首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Acetylcholine and gamma -aminobutyric acid (GABA) are putative neurotransmitters in the adult vertebrate retina. In this study, cells that coexpress choline acetyltransferase (ChAT) and GABA or glutamic acid decarboxylase (GAD) were investigated in turtle retinas from stage 14 (S14) to adulthood by using a double-labeling immunofluorescence technique. ChAT immunoreactivity was observed at S15 and included not only the presumptive starburst cholinergic amacrine cells but also a population in the ganglion cell layer (GCL) that expressed ChAT transiently during the embryonic stages (see the accompanying paper: Nguyen et al. [2000] J. Comp. Neurol. 420:512-526).  相似文献   

2.
Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) are the decisive enzymatic activities regulating the availability of acetylcholine (ACh) at a given synaptic or nonsynaptic locus. The only cholinergic cells of the mature inner retina are the so‐called starburst amacrine cells (SACs). A type‐I SAC, found at the outer border of the inner plexiform layer (IPL), forms a synaptic subband “a” within the IPL, while a type‐II SAC located at the inner IPL border projects into subband “d.” Applying immunohistochemistry for ChAT and AChE on sections of the chicken retina, we here have revealed intricate relationships of how retinal networks became dominated by AChE or by ChAT reactivities. AChE+ cells were first detectable in an embryonic day (E)4 retina, while ChAT appeared 1 day later in the very same cells; at this stage all are Brn3a+, a marker for ganglion cells (GCs). On either side of a faint AChE+ band, indicating the future IPL, pairs of ChAT+/AChE?/Brn3a? cells appeared between E7/8. Type‐I cells had increased ChAT and lost AChE; type‐II cells presented less ChAT, but some AChE on their surfaces. Direct neighbors of SACs tended to express much AChE. Along with maturation, subband “a” presented more ChAT but less AChE; in subband “d” this pattern was reversed. In conclusion, the two retinal cholinergic networks segregate out from one cell pool, become locally opposed to each other, and become dominated by either synthesis or degradation of ACh. These “cholinergic developmental divergences” may also have significant physiologic consequences. J. Comp. Neurol., 520:3181–3193, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
In the present study, we have examined the development of cholinergic amacrine cells in the retina of the Brazilian opossum, Monodelphis domestica. An antibody directed against choline acetyltransferase (ChAT) revealed that ChAT-like immunoreactivity (ChAT-IR) was first observed at 15 days postnatal (15PN). By 25PN, ChAT-IR identified two matching populations of amacrine cells in the inner nuclear and ganglion cell layer. Bromodeoxyuridine birth-dating analysis coupled with immunolabeling with the anti-ChAT antibody revealed that the cholinergic amacrine cells are born postnatally, between 2PN and 15PN. In addition, we have examined the differentiation of the cholinergic amacrine cells by using an antibody directed against a presynaptic terminal-associated protein, synaptosomal-associated protein of 25 kDa (SNAP-25). Double-labeling analysis revealed that relatively high levels of SNAP-25-IR were selectively present in cholinergic amacrine cells prior to eye opening. However, in the mature retina, high levels of SNAP-25-IR were no longer observed in the ChAT-IR amacrine cells. These results reveal a distinct period in development, prior to eye opening, when high levels of SNAP-25-IR are selectively expressed in cholinergic amacrine cells. The specificity and time course of the high levels of SNAP-25 in cholinergic amacrine cells may be critical in mediating the transient properties of these cells during visual system development. J. Comp. Neurol. 394:374–385, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Macaque retinae were immunostained with monoclonal antibodies directed against the protein synaptotagmin‐2 (Syt2). Syt2 was localized in a population of small‐field amacrine cells, whose cell bodies formed a regular mosaic within the inner nuclear layer, indicating they represent a single amacrine cell type. The labeled amacrine cells had a bistratified appearance with a dense dendritic plexus in the OFF‐layer and only a few lobular processes extending into the ON‐layer of the inner plexiform layer, similar to A8 amacrine cells described in cat and human retina. Syt2‐labeled cells were immunoreactive for glycine but lacked immunoreactivity for γ‐aminobutyric acid (GABA), suggesting they use glycine as their neurotransmitter. The density of these cells increases from ~200/mm2 in peripheral retina to ~1,400/mm2 in central retina. Their bipolar cell input was studied by immunolabeling experiments using various bipolar cell markers combined with CtBP2, a marker of presynaptic ribbons. Our data show that Syt2‐labeled amacrine cells receive input from both OFF and ON cone bipolar cells, as well as from rod bipolar cells. The OFF input is dominated by the diffuse bipolar cell DB1 (44%) and the OFF midget bipolar cell (38%). Here we describe a population of bistratified small‐field amacrine cells closely resembling A8 amacrine cells and their cone‐dominated bipolar cell input. J. Comp. Neurol. 521:709–724, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Localization of glycine-containing neurons in the Macaca monkey retina   总被引:1,自引:0,他引:1  
Autoradiography following 3H-glycine (Gly) uptake and immunocytochemistry with a Gly-specific antiserum were used to identify neurons in Macaca monkey retina that contain a high level of this neurotransmitter. High-affinity uptake of Gly was shown to be sodium dependent whereas release of both endogenous and accumulated Gly was calcium dependent. Neurons labeling for Gly included 40-46% of the amacrine cells and nearly 40% of the bipolars. Synaptic labeling was seen throughout the inner plexiform layer (IPL) but with a preferential distribution in the inner half. Bands of labeled puncta occurred in S2, S4, and S5. Both light and postembedding electron microscopic (EM) immunocytochemistry identified different types of amacrine and bipolar cell bodies and their synaptic terminals. The most heavily labeled Gly+ cell bodies typically were amacrine cells having a single, thick, basal dendrite extending deep into the IPL and, at the EM level, electron-dense cytoplasm and prominent nuclear infoldings. This cell type may be homologous with the Gly2 cell in human retina (Marc and Liu: J. Comp. Neurol. 232:241-260, '85) and the AII/Gly2 of cat retina (Famiglietti and Kolb: Brain Res. 84:293-300, '75; Pourcho and Goebel: J. Comp. Neurol. 233:473-480, '85a). Gly+ amacrines synapse most frequently onto Gly- amacrines and both Gly- and Gly+ bipolars. Gly+ bipolar cells appeared to be cone bipolars because their labeled dendrites could be traced only to cone pedicles. The pattern of these labeled dendritic trees indicated that both diffuse and midget types of biopolars were Gly+. The EM distribution of labeled synapses showed Gly+ amacrine synapses throughout the IPL, but these composed only 11-23% of the amacrine population. Most of the Gly+ bipolar terminals were in the inner IPL, where 70% of all bipolar terminals were labeled. These findings are consistent with previous data from cats and humans and suggest that both amacrine and bipolar cells contribute to glycine-mediated neurotransmission in the monkey retina.  相似文献   

6.
The presence of a large population of some 730,000 displaced amacrines is confirmed in the ganglion cell layer of the cat retina. These cells correspond to the microneurons of Hughes and Wieniawa-Narkiewicz (Nature 284:468-470, '80) and the bar-cells of Hughes (J. Comp. Neurol. 197:303-339, '81): a population of profiles of which the majority had previously been presumed to be glia (Stone: J. Comp. Neurol. 12:337-352, '65; J. Comp. Neurol 180:753-772, '78; Hughes: J. Comp. Neurol. 163: 107-128, '75). A sample of such nonganglion cells was identified by Nissl criteria in an area of retina subsequently subjected to serial sectioning and electron microscopy. Such cells form synapses with other processes in the inner plexiform layer. Members of each morphological subclass were found to bear synapses. In some instances, synapses occurred both onto and from the soma and processes of a cell, which is strong evidence for their being displaced amacrines, or preferably, "amacrines of the ganglion cell layer." In confirmation of their amacrine nature, it was established that the microneurons and bar-cells survive optic nerve section for up to 2.5 years. Ganglion cells underwent retrograde degeneration and completely disappeared in a much shorter time. Injection of kainic acid, a neurotoxin, into an eye whose optic nerve had been cut over 2 years previously resulted in the pyknosis of all morphologically classified microneurons and bar-cells without influence on conventional glial cells. These results further support the conclusion that microneurons and bar-cells are neurons and that they collectively form the displaced amacrine population of the cat ganglion cell layer. The topographic distribution of the displaced amacrines resembles that of the ganglion cells in form; their density peaks at 4,500-5,000 cells mm-2 in the area centralis and falls to less than 1,000 mm-2 in peripheral retina. A ganglion cell distribution map based on the latest morphological criteria derived from this study confirms that there are 170,000 ganglion cells in the cat retina. Displaced amacrines form some 80% of the total neuron population of the cat ganglion cell layer. The large population magnitude of these confirmed displaced amacrines implies their nonectopic origin and now provides a fresh insight into the ontogeny of the cat retinal ganglion cell layer.  相似文献   

7.
We recently identified large glucagon-expressing neurons that densely ramify neurites in the peripheral edge of the retina and regulate the proliferation of progenitors in the circumferential marginal zone (CMZ) of the postnatal chicken eye (Fischer et al. [2005] J Neurosci 25:10157-10166). However, nothing is known about the transmitters and proteins that are expressed by the glucagon-expressing neurons in the avian retina. We used antibodies to cell-distinguishing markers to better characterize the different types of glucagon-expressing neurons. We found that the large glucagon-expressing neurons were immunoreactive for substance P, neurofilament, Pax6, AP2alpha, HuD, calretinin, trkB, and trkC. Colocalization of glucagon and substance P in the large glucagon-expressing neurons indicates that these cells are the "bullwhip cells" that have been briefly described by Ehrlich et al. ([1987] J Comp Neurol 266:220-233). Similar to the bullwhip cells, the conventional glucagon-expressing amacrine cells were immunoreactive for calretinin, HuD, Pax6, and AP2alpha. Unlike bullwhip cells, the conventional glucagon-expressing amacrine cells were immunoreactive for GABA. While glucagon-immunoreactive amacrine cells were negative for substance P in central regions of the retina, a subset of this type of amacrine cell was immunoreactive for substance P in far peripheral regions of the retina. An additional type of glucagon/substance P-expressing neuron, resembling the bullwhip cells, was found in far peripheral and dorsal regions of the retina. Based on morphology, distribution within the retina, and histological markers, we conclude that there may be four different types of glucagon-expressing neurons in the avian retina.  相似文献   

8.
The synaptic connections of two types of cone bipolar cells in the rabbit retina were studied with the electron microscope after labeling in vitro with 4′,6-diamidino-2-phenylindole (DAPI), intracellular injection with Lucifer Yellow, and photooxidation (Mills and Massey [1992] J. Comp. Neurol. 321:133). Both types of bipolars belong to the flat variety, because they make basal junctions with a group of four to ten neighboring cone pedicles. One cell type has an axonal arborization that occupies strata 1 through 3 of the inner plexiform layer (IPL). At ribbon synaptic junctions, it is presynaptic to ganglion cell dendrites and to reciprocal dendrites belonging to narrow-field bistratified (AII) amacrine cells. In addition, it contacts and is contacted by other amacrine cell processes of unknown origin. The other cell type has an axonal arborization entirely confined to stratum 2 of the IPL; it is pre- or postsynaptic to a pleomorphic population of amacrine cell processes, and, in particular, it receives input from the lobular appendages of AII. Thus, these two bipolar types probably belong to the off-variety because they make basal junctions with cone photoreceptors and send their axon to sublamina α of the IPL, which is occupied by the dendrites of off-ganglion cells. They are also part of the rod pathway because they receive input from AII amacrine cells. © 1996 Wiley-Liss, Inc.  相似文献   

9.
In all mammalian retinae studied to date, starburst cholinergic amacrine cells are a consistently occurring cell type. Here, we show that the cone-dominated retina of the tree shrew also has starburst cells with the characteristic radially symmetric branching pattern known from other species. Dendritic field sizes increase from 150 μm in the central retina to 300 μm in the retinal periphery. The characteristic morphology is established early during postnatal development. Labelling the starburst cholinergic cells with an antibody against choline acetyltransferase (ChAT) reveals two dendritic strata in the inner plexiform layer and two corresponding soma populations in the inner nuclear layer (orthotopic) and ganglion cell layer (displaced). These features are present in the adult and in early postnatal stages. In the adult, the density of the orthotopic population as well as the displaced population peaks in the central retina at about 2,200 cells/mm2 and has a peripheral minimum of 400 cells/mm2. These properties are qualitatively similar to those of starburst cells in rod-dominated retinae. In contrast to findings in other mammals, we did not see γ-aminobutyric acid (GABA) or glutamic acid decarboxylase 65 kDa (GAD65) immunoreactivity in tree shrew starburst cells. These cells also appear to lack synaptophysin, a ubiquitous synaptic vesicle protein detected in the starburst cells of some other mammals. However, synaptoporin, a homologous synaptic vesicle protein, appears to be present in tree shrew starburst cells. J. Comp. Neurol. 389:161–176, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Each point on the retina is sampled by about 15 types of ganglion cell, each of which is an element in a circuit also containing specific types of bipolar cell and amacrine cell. Only a few of these circuits are well characterized. We found that intracellular injection of Neurobiotin into a specific ganglion cell type targeted by fluorescent markers also stained an asymmetrically branching ganglion cell. It was also tracer‐coupled to an unusual type of amacrine cell whose dendrites were strongly asymmetric, coursing in a narrow bundle from the soma in the dorsal direction only. The dendritic field of the ganglion cell stratifies initially in sublamina b (the ON layers), but with few specializations and branches, and then more extensively in sublamina a (the OFF layers) at the level of the processes of the coupled amacrine cell. Intersections of the ganglion and amacrine cell processes contain puncta immunopositive for Cx36. Additionally, we found that the dopaminergic amacrine cell makes contact with both the ganglion cell and the amacrine cell, and that a bipolar cell immunopositive for calbindin synapses onto the sublamina b processes of the ganglion cell. Dopamine D1 receptor activation reduced tracer flow to the amacrine cells. We have thus targeted and characterized two poorly understood retinal cell types and placed them with two other cell types in a substantial portion of a new retinal circuit. This unique circuit comprised of pronounced asymmetries in the ganglion cell and amacrine cell dendritic fields may result in a substantial orientation bias. J. Comp. Neurol. 513:69–82, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
Amacrine cells comprise ~30 morphological types in the mammalian retina. The synaptic connectivity and function of a few γ‐aminobutyric acid (GABA)ergic wide‐field amacrine cells have recently been studied; however, with the exception of the rod pathway‐specific AII amacrine cell, the connectivity of glycinergic small‐field amacrine cells has not been investigated in the mouse retina. Here, we studied the morphology and connectivity pattern of the small‐field A8 amacrine cell. A8 cells in mouse retina are bistratified with lobular processes in the ON sublamina and arboreal dendrites in the OFF sublamina of the inner plexiform layer. The distinct bistratified morphology was first visible at postnatal day 8, reaching the adult shape at P13, around eye opening. The connectivity of A8 cells to bipolar cells and ganglion cells was studied by double and triple immunolabeling experiments by using various cell markers combined with synaptic markers. Our data suggest that A8 amacrine cells receive glutamatergic input from both OFF and ON cone bipolar cells. Furthermore, A8 cells are coupled to ON cone bipolar cells by gap junctions, and provide inhibitory input via glycine receptor (GlyR) subunit α1 to OFF cone bipolar cells and to ON A‐type ganglion cells. Measurements of spontaneous glycinergic postsynaptic currents and GlyR immunolabeling revealed that A8 cells express GlyRs containing the α2 subunit. The results show that the bistratified A8 cell makes very similar synaptic contacts with cone bipolar cells as the rod pathway‐specific AII amacrine cell. However, unlike AII cells, A8 amacrine cells provide glycinergic input to ON A‐type ganglion cells. J. Comp. Neurol. 523:1529–1547, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
We determined whether the structural and functional integrity of amacrine cells (ACs), the largest cohort of neurons in the mammalian retina, are affected in glaucoma. Intraocular injection of microbeads was made in mouse eyes to elevate intraocular pressure as a model of experimental glaucoma. Specific immunocytochemical markers were used to identify AC and displaced (d)ACs subpopulations in both the inner nuclear and ganglion cell layers, respectively, and to distinguish them from retinal ganglion cells (RGCs). Calretinin- and γ-aminobutyric acid (GABA)-immunoreactive (IR) cells were highly vulnerable to glaucomatous damage, whereas choline acetyltransferase (ChAT)-positive and glycinergic AC subtypes were unaffected. The AC loss began 4 weeks after initial microbead injection, corresponding to the time course of RGC loss. Recordings of electroretinogram (ERG) oscillatory potentials and scotopic threshold responses, which reflect AC and RGC activity, were significantly attenuated in glaucomatous eyes following a time course that matched that of the AC and RGC loss. Moreover, we found that it was the ACs coupled to RGCs via gap junctions that were lost in glaucoma, whereas uncoupled ACs were largely unaffected. Our results suggest that AC loss in glaucoma occurs secondary to RGC death through the gap junction–mediated bystander effect. J. Comp. Neurol. 527:159–173, 2019. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
Physiological studies of neurons of the inner retina, e.g., of amacrine cells, are now possible in a mammalian retinal slice preparation. The present anatomical study characterizes glycinergic amacrine cells of the rat retina and thus lays the ground for such future physiological and pharmacological experiments. Rat retinae were immunolabeled with antibodies against glycine and the glycine transporter-1 (GLYT-1), respectively. Glycine immunoreactivity was found in approximately 50% of the amacrine and 25% of the bipolar cells. GLYT-1 immunoreactivity was restricted to glycinergic amacrine cells. They were morphologically characterized by the intracellular injection of Lucifer Yellow followed by GLYT-1 immunolabeling. Eight different types of glycinergic amacrine cells could be distinguished. They were all small-field amacrine cells with bushy dendritic trees terminating at different levels within the inner plexiform layer. The well-known AII amacrine cell was encountered most frequently. From our measurements of the dendritic field sizes and the density of glycinergic cells, we estimate that there are enough glycinergic amacrine cells available to make sure that all eight types and possibly more tile the retina regularly with their dendritic fields. J. Comp. Neurol. 401:34–46, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
The retina contains at least 30 different types of amacrine cells but not many are well characterized. In the present study the calcium‐binding protein secretagogin was localized in a population of regular and displaced amacrine cells in the retina of the common marmoset Callithrix jacchus. Irrespective of their soma location, the dendrites of secretagogin amacrine cells occupy strata 2, 3, and 4 of the inner plexiform layer, between the two bands formed by cholinergic amacrine cells. Segretagogin amacrine cells are also immunopositive to antibodies against glutamic acid decarboxylase, suggesting that they use γ‐aminobutyric acid (GABA) as their neurotransmitter. The spatial density of secretagogin amacrine cells decreases from a peak of about 400 cells/mm2 near 1 mm eccentricity to less than 100 cells/mm2 in peripheral retina; these densities account for about 1% of amacrine cells in the inner nuclear layer and for up to 27% of displaced amacrine cells. The cell bodies form a regular mosaic, suggesting that they constitute a single amacrine cell population. Secretagogin cells have varicose dendrites, which are decorated with small spines. Intracellular injection of DiI into secretagogin cells revealed an average dendritic field diameter of 170 μm and an average coverage factor of 3.2. In summary, secretagogin cells in marmoset retina are medium‐field amacrine cells that share their stratification pattern with narrow‐field amacrine cells and their neurotransmitter with wide‐field amacrine cells. They may mediate spatial inhibition spanning the centralmost (on and off) bands of the inner plexiform layer. J. Comp. Neurol. 522:435–455, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
The chick retina has three types of cholinergic amacrine cells. We have found that Types I and II differentiate from a common population of postmitotic cells temporarily located in the inner plexiform layer (IPL cells). Golgi staining and immunocytochemistry for choline acetyltransferase (ChAT) and gamma-aminobutyric acid (GABA) were used to trace the development and fate of IPL cells. Transformation of the shape of IPL cells into those typical of both conventional amacrine cells and those displaced to the ganglion cell layer are seen. All IPL cells are doubly immunoreactive, for ChAT and GABA, from the time they appear as a cell population within the inner plexiform layer (IPL) until their separation into the two amacrine cell populations. Polarization and early stages of shape differentiation of both types occur while they are in the IPL, starting in the dorsocentral area in the temporal retina and spreading to the rest of the retina. Three spatial gradients of differentiation are observed: from central-to-peripheral, dorsal-to-ventral, and temporal-to-nasal retina. Our findings suggest that the fate of both types of cells in the chick is determined locally, whereas their postmitotic precursors are within the IPL. The presence of GABA and acetylcholine in both types of amacrine cells at early stages of their morphogenesis, well before they have synaptic interactions, suggests a morphogenetic role for these molecules in inner retinal differentiation.  相似文献   

16.
In the Xenopus tadpole there are three different serotonin-containing amacrine cells: large, brightly fluorescent (LB), and small, dimly fluorescent (SD) cells in the inner nuclear layer and displaced (DIS) cells in the ganglion cell layer. To reveal the potential roles of regional cues and lineage factors in their determination, quantitative maps were made of the spatial distribution and blastomere origin of each cell type. LB and SD cells were evenly distributed across the four retinal quadrants, arguing against a hypothesis that these cells are induced differentially by quadrant-specific cues. Blastomere progenitors of the 32-cell embryo are biased to produce only subsets of serotonin amacrine cells: 1) all nine progenitors of one retina produced some SD cells, but only eight produced LB, and only five produced DIS cells; and 2) there are overlapping but distinct subsets of blastomere progenitors for each serotonin subtype. This bias is not simply a reflection of the size of a clone in the retina; significant quantitative differences were observed between the proportion of serotonin progeny and the proportion of the entire retina produced by six of the nine retinal progenitors. This bias also is not simply a reflection of the spatial distribution of a blastomere clone in the retina; the number of LB descendants in each retinal quadrant was statistically different from its progenitor's total contribution to the quadrant. These results indicate that the development of the three different serotonin-containing amacrine cells in the retina is biased by membership in specific blastomere clones. J. Comp. Neurol. 387:42–52, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Metabotropic glutamate receptors (mGluRs) are mainly known for regulating excitability of neurons. However, mGluR6 at the photoreceptor‐ON bipolar cell synapse mediates sign inversion through glutamatergic inhibition. Although this is currently the only confirmed function of mGluR6, other functions have been suggested. Here we present Tg(mglur6b:EGFP)zh1, a new transgenic zebrafish line recapitulating endogenous expression of one of the two mglur6 paralogs in zebrafish. Investigating transgene as well as endogenous mglur6b expression within the zebrafish retina indicates that EGFP and mglur6b mRNA are not only expressed in bipolar cells, but also in a subset of ganglion and amacrine cells. The amacrine cells labeled in Tg(mglur6b:EGFP)zh1 constitute a novel cholinergic, non‐GABAergic, non‐starburst amacrine cell type described for the first time in teleost fishes. Apart from the retina, we found transgene expression in subsets of periventricular neurons of the hypothalamus, Purkinje cells of the cerebellum, various cell types of the optic tectum, and mitral/ruffed cells of the olfactory bulb. These findings suggest novel functions of mGluR6 besides sign inversion at ON bipolar cell dendrites, opening up the possibility that inhibitory glutamatergic signaling may be more prevalent than currently thought. J. Comp. Neurol. 524:2363–2378, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Muscarinic cholinergic pathways have been implicated in the visual control of ocular growth. However, the source(s) of acetylcholine and the tissue(s) which regulate ocular growth via muscarinic acetylcholine receptors (mAChRs) remain unknown. We sought to determine whether retinal sources of acetylcholine and mAChRs contribute to visually guided ocular growth in the chick. Cholinergic amacrine cells were ablated by intraocular injections of either ethylcholine mustard aziridinium ion (ECMA; a selective cholinotoxin) or quisqualic acid (QA; an excitotoxin that destroys many amacrine cells, including those that release acetylcholine). Disruption of cholinergic pathways was assessed immunocytochemically with antibodies to the acetylcholine-synthesizing enzyme choline acetyltransferase (ChAT) and three different isoforms of mAChR, and by biochemical assay for ChAT activity. ECMA (25 nmol) destroyed two of the four subtypes of cholinergic amacrine cells and attenuated retinal ChAT activity, but left retinal mAChR-immunoreactivity intact. QA (200 nmol) destroyed the majority of all four subtypes of cholinergic amacrine cells, and ablated most mAChR-immunoreactivity and ChAT activity in the retina. ECMA and QA had no apparent effect on mAChRs or cholinergic fibres in the choroid, only marginally reduced choroidal ChAT activity, and had little effect on ChAT activity in the anterior segment. Toxin-treated eyes remained emmetropic and responded to form-deprivation by growing excessively and becoming myopic. Furthermore, daily intravitreal injection of 40 μg atropine for 6 days into form-deprived toxin-treated eyes completely prevented ocular elongation and myopia. We conclude that neither cholinergic amacrine cells nor mAChRs in the retina are required for visual regulation of ocular growth, and that atropine may exert its growth-suppressing influence by acting upon extraretinal mAChRs, possibly in the choroid, retinal pigmented epithelium, or sclera.  相似文献   

19.
A key principle of retinal organization is that distinct ON and OFF channels are relayed by separate populations of bipolar cells to different sublaminae of the inner plexiform layer (IPL). ON bipolar cell axons have been thought to synapse exclusively in the inner IPL (the ON sublamina) onto dendrites of ON‐type amacrine and ganglion cells. However, M1 melanopsin‐expressing ganglion cells and dopaminergic amacrine (DA) cells apparently violate this dogma. Both are driven by ON bipolar cells, but their dendrites stratify in the outermost IPL, within the OFF sublamina. Here, in the mouse retina, we show that some ON cone bipolar cells make ribbon synapses in the outermost OFF sublayer, where they costratify with and contact the dendrites of M1 and DA cells. Whole‐cell recording and dye filling in retinal slices indicate that type 6 ON cone bipolars provide some of this ectopic ON channel input. Imaging studies in dissociated bipolar cells show that these ectopic ribbon synapses are capable of vesicular release. There is thus an accessory ON sublayer in the outer IPL. J. Comp. Neurol. 517:226‐244, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
We have used calretinin antibodies to label selectively the mosaic of AII amacrine cells in the macaque retina. Confocal analysis of double-labeled material indicated that AII dendrites spiral down around descending rod bipolar axons before enveloping the synaptic terminals. Processes from a previously observed dopaminergic plexus in the inner nuclear layer were observed to contact the somata of calretinin-positive AII somata. Intracellular neurobiotin injection revealed that AII amacrine cells are tracer coupled to other AII amacrine cells and to some unidentified cone bipolar cells. An analysis of the retinal distribution of macaque AII amacrine cells, including an area in and around the fovea, showed a peak density of approximately 5,000 cells/mm(2) at an eccentricity of 1.5 mm. Staining of AII amacrine cells in central retina with antibodies to calretinin was confirmed by confocal microscopy. These results indicate that calretinin antibodies can be used to label the AII amacrine cell population selectively and that primate AII amacrine cells share many of the features of previously described mammalian AII amacrine cells. The peak AII cell density closely matched the peak sampling rate of scotopic visual acuity. Calculations suggest that, in central macaque retina, where midget ganglion cells are more numerous, AII amacrine cells form the limit of scotopic visual acuity (W?ssle et al. [1995] J. Comp. Neurol. 361:537-551). As the ganglion cell density falls rapidly away from the fovea, there is a cross-over point at around 15 degrees eccentricity that matches the inflection point in a psychophysically derived plot of scotopic visual acuity versus eccentricity (Lennie and Fairchild [1994] Vision Res. 34:477-482). The correspondence between the anatomic and psychophysical data supports our interpretation that the anatomic sampling rate of AII amacrine cells limits central scotopic acuity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号