首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Neuronal activity in the amygdala (AM) was recorded from alert monkeys during performance of tasks that led to presentation of rewarding or aversive stimuli. The tasks had 3 phases: (1) discrimination (visual, auditory), (2) operant response (bar pressing), and (3) ingestion (reward) or avoidance (aversion). Neuronal activity was analyzed and compared during each of these phases. Of 585 AM neurons tested, 312 (53.3%) responded to at least one stimulus in one or more of 5 major groups: vision related, audition related, ingestion related, multimodal, and selective. Forty neurons (6.8%) in the anterior dorsolateral capsule of the basolateral nuclei responded exclusively to visual stimuli (vision related). Twenty-six neurons (4.4%) further posterior in the basolateral group responded only to auditory stimuli (audition related). During ingestion an additional 41 neurons (7.0%) increased their activity (ingestion related). These were in the corticomedial group and at the boundaries between the nuclei of the basolateral group. Of these, 27 responded only in the ingestion phase, 11 during ingestion and at the sight of food, and 3 during ingestion and to certain sounds. Throughout the AM other neurons (n = 117, 20.0%) responded to visual, auditory, and somesthetic stimuli and, when tested, to involuntary ingestion of liquid (multimodal). Of these, 40 responded transiently (phasic; 36 excited, 4 inhibited). The remaining 77 maintained their altered activity into the subsequent phases of the task (tonic; 69 excited, 8 inhibited). In each of these 4 categories, most cells were activated primarily by novel or unfamiliar stimuli, and their responses habituated during repeated stimulation. A small number of cells in the basolateral and the basomedial nuclei (n = 14, 2.4%) were highly selective in that they responded specifically to one biologically significant object or sound more than to any other stimuli (selective). Some of these neurons responded to both sight and ingestion of a specific food. In summary, most AM neurons responded vigorously to novel stimuli, and some of the neurons had multimodal responsiveness. These results suggest the AM is related to processing of new environmental stimuli and to those cross-modal association.  相似文献   

2.
Single neuron activity was recorded from monkey lateral hypothalamus to investigate neuronal events correlated with operant bar press feeding behavior. The behavioral paradigm was divided into three phase: visual (discrimination), bar press (procurement), and ingestion (consummatory). Of 669 neurons tested, 158 (24%) responded in one or more phases. During the visual phase, 106 neurons (16%) responded. Of 80 neurons that responded in the visual phase and were tested systematically, 33 (41%, 33/80) responded selectively to the sight of food or nonfood objects associated with a juice reward, but not to the sight of nonfood or objects associated with aversive saline. Neuronal activity related to discrimination was modulated by satiation and learning (i.e., acquisition and extinction). During the bar press phase, 51 neurons (7.6%) responded. These responded tonically during the early or late stage of the bar press period, but did not depend on individual bar pressing motions. During ingestion, 90 neurons (13%) responded. The ingestion response was modulated by palatability of food and satiation. Data suggest that the LHA is deeply involved in operant feeding behavior; discrimination of food, drive to get food, and perception of reward, all of which are affected by learning and internal states such as hunger and satiety.  相似文献   

3.
Extracellular single-unit recordings were made from neurons in the lateral hypothalamus (LH) or zona incerta (ZI) of conscious sheep. A small population of neurons (12/83) were found which responded with increased firing rate when the animal looked at food but did not respond when the sheep looked at water. The effects of rapidly inducing intense thirst by the intracerebroventricular (i.c.v.) injection of hypertonic (0.85 M) saline or 200 ng of angiotensin II, or a mixture of the two dipsogenic stimuli, on the response of neurons initially responding only to the sight of food were investigated. Following i.c.v. injection of the dipsogenic stimuli the neurons began to respond strongly to the sight of water. The results demonstrated that changing the animal's motivational state alters the response of some neurons in the LH and ZI and suggests that the neuronal response is influenced by the animal's dominant need at the time of testing.  相似文献   

4.
The activity of 190 neurons was recorded from the dorsolateral prefrontal cortex of monkeys during an operant task that consisted of 3 phases: visual discrimination of food and non-food, bar pressing to gain access to the food and ingestion. In area 8, a fairly large proportion of the 49 recorded neurons responded in both the visual discrimination (37%) and motor initiation (35%) phases. Some functional heterogeneity seems evident within area 8 since visual discrimination responses were rostral, visuokinesis was central and motor initiation was in the caudal bank of the arcuate sulcus. Neurons in area 9 responded primarily (37%) during the bar pressing phase and less during the visual discrimination phase. Neurons in area 10 responded variously during most phases of the task--food discrimination, bar pressing, and ingestion. Neurons in the periprincipal sulcal area usually responded in the visual discrimination phase, but some which did not respond to food presented in front of the subject responded to meaningful visual or auditory cues that were related to food reward. The data suggest that neurons in the dorsolateral prefrontal cortex have multiple functions related to all phases of complex, learned feeding behavior. Functional roles of the prefrontal cortex and the lateral hypothalamus in development of feeding behavior are discussed.  相似文献   

5.
In chronically prepared monkeys, 337 neurons were recorded from the anterolateral amygdala during an operant task that required visual discrimination. Twelve percent (39/337) of the neurons responded to one or more of food or non-food visual stimuli. A subset of these responsive neurons was selectively sensitive to the sight of non-food objects with aversive associations. Simultaneous presentation of a food stimulus with the aversive object inhibited the response of these neurons. These response characteristics could not be explained by simple sensory processing of the visual stimuli. It is suggested that the amygdala plays an important role in the elaboration of motivational behavior by using the complex or associative properties of visual stimuli.  相似文献   

6.
Neuronal activity of 58 dopaminergic (DA) and 200 non-dopaminergic (non-DA) neurons in the ventral tegmental area (VTA) of female monkeys was recorded, and correlation to bar press feeding, sensory stimulation and change in motivation was investigated. DA neurons, judged by duration of action potentials (more than 2.5 ms) and responsiveness to apomorphine, had lower firing rates (0-8 impulses/s); non-DA neurons had intermediate firing rates (10-30 impulses/s). Two-thirds of the DA and non-DA neurons responded in bar press feeding; the former with mostly tonic and the latter with phasic responses. Fifteen neurons (5%) responded phasically to arm extension toward the bar, 124 (excitation 88, inhibition 36, 45%) during bar press (BP), and 91 (excitation 32, inhibition 59, 33%) during ingestion reward (RW). Most BP responses (84/124, 68%) continued tonically throughout the BP period with no correlation to each BP movement. In 14 neurons (14/124, 11%), firing showed a specific variation: transient early BP responses shifted to tonic steady ones in palatable food trials, and the shifts correlated well with BP speed. In 20 other neurons, firing increased during BP hip lifting, and at specific vocalization to ask for food; it decreased during food ingestion, drinking and inguino-crural stimulation. Apomorphine administration decreased firing for the first 5-15 min, then increased it with frequent lip smacking, nausea, involuntary movement and vocalization. Thus VTA neurons showed mostly steady tonic responses but some specific phasic responses. They responded not only to motor events but also in close relation to changes of motivational aspects. Neuronal responses were excitation during procurement of reward and inhibition during or after perception of reward. This modulation in firing, might be important in the initiation and execution of movement and/or motivated behavior.  相似文献   

7.
Activity was recorded from 358 neurons in the globus pallidus (GP) of monkeys (Macaca fuscata) during an operant feeding task consisting of 3 stages: (1) food or non-food presentation (1st stage); (2) bar pressing (2nd stage); and (3) food acquisition and ingestion (3rd stage). There were two kinds of neurons, one with high and the other with very low (almost silent), spontaneous firing rates. Two hundred and four neurons (57%) responded in one or more of the feeding stages. Of the 21 neurons which responded in the 1st stage, two responded selectively to food presentation, and 19 responded to both food and non-food visual presentation. One hundred and seventy-four neurons (49%) and 107 neurons (30%) responded in the 2nd and 3rd stages, respectively, and 106 (30%) of these were directly related to specific feeding motor acts such as arm extension, flexion, bar pressing, grasping, chewing etc. Both high and low firing neurons responded to motor acts with sharp or gradual onset. More than half of those that responded to arm extension showed laterality (contra or ipsi)- and function (extension or flexion)-dependent responses. The incidence of the motor related neurons was higher in the caudodorsal part of the GP. On the other hand, about one third, especially in the rostroventral part of the GP, showed dissociating responses in that they responded during bar pressing for food or during ingestion in an operant task, but not during bar pressing for non-food or during forcible ingestion. The magnitude of firing changes during arm extension and bar pressing depended on the nature of the food. Moreover, in trials using new food or false (model) food, firing changes during bar press appeared or disappeared within a few trials with no correlation to bar press movement. These data suggest heterogeneous functions within the GP; the caudodorsal part is strictly concerned with motor execution and preparation, while the rostroventral part is not related to motor function directly, but may rather be important in coupling internal, motivational information to the motor system.  相似文献   

8.
R Tamura  T Ono  M Fukuda  H Nishijo 《Hippocampus》1992,2(3):287-306
The purpose of this study was to investigate, during the performance of an object discrimination task, responses of neurons in the monkey hippocampal formation to the sight of several objects that have biological meaning, and compare these responses with those of amygdalar neurons studied previously using the same task. Neuronal activity in the hippocampal formation of conscious monkeys was recorded during performance of a task that led to presentation of familiar rewarding, familiar aversive, or unfamiliar objects. Of 864 neurons recorded in the hippocampal formation and adjacent cortices, 160 (18.5%) responded to the sight of a certain object(s). Responses to the sight of different kinds of objects were analyzed in detail. Nondifferential neurons (n = 73) responded to different objects with no significant difference in response magnitudes, and differential neurons (n = 87) responded to different objects with different response magnitudes. Of the differential neurons, 23 responded more strongly to rewarding objects than to other objects (rewarding-object-dominant neurons), but the magnitude of responses to objects did not necessarily correlates with the order of preferences to the objects as determined from observation of animal behavior. Aversive-object-dominant neurons (n = 13) responded more to aversive objects than to other objects. Unfamiliar-object-dominant neurons (n = 7) responded more to unfamiliar objects than to familiar objects. Selective neurons (n = 10) responded selectively to only one object or one category of objects. Fourteen of the rewarding- or averse-object-dominant neurons were tested in extinction or reversal trials. In 12 of 14 neurons, responses to a rewarding or aversive object did not change, or slightly weakened, in extinction or reversal trials. The results suggest the following. (1) Responses of rewarding- or aversive-object-dominant neurons may be involved in object-reward or object-aversion association. However, responses of many of these neurons might reflect past inputs to reinforcement rather than extant emotional processing. (2) Responses of unfamiliar-object-dominant neurons may be involved in recognition of objects based on their familiar or unfamiliar aspects. These results are further discussed and compared with responsiveness of amygdalar neurons.  相似文献   

9.
It has been shown previously that some neurons in the lateral hypothalamus and substantia innominata respond to the sight of food, others to the taste of food, and others to the sight or taste of food, in the hungry monkey. It is shown here that feeding to satiety decreases the responses of hypothalamic neurons to the sight and/or taste of a food on which the monkey has been satiated, but leaves the responses of the same neurons to other foods on which the monkey has not been satiated relatively unchanged. This suggests that the responses of these neurons in the ventral forebrain are related to sensory-specific satiety, an important phenomenon which regulates food intake. In sensory-specific satiety, the pleasantness of the sight or taste of a food becomes less after it is eaten to satiety, whereas the pleasantness of the sight or taste of other foods which have not been eaten is much less changed; correspondingly, food intake is greater if foods which have not already been eaten to satiety are offered.  相似文献   

10.
Mice were generated expressing green fluorescent protein (GFP) under the control of the gonadotropin-releasing hormone (GnRH) promoter. Green fluorescence was observed in, and restricted to, GnRH-immunopositive neuronal somata in the olfactory bulb, ganglion terminale, septal nuclei, diagonal band of Broca (DBB), preoptic area (POA), and caudal hypothalamus, as well as GnRH neuronal dendrites and axons, including axon terminals in the median eminence and organum vasculosum of the lamina terminalis (OVLT). Whole-cell recordings from GFP-expressing GnRH neurons in the OVLT-POA-DBB region revealed a firing pattern among GFP-expressing GnRH neurons distinct from that of nonfluorescent neurons. Nucleated patches of GFP-expressing GnRH neurons exhibited pronounced responses to fast application of GABA and smaller responses to L-glutamate and AMPA. One-fifth of the nucleated patches responded to NMDA. The GABA-A, AMPA, and NMDA receptor channels on GnRH neurons mediating these responses may play a role in the modulation of GnRH secretory oscillations.  相似文献   

11.
Single neuron activity was recorded from monkey lateral hypothalamic area (LHA) to relate neuronal events to food discrimination and initiation of procurement movement in operant bar press feeding behavior. Of 429 neurons tested, 68 (16%) responded during visual phase. Of these, 30 (7%) responded selectively to the sight of food or non-food associated with a juice reward, but not to the sight of meaningless non-food or food associated with aversive saline. Neuronal activity related to discrimination was readily influenced by extinction, reversal or satiation. The strength of visual responses was correlated with latency of bar press initiation and speed of bar pressing, but was not related directly to bar press movement. These suggest that the LHA is deeply involved in discrimination of reinforcement or non-reinforcement, and might be associated with higher functions to regulate internal states such as physiological need to get food during operant feeding behavior.  相似文献   

12.
Electroacupuncture (EA) effects on activity of arcuate neurons of the hypothalamus (ARH) and on magnitude of the digastric electromyogram (dEMG) in the jaw opening reflex were investigated, in both p-chlorophenylalanine pretreated and normal Wistar rats. EA stimulation (300-500 microA, 5 msec pulses, for 15 min) was delivered unilaterally to a meridian Ho-Ku point of anesthetized rats at 3, 45 and 100 Hz. In control animals, EA stimulation at 3, 45 or 100 Hz induced long-lasting suppression of the magnitude of the dEMG activity and changed the spontaneous firing rate of most of the ARH neurons: the rate either increased (type I) or decreased (type II). After low-frequency stimulation, there were significantly more type I neurons than type II; after high-frequency stimulation, there were significantly more type II neurons than type I. In serotonin-depleted rats, however, high-frequency stimulation suppressed dEMG activity only slightly and induced a smaller proportion of type II neurons.  相似文献   

13.
The subthalamic nucleus (STN) has been argued to be an important component of reward‐sensitive basal ganglia circuitry. This view is especially supported by the behavioral changes observed after STN inactivation, which could reflect impairments in the motivational control of action. However, it is still unclear how the STN integrates reward information and to what extent such integration correlates with behavior. In this study, the response properties of STN neurons in monkeys performing reaching movements with a cue predicting the identity of an upcoming liquid reward (juice or water) were investigated. Although the timing of movements reliably indicated that monkeys had greater motivation for juice than water, rarely did task‐related changes in neuronal activity depend on the nature of the expected reward. Conversely, when presented with a choice of selecting a response that leads to juice or water delivery, animals showed a clear preference for juice and more than half of the neurons were differentially modulated dependent on the reward obtained, mostly after the monkeys's overt choice of action. Under such circumstances, an increase in activity specifically followed the action outcomes across the population of neurons when monkeys failed to choose the juice reward. These results indicate that STN neurons encode whether or not a preferred reward had been received when a choice between response alternatives is required. This differential neuronal activity might reflect the participation of the STN in evaluating the reward value of chosen actions, thus highlighting its contribution to decision‐making processes.  相似文献   

14.
Neuronal activity related to brain-stimulation reward and to feeding was analyzed in rhesus monkeys and squirrel monkeys as follows. First, self-stimulation of the lateral hypothalamus, orbitofrontal cortex, amygdala and nucleus accumbens was found. Second, a population of single neurones in the lateral hypothalamus was found to be trans-synaptically activated from one or several self-stimulation sites. It was also found that populations of neurones in the orbitofrontal cortex and amygdala were activated from at least some of the self-stimulation sites. Thus, in the monkey, there is evidence for an interconnected set of self-stimulation sites, stimulation in any one of which may activate neurones in the other regions. These sites include the lateral hypothalamus, amygdala, and orbitofrontal cortex. Third, in one sample of 764 neurones in the lateral hypothalamis and substantia innominata which were activated from brain-stimulation reward sites, 13.6% were also activated during feeding, by the sight and/or taste of food. The responses of the neurones with activity associated with taste occurred only while some substances (e.g. sweet substances such as glucose) were in the mouth, depended on the concentration of the substances being tasted, and were independent of mouth movements made by the monkeys. Fourth, the responses of these neutrones occurre to food when the monkeys were hungry, but not when they were satiated. Fifth, self-stimulation occurred in the region of these neurones in the lateral hypothalamus and substantia innominata, and was attenuated by satiety. These results suggest that self-stimulation of some brain sites occurs because of activation of neurones in the lateral hypothalamus and substantia innominata activated by the sight and/or taste of food in the hungry animal, and that these neurones are involved in responses to food reward.  相似文献   

15.
Recent lesion and non-invasive studies identify the medial temporal lobe, including the amygdala, not only with emotion but also with working memory in relation to the prefrontal cortex. In the present study, amygdalar neuronal activity was recorded from monkeys during performance of discrimination tasks that led to presentation of emotion-related (rewarding or aversive) stimuli. The task had three phases: (1) discrimination (visual, auditory), (2) operant response (bar pressing) and (3) ingestion (reward) or avoidance (aversion). These neurons were further analyzed by a short-term memory task, delayed pair comparison (DPC) using colored lamps. Of 585 amygdalar neurons, 107 responded primarily to single sensory stimulation (40 vision related, 26 audition related, 41 ingestion related), 117 to multimodal stimulation (multimodal) and 14 responded selectively to only one item (selective). Of 417 neurons tested by the DPC, 122 responded in one or more phases. Of these 122 neurons, 10.7% responded in the delay period. These delay-responsive neurons also responded to various objects with positive and negative affective significance. These results suggest that amygdalar neurons are not specifically related to working memory, as are those in the inferotemporal and prefrontal cortices, but are related to more general non-specific functions or processes such as arousal or attention during the cognitive tasks. A functional role of the amygdala in working memory is discussed in terms of recent non-invasive studies suggesting a functional coupling between the amygdala and prefrontal cortex.  相似文献   

16.
Activity was recorded from 351 neurons in the head of the caudate nucleus (CD) of monkeys during an operant feeding task consisting of: (1) food or non-food presentation (P); (2) bar pressing (B); and (3) food acquisition and ingestion (I). Of 45 neurons which responded in the P phase and were tested systematically, 27 responded to visual presentation of both food and non-food (non-specific response), and 18 responded to food presentation only (food specific response). The magnitude of food specific responses depended on the nature of the food and was inversely related to the latency of the onset of bar pressing. Thirty-five neurons responded in the B phase: 28 changed firing rate continuously with no correlation to individual bar presses, while the activity of the other 7 was related to each bar press. In the I phase, 62 neurons responded to separate events: the activity of more than half (39 neurons) was often related to chewing movement or gustatory stimuli, and that of one third (23 neurons) changed during individual arm movements. The neurons which responded in the P phase were found to be distributed widely in the head of the CD except for its central zone, while the neurons which responded in the I phase were in the medial part. Cooling of the dorsolateral prefrontal cortex abolished the continuous responses seen in the B phase, but did not abolish the feeding behavior. The data suggest that in the head of the CD there are several groups of neurons that have different functions and different distributions: food specific, sensory integration responses, non-motor responses driven by the frontal cortex, motor responses coupled to various movements, and sensory responses which apparently originate in the intra-oral cavity. These functions may arise sequentially, or in correspondence with integration of the sensory and motor systems to produce coordinated behavior.  相似文献   

17.
Regional differences in the effects of electrical (ES) and chemical stimulation on execution of a bar-press feeding task, and in neuronal activity related to feeding, glucose sensitivity, and odor responsiveness were examined in the lateral hypothalamic area (LHA) of monkeys. In satiated animals, ES of the far lateral and ventral LHA induced bar-press feeding. In hungry animals, ES of the dorsal LHA suppressed the feeding task only during the stimulation period, but prolonged feeding suppression that occurred after ES of the ventromedial LHA. Microinjection of Na-glutamate into LHA sites where ES was effective in suppressing feeding had no effect, but it was effective in the medial hypothalamus. Glucose-sensitive (GS) neurons decreased in activity during bar pressing and/or during the ingestion period. Glucose-insensitive (GIS) neurons showed a cue-related excitation more often than GS neurons. Odor-responding GS and GIS cells were localized in ventromedial and lateral LHA sites, respectively. The present study suggests the regional heterogeneity of the LHA in feeding regulation, depending on both hunger and satiety states.  相似文献   

18.
Single-unit recordings were made from neurones in the zona incerta (ZI) of conscious sheep in response to the sight/visual approach or ingestion of various foods, salts and water. Animals were given parotid fistulae so that effects of sodium appetite, induced by not replacing the sodium lost in the saliva, could be assessed. When sodium depletion was prevented by giving the animals 1% sodium bicarbonate in their drinking water, the majority of cells (45 out of 49) responded most strongly to the sight or visual approach of food compared to water or salt. Four cells responded best to the sight of water, but none to the sight of salt and salt solutions. When a sodium appetite was stimulated, by removing the 1% sodium bicarbonate replacement for 4-6 days, there was a significant change in response profiles of ZI cells. The majority of cells responded most strongly to the sight of salts or salt solutions (35 out of 49) and significantly fewer cells responded most strongly to food (8 out of 49). The number of cells responding primarily to water was not affected (6 out of 49). For 3 cells responding to salts it was shown that, after repeated ingestion of salt over several hours, food became a more potent stimulus. A similar decreased response to foods during sodium depletion, and an increased one to salts, was seen in ZI cells which responded to the ingestion of both solids and liquids. These results show that changing an animal's motivational state produces significant changes in the responses of cells in the ZI responding to the sight or visual approach of substances.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The neuronal distribution of argininosuccinate synthetase (ASS) was mapped in the rat brain. Argininosuccinate synthetase is one of the enzymes of the arginine metabolic pathway and catabolizes the synthesis of argininosuccinate from aspartate and citrulline. Since arginine is the precursor of nitric oxide, argininosuccinate synthetase may act as part of the nitric oxide producing pathway. Argininosuccinate is also suggested to have a messenger function in the nervous system. Therefore, the localization of ASS is of great interest. Polyclonal antisera against purified rat liver argininosuccinate synthetase revealed a characteristic distribution pattern of argininosuccinate synthetase-like immunoreactivity: (1) many neurons with strong argininosuccinate synthetase-like immunoreactivity were observed in the septal area, basal forebrain, anterior medial and premammillary nuclei of the hypothalamus, anterior and midline thalamic nuclei, dorsal endopiriform nucleus of the amygdala, basal nucleus of Meynert, subthalamic nucleus, laterodorsal tegmental nucleus, raphe nuclei, nucleus ambiguus, and the area postrema, (2) neuropile staining was dense in the septal areas, hypothalamus, area postrema, nucleus of the solitary tract, and the laminae I and II of the caudal subnucleus of the spinal trigeminal nucleus and the spinal dorsal horn, (3) relay nuclei of the specific sensory systems such as the dorsal lateral geniculate nucleus and the ventral nuclei of the thalamus were devoid of argininosuccinate synthetase-like immunoreactivity, (4) no staining was seen in the large white matter structures such as the internal capsule, corpus callosum, and the anterior commissure, and (5) most of the neurons stained were small or medium in size and appeared to be interneurons. The results suggest that argininosuccinate synthetase affects the widely distributed, neuromodulatory system in the brain.  相似文献   

20.
Recordings were made from single neurons in the lateral hypothalamus and substantia innominata of the rhesus and squirrel monkey during feeding. A population of these neurons which altered their firing rates while the monkeys looked at food but not at nonfood objects was investigated. Because the responses of these neurons must have been affected by the previous experience of the animals, the activity of the neurons was measured during tasks in which the monkeys learned whether or not objects which they saw were associated with food. During visual discrimination tests these neurons came to respond when the monkey saw one stimulus associated with food (e.g., a black syringe from which the animal was fed glucose), but not when the monkey saw a different stimulus which was not associated with food (e.g., a white syringe from which the animal was offered saline). During extinction tests these units ceased to respond when the monkey saw a visual stimulus such as a peanut if the peanut was repeatedly not given to the monkey to eat. The learning or extinction behavior approximately paralleled the response of the neurons.The findings that the neurons in the lateral hypothalamus and substantia innominata respond when a monkey is shown food only if he is hungry, and as shown here, if as a result of learning the visual stimulus signifies food, provide information on a part of the brain which may be involved in feeding. The findings are consistent with other data which suggest that the responses of these neurons are involved in the autonomic and/or behavioral reactions of the animal to the sight of food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号