首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Due to the COVID-19 pandemic and multiple devastating forest fires, the 2020 meeting of the Rocky Mountain Virology Association was held virtually. The three-day gathering featured talks describing recent advances in virology and prion research. The keynote presentation described the measles virus paradox of immune suppression and life-long immunity. Special invited speakers presented information concerning visualizing antiviral effector cell biology in mucosal tissues, uncovering the T-cell tropism of Epstein-Barr virus type 2, a history and current survey of coronavirus spike proteins, a summary of Zika virus vaccination and immunity, the innate immune response to flavivirus infections, a discussion concerning prion disease as it relates to multiple system atrophy, and clues for discussing virology with the non-virologist. On behalf of the Rocky Mountain Virology Association, this report summarizes selected presentations.  相似文献   

2.
Copper influences the pathogenesis of prion disease, but whether it is beneficial or detrimental remains controversial. Copper homeostasis is also essential for normal physiology, as highlighted by the spectrum of diseases caused by disruption of the copper transporting enzymes ATP7A and ATP7B. Here, by using a forward genetics approach in mice, we describe the isolation of three alleles of Atp7a, each with different phenotypic consequences. The mildest of the three, Atp7a(brown), was insufficient to cause lethality in hemizygotes or mottling of the coat in heterozygotes, but did lead to coat hypopigmentation and reduced copper content in the brains of hemizygous males. When challenged with Rocky Mountain Laboratory scrapie, the onset of prion disease was delayed in Atp7a(brown) mice, and significantly less proteinase-resistant prion protein was found in the brains of moribund Atp7a(brown) mice compared with WT littermates. Our results establish that ATP7A-mediated copper homeostasis is important for the formation of pathogenic proteinase-resistant prion protein.  相似文献   

3.
4.
Kaposi-sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV-8) is the causative agent of several malignancies, including Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman’s disease (MCD). Active KSHV replication has also been associated with a pathological condition called KSHV inflammatory cytokine syndrome (KICS), and KSHV may play a role in rare cases of post-transplant polyclonal lymphoproliferative disorders. Several commonly used herpesviral DNA polymerase inhibitors are active against KSHV in tissue culture. Unfortunately, they are not always efficacious against KSHV-induced diseases. To improve the outcome for the patients, new therapeutics need to be developed, including treatment strategies that target either viral proteins or cellular pathways involved in tumor growth and/or supporting the viral life cycle. In this review, we summarize the most commonly established treatments against KSHV-related diseases and review recent developments and promising new compounds that are currently under investigation or on the way to clinical use.  相似文献   

5.
Nonstructural protein 2A (NS2A) of the Japanese encephalitis virus (JEV) contributes to viral replication and pathogenesis; however, a lack of NS2A-specific antibodies restricts studies on the underlying mechanisms. In this study, we constructed a recombinant JEV with a hemagglutinin (HA)-tagged NS2A (JEV-HA/NS2A/∆NS1’) to overcome this challenge. An HA-tag was fused to the N-terminus of NS2A (HA-NS2A) at the intergenic junction between NS1 and NS2A. A peptide linker, “FNG”, was added to the N-terminus of HA-tag to ensure correct cleavage between the C-terminus of NS1 and the N-terminus of HA-NS2A. To avoid the side effects of an unwanted NS1’ tagged with HA (HA-NS1’), an alanine-to-proline (A30P) substitution was introduced at residue 30 of NS2A to abolish HA-NS1’ production. The HA-tag insertion and A30P substitution were stably present in JEV-HA/NS2A/∆NS1’ after six passages and did not exhibit any significant effects on viral replication and plaque morphology. Taking advantage of HA-NS2A, we examined the activities of NS2A during JEV infection in vitro using anti-HA antibodies. NS2A was observed to be localized to the endoplasmic reticulum and interact with viral NS2B and NS3 during virus infection. These data suggest that JEV-HA/NS2A/∆NS1’ can serve as a model for the analysis of the biological characteristics and functions of NS2A in vitro during JEV infection.  相似文献   

6.
Vaccines against Marek’s disease can protect chickens against clinical disease; however, infected chickens continue to propagate the Marek’s disease virus (MDV) in feather follicles and can shed the virus into the environment. Therefore, the present study investigated if MDV could induce an immunoregulatory microenvironment in feathers of chickens and whether vaccines can overcome the immune evasive mechanisms of MDV. The results showed an abundance of CD4+CD25+ and CD4+ transforming growth factor-beta (TGF-β)+ T regulatory cells in the feathers of MDV-infected chickens at 21 days post-infection. In contrast, vaccinated chickens had a lower number of regulatory T cells. Furthermore, the expression of TGF-β and programmed cell death receptor (PD)-1 increased considerably in the feathers of Marek’s disease virus-infected chickens. The results of the present study raise the possibility of an immunoregulatory environment in the feather pulp of MDV-infected chickens, which may in turn favor replication of infectious MDV in this tissue. Exploring the evasive strategies employed by MDV will facilitate the development of control measures to prevent viral replication and transmission.  相似文献   

7.
Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD): whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD.  相似文献   

8.
The nuclear envelope (NE) of eukaryotic cells has a highly structural architecture, comprising double lipid-bilayer membranes, nuclear pore complexes, and an underlying nuclear lamina network. The NE structure is held in place through the membrane-bound LINC (linker of nucleoskeleton and cytoskeleton) complex, spanning the inner and outer nuclear membranes. The NE functions as a barrier between the nucleus and cytoplasm and as a transverse scaffold for various cellular processes. Epstein–Barr virus (EBV) is a human pathogen that infects most of the world’s population and is associated with several well-known malignancies. Within the nucleus, the replicated viral DNA is packaged into capsids, which subsequently egress from the nucleus into the cytoplasm for tegumentation and final envelopment. There is increasing evidence that viral lytic gene expression or replication contributes to the pathogenesis of EBV. Various EBV lytic proteins regulate and modulate the nuclear envelope structure in different ways, especially the viral BGLF4 kinase and the nuclear egress complex BFRF1/BFRF2. From the aspects of nuclear membrane structure, viral components, and fundamental nucleocytoplasmic transport controls, this review summarizes our findings and recently updated information on NE structure modification and NE-related cellular processes mediated by EBV.  相似文献   

9.
Recent advances in endoscopic imaging of the esophagus have revolutionized the diagnostic capability for detecting premalignant changes and early esophageal malignancy. In this article, we review the practical application of narrow-band imaging focusing on diseases of the esophagus, including Barrett’s esophagus, adenocarcinoma, and squamous cell carcinoma.  相似文献   

10.
The present study aimed to describe the seroprevalence infection, Epstein-Barr virus (EBV) genotypes, relate the infection’s profile with the epidemiological and corticotherapy data of patients with Autoimmune inflammatory rheumatic diseases (AIRD). A cross-sectional study was carried out with 139 individuals, 92 with systemic lupus erythematosus (SLE), 27 with rheumatoid arthritis (RA) and 20 with other autoimmune diseases, who were undergoing clinical follow-up in Brazil. Serological tests for the detection of EBV anti-VCA IgM and IgG antibodies, as well as the amplification of a segment of the EBV EBNA-3c gene by conventional PCR were performed to identify the infection and the viral subtype. The Epstein–Barr nuclear antigen 3 (EBNA3C) gene participates of maintenance of viral latency and infected B-lymphocytes immortalization by unclear signaling cascades. The association of active/latent EBV infection with EBV infection profile was assessed by Fisher’s exact test and multiple logistic regression. The seroprevalence of EBV anti-VCA IgG was 100%, while that of anti-VCA IgM was 1.43% (2/139). Active-phase infection was confirmed by the presence of EBV DNA in 40.29% of the population evaluated (56/139), with 45.65% (42/92) in SLE, 25.92% (7/27) in the RA and in 35% (7/20) in other autoimmune diseases. It was observed that individuals with SLE had a higher prevalence of active/lytic EBV infection and that oral corticosteroid therapy at a dose lower than 20 mg/day increased the risk of EBV activity by up to 11 times. Only the presence of EBV-1 was identified. Thus, EBV lytic infection was higher in individuals with SLE when compared to other autoimmune diseases with rheumatologic involvement and the lytic activity of the virus precedes corticosteroid-induced immunosuppression.  相似文献   

11.
《Viruses》2014,6(9):3663-3682
Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information’s (NCBI’s) RefSeq is a non-redundant, curated database for reference (or type) nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [<virus name> (<strain>)/<isolation host-suffix>/<country of sampling>/<year of sampling>/<genetic variant designation>-<isolate designation>], we report consensus decisions from a majority of past and currently active filovirus experts on the eight filovirus type variants and isolates to be represented in RefSeq, their final designations, and their associated sequences.  相似文献   

12.
13.
Kaposi’s sarcoma-associated herpesvirus is an oncogenic γ-herpesvirus that causes latent infection in humans. In cells, the viral genome adopts a highly organized chromatin structure, which is controlled by a wide variety of cellular and viral chromatin regulatory factors. In the past few years, interrogation of the chromatinized KSHV genome by whole genome-analyzing tools revealed that the complex chromatin landscape spanning the viral genome in infected cells has important regulatory roles during the viral life cycle. This review summarizes the most recent findings regarding the role of histone modifications, histone modifying enzymes, DNA methylation, microRNAs, non-coding RNAs and the nuclear organization of the KSHV epigenome in the regulation of latent and lytic viral gene expression programs as well as their connection to KSHV-associated pathogenesis.  相似文献   

14.
Infectious diseases such as the ongoing coronavirus disease 2019 (COVID-19) continue to have a huge impact on global health, and the host-virus interaction remains incompletely understood. To address the global threat, in-depth investigations in pathogenesis are essential for interventions in infectious diseases and vaccine development. Interestingly, aminoacyl-transfer RNA (tRNA) synthetases (aaRSs), an ancient enzyme family that was once considered to play housekeeping roles in protein synthesis, are involved in multiple viral infectious diseases. Many aaRSs in eukaryotes present as the components of a cytoplasmic depot system named the multi-synthetase complex (MSC). Upon viral infections, several components of the MSC are released and exert nonenzymatic activities. Host aaRSs can also be utilized to facilitate viral entry and replication. In addition to their intracellular roles, some aaRSs and aaRS-interacting multi-functional proteins (AIMPs) are secreted as active cytokines or function as “molecule communicators” on the cell surface. The interactions between aaRSs and viruses ultimately affect host innate immune responses or facilitate virus invasion. In this review, we summarized the latest advances of the interactions between aaRSs and RNA viruses, with a particular emphasis on the therapeutic potentials of aaRSs in viral infectious diseases.  相似文献   

15.
Type III interferons (lambda IFNs) are a quite new, small family of three closely related cytokines with interferon-like activity. Attention to IFN-λ is mainly focused on direct antiviral activity in which, as with IFN-α, viral genome replication is inhibited without the participation of immune system cells. The heterodimeric receptor for lambda interferons is exposed mainly on epithelial cells, which limits its possible action on other cells, thus reducing the likelihood of developing undesirable side effects compared to type I IFN. In this study, we examined the antiviral potential of exogenous human IFN-λ1 in cellular models of viral infection. To study the protective effects of IFN-λ1, three administration schemes were used: ‘preventive’ (pretreatment); ‘preventive/therapeutic’ (pre/post); and ‘therapeutic’ (post). Three IFN-λ1 concentrations (from 10 to 500 ng/mL) were used. We have shown that human IFN-λ1 restricts SARS-CoV-2 replication in Vero cells with all three treatment schemes. In addition, we have shown a decrease in the viral loads of CHIKV and IVA with the ‘preventive’ and ‘preventive/therapeutic’ regimes. No significant antiviral effect of IFN-λ1 against AdV was detected. Our study highlights the potential for using IFN-λ as a broad-spectrum therapeutic agent against respiratory RNA viruses.  相似文献   

16.
Prion diseases, including Creutzfeldt–Jakob disease, are mediated by transmissible proteinaceous pathogens. Pathological changes indicative of neuro-degeneration have been observed in the brains of affected patients. Simultaneously, microglial activation, along with the upregulation of pro-inflammatory cytokines, including IL-1 or TNF-α, have also been observed in brain tissue of these patients. Consequently, pro-inflammatory cytokines are thought to be involved in the pathogenesis of these diseases. Accelerated prion infections have been seen in interleukin-10 knockout mice, and type 1 interferons have been found to be protective against these diseases. Since interleukin-10 and type 1 interferons are key mediators of the antiviral THαβ immunological pathway, protective host immunity against prion diseases may be regulated via THαβ immunity. Currently no effective treatment strategies exist for prion disease; however, drugs that target the regulation of IL-10, IFN-alpha, or IFN-β, and consequently modulate the THαβ immunological pathway, may prove to be effective therapeutic options.  相似文献   

17.
The National Collaborating Centre for Indigenous Health (NCCIH) is unique among the National Collaborating Centres as the only centre focused on the health of a population. In this fifth article of the Canada Communicable Disease Report’s series on the National Collaborating Centres and their contribution to Canada’s public health response to the coronavirus disease 2019 (COVID-19) pandemic, we describe the work of the NCCIH. We begin with a brief overview of the NCCIH’s mandate and priority areas, describing how it works, who it serves and how it has remained flexible and responsive to evolving Indigenous public health needs. Key knowledge translation and exchange activities undertaken by the NCCIH to address COVID-19 misinformation and to support the timely use of Indigenous-informed evidence and knowledge in public health decision-making during the pandemic are also discussed, with a focus on acting on lessons learned moving forward.  相似文献   

18.
Using a mouse model, we previously demonstrated that subcutaneous infection with the JaTH160 strain of Japanese encephalitis virus (JEV) causes significantly higher virulence and stronger virus propagation in the brain compared with that of the JaOArS982 strain. We also showed that the JaTH160 strain, but not JaOArS982, expresses the NS1’ protein and that NS1’ enhances JEV production in avian cells and embryonated chicken eggs. In this study, we examined whether NS1’ expression affects virulence in mice infected with the JaOArS982 and JaTH160 strains using the corresponding recombinant viruses S982-IC and JaTH-IC. Expression of the NS1’ protein in S982-IC diminished the mortality in mice, whereas S982-IC viruses without NS1’ caused 40–60% mortality. However, the viral loads in the brains of these mice were not significantly different despite the dvariation in NS1’ expression. JaTH-IC viruses depleted of the NS1’ protein exhibited high mortality levels, similar to those of the virus expressing NS1’. Previous studies showed that the NS1’ protein plays a role in the enhanced virulence of the JEV SA14 strain in mice. However, our current data suggest that NS1’ protein expression in S982-IC reduces, rather than enhances, the mortality in mice. Thus, the effect of NS1’ on pathogenicity in vivo may vary among virus strains. Our data also suggest that the reduced mortality resulting from NS1’ expression in S982-IC is not simply due to viral replication in the brains. Further investigation is needed to uncover the mechanism by which NS1’ affects pathogenicity in JEV-infected animals.  相似文献   

19.
Herpesvirus-encoded microRNAs (miRNAs) have been discovered in infected cells; however, lack of a suitable animal model has hampered functional analyses of viral miRNAs in vivo. Marek’s disease virus (MDV) (Gallid alphaherpesvirus 2, GaHV-2) genome contains 14 miRNA precursors, which encode 26 mature miRNAs, grouped into three clusters. In this study, the role of MDV-encoded cluster 3 miRNAs, also known as mdv1-miR-M8-M10, in pathogenesis was evaluated in chickens, the natural host of MDV. Our results show that deletion of cluster 3 miRNAs did not affect virus replication and plaque size in cell culture, but increased early cytolytic replication of MDV in chickens. We also observed that deletion of cluster 3 miRNAs resulted in significantly higher virus reactivation from peripheral blood lymphocytes. In addition, pathogenesis studies showed that deletion of cluster 3 miRNAs resulted in more severe atrophy of lymphoid organs and reduced mean death time, but did not affect the incidence of MDV-associated visceral tumors. We confirmed these results by generating a cluster 3 miRNA revertant virus in which the parental MDV phenotype was restored. To the best of our knowledge, our study provides the first evidence that MDV cluster 3 miRNAs play an important role in modulating MDV pathogenesis.  相似文献   

20.
Kaposi’s sarcoma-associated herpesvirus (KSHV, also named Human herpesvirus 8 HHV-8) is the cause of Kaposi sarcoma (KS), the most common malignancy in HIV-infected individuals worldwide, primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). KSHV is a double-stranded DNA virus that encodes several homologues of cellular proteins. The structural similarity between viral and host proteins explains why some viral homologues function as their host counterparts, but sometimes at unusual anatomical sites and inappropriate times. In other cases, structural modification in the viral proteins can suppress or override the function of the host homologue, contributing to KSHV-related diseases. For example, viral IL-6 (vIL-6) is sufficiently different from human IL-6 to activate gp130 signaling independent of the α subunit. As a consequence, vIL-6 can activate many cell types that are unresponsive to cellular IL-6, contributing to MCD disease manifestations. Here, we discuss the molecular biology of KSHV homologues of cellular products as conduits of virus/host interaction with a focus on identifying new strategies for therapy of KS and other KSHV-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号