mutation, was identified in one additional family, not fulfilling our inclusion criteria. In the group of 12 sporadic female patients no mutations were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号